SlideShare une entreprise Scribd logo
1  sur  38
Télécharger pour lire hors ligne
DEEP LEARNING JP
[DL Papers]
Learning model-based planning from scratch &
Imagination-Augmented Agents for Deep Reinforcement Learning
Hiroaki Shioya, Matsuo Lab
http://deeplearning.jp/
論文情報
2
● 2本ともDeepMindが発表した深層強化学習+プランニングに関する論文
● 11 July 2017発表で、現状arxivのみ
● モチベーション
○ model-base大事
○ プランニング大事
強化学習
● エージェントの良いふるまいを学習したい
● 問題設定
3
environment
P, R, γ
agent
Π, V
a s, r
notation:
s : 状態
a : 行動
r : 報酬
P:遷移関数 (s×a→s)
R : 報酬関数 (s×a→r)
Π:方策(s→a)
V : 価値関数(s → v)
γ : 割引率
環境との相互作用を通じて ΠやVを学習し、累積期待報酬和の最大化を目指す
強化学習とDeep Learning
● 方策や価値関数を表す強力な関数近似器
○ 画像など高次元の生データを状態入力として処理可
○ 複雑なタスクを解けるような方策、価値関数も近似可
● 複雑なタスクをNNで扱う際に生じる学習の不安定性や試行回数の多さを補うよう
に強化学習アルゴリズムが発展
○ DQN, TRPO (安定性)
○ GPS(サンプル効率)
4
state
NN policy
action
state
NN value
function
state value
プランニングって何
● 外部環境のモデル(PとR)をもっておいて、先読みした結果を元にどう行動するか決
める
5
: 状態(s)
: 行動(a)
P:遷移関数 (s×a→s)
R : 報酬関数 (s×a→r)
のモデル
(internal model)
良さそう
実環境
real world
a
最近の研究成果の多くは、プランニングを用いていない
● DQN, DDPG, TRPOなど、近年よく使われる深層強化学習アルゴリズムは、多くが
環境の内部モデルをもたない (モデルフリー)
6
: 状態(s)
: 行動(a)
P:遷移関数 (s×a→s)
R : 報酬関数 (s×a→r)
のモデル
(internal model)
良さそう
実環境
real world
a
ではどうしてるの?→ 経験から価値を推定する
● ある状態sで行動aをとるとどれくらい良さそうか(報酬を多く獲得できそうか)を経験
をもとに推定していく
● 結果、状態sの観測に対し、試行錯誤の期間に試してみて良かった行動をとるよう
になる
7
モデルフリーができるのに、なんでプランニングしたいの
● モデルフリーだと異なる設定に一般化できない
○ 目標が変化しても、学習期間に良かった行動を取り続ける
● モデルベースの方が、サンプル効率が良くなる
○ 特にDRLは試行回数が重い
● 人間もやってるっぽい
○ 神経科学の知見にも合う [Hassabis 2017]
○ 経験的にも、プランニングしてるよね
8
[Hassabis 2017] Hassabis, Demis, et al. "Neuroscience-Inspired Artificial Intelligence." Neuron95.2 (2017): 245-258.
なんでプランニングしないの→モデルが不正確
● 多くのタスクでは、環境のモデルは未知
○ 囲碁などのゲームはあてはまらない
● 未知な場合は、経験を元に学習する
○ しかし、学習しても誤差はある程度残る
● 不正確なモデルを使うと、却ってダメな結果を導く
○ しかも、強化学習のように前の予測結果にさらにモデルを使用する問題設定だと、ステップが進む
につれて誤差が蓄積、拡大する
9
内部モデルの予測軌道
実際の軌道
(Classical) Planning
● 多くは完全なモデルを与えられているか、単純なモデルで近似
● 例
○ trajectory optimization
○ model predictive control(MPC)
○ Dyna [Sutton 1991]
○ Monte Carlo Tree Search(MCTS)
10
[Sutton 1991]Dyna, an integrated architecture for learning, planning, and reacting. ACM SIGART Bulletin, 2(4):160–163, 1991
(Classical) Planning + DL
● モデルをNNで近似すれば複雑なダイナミクスでも扱えないだろうか?
○ 従来はlinear conbination feature, gaussian processなどで近似
● 例
○ trajectory optimization + DL
■ Embed to Control [Watter 2015]
■ Prediction and Control with Temporal Segment Models [Mishara 2017]
○ model predictive control(MPC) + DL
■ Deep MPC [Lenz 2015]
■ Deep Video Prediction [Finn 2017]
● 十分な成功を収めているとは言い難い
11
[Watter 2015] Embed to control: A locally linear latent dynamics model for control from raw images. In Advances in Neural Information Processing Systems, pages 2746–2754, 2015.
[Mishara 2017]Mishra, Nikhil, Pieter Abbeel, and Igor Mordatch. "Prediction and Control with Temporal Segment Models." arXiv preprint arXiv:1703.04070 (2017).
[Lenz 2015] DeepMPC: Learning deep latent features for model predictive control. In Robotics: Science and Systems, 2015.
[Finn 2017]Deep visual foresight for planning robot motion. In IEEE International Conference on Robotics and Automation (ICRA), 2017
ここまでのまとめ
● 近年のDRLの発展は目覚ましいが、その多くがモデルフリー
● モデルフリーは異なる設定での汎化性能に欠点があり、克服のためにはモデル
ベースのプランニングが鍵になりそう
● しかし、(NNのような強力な関数近似器を用いても)十分な正確性をもったモデルを
学習するのは難しく、プランニング活用の壁になっている
12
Imagination-Augmented Agents
for Deep Reinforcement Learning
13
不正確なプランニングをNNに解釈してほしい
● モデルを正確に推定するのは難しいので、代わりに不正確なプランニングから使え
る情報だけ抽出して、残りは無視してほしい
● どう抽出すればいいのかよくわからない→NNに投げて抽出してもらおう
● プランニングだけからは行動を決定できないので、モデルフリーRLも学習して、プラ
ンニングからの情報はそのcontext infromationとして活用しよう
14
Model
a. imagination core
○ 内部モデルに相当する
○ environment modelの構造は下図
b. Single imagination rollout
○ 1.がplanningに、2.がそれを解釈する部分に
相当する
○ 2. encoder は逆向きLSTM(あまり向きは大
事じゃなかった)
c. Full I2A Architecture
○ planningとmodel-freeを統合する
○ aggregaterは単純なconcat
○ 最後に2つを入力にとる NN
15
学習
a. imagination core
○ pre-trainする(その方が早いらしい)
○ π_^はπを蒸留して得る
b. Single imagination rollout
○ 普通のRL
c. Full I2A Architecture
○ 普通のRL
16
imagination rollout strategy
● 選択可能な各行動から1回ずつrolloutする
○ つまり行動が離散の場合の戦略しか示されていない
○ この論文ではALEでしか実験してないので問題はない
17
実験1:Sokoban
● ブロックを特定の位置まで運ぶパズルゲーム
● プランニングが求められる特性をもつ
○ ブロックは押すことしかできないので一部不可逆な移動が生じる
○ 毎回パズルの配置が異なる
18
model-bath pathは有効、不完全なモデルも扱える
● I2A(提案手法)がstandard(I2Aのmodel-free
pathのみ)を上回る
● copy-IAAはEMを元のoを返すものに置換し
たもの(parameter増の影響をみるため )
● no reward IAAはobservationのみ予測
● unroll depthは5がoptimalだった(ゲーム自
体は平均50stepくらい)
● I2Aはpoor model(parameter落として精度下
げた)でもタスク成功率が落ちない
● MCはencodingなし
● MCはmodelが良くてもstandardと同程度、
modelが悪いと性能に壊滅的な悪影響を与
える
19
MCTSより読みの効率良い、タスク間汎化も
● 完全なモデルを与える
● I2A@87とMCTS@87を比較すると読んだス
テップ数が1桁違う
● MCTSは読みを増やせばさらに性能をあげ
られるが、I2AもMC searchがつかえて、や
はり高効率
● 4boxでtrainした
● I2Aはstandardと比べて汎化
20
実験2:MiniPacman
● 1つのモデルで異なるタスクに使える内部モデルを学習できるか実験
● タスクを変更してもEMは追加で学習しない
● それでもI2Aがbaselineを上回る
21
まとめ
● 不正確なプランニングをNNでうまく処理してmodel-free methodに取り込むことが
できた
● 他のタスクに対して適用できるか、今後の発展に期待
● あと、step数で比較しているが、内部シミュレーションが入っていないので計算コス
トは増えている
22
Learning model-based planning from scratch
23
プランニングの構築の仕方自体も学習できないか
● 不正確性に対処できればプランニングは完成か?→ No!
● どこを読むか、どこで読みを打ち切るかはヒューリスティックに設計している
○ 読みを打ち切って行動してみるべきか、読むならどのノードから読みを始めるべきかは自由度があ
る、それにimaginationはタダじゃない
● どこを、どこまで読むか決定するメタなエージェントも一緒に学習したい
24
METACONTROL FOR ADAPTIVE IMAGINATION-BASED OPTIMIZATION[Hamrick 2017]
● ICML 2017
● 本論文と近いアイデア
○ meta controllerが、行動するか否か、どの
モデルでプランを評価するかを決める
○ 計算コストの低いモデルを適合的に使い
たいというモチベーション
● one-shot decision makingな問題
25
[Hamrick 2017]Metacontrol for adaptive imagination-based optimization, 2017
Model
● Manager
○ 読みを打ち切るかどうか、どこから読み
始めるか決める
■ 行動空間はact or not + 読み始め候補のnode数
○ これまでの行動や読みの履歴を入力
● Controller
○ 現在状態とMemoryの出力を受け取る
○ imagineとactで共通
● Imagination
○ 環境の内部モデル
○ Interaction Networkを使う
● Memory
○ 読みや行動の結果を文脈とともに記憶
○ LSTM
26
Imagination Strategy
● 3つのimagination strategyを考えた
○ 1-step: 常に現在のノードから読みの続き
を始める
○ n-step: 常に最後のノードから読みの続き
を始める
○ tree: これまで読んだ任意のノードから読
みを始めて良い
27
学習
● Manager
○ タスクに関するlossと、imaginationにか
かるコストを報酬にして REINFORCE
● Controller
○ タスクに関するlossのみを使いSVG
● Imagination
○ 現実で行動した際のデータを使って教師
あり学習
● Memory
○ Controllerと同時に学習
28
実験1:Spaceship task
● 目的の場所への到着を目指す
● 惑星どうしの複雑な重力場がある
● コントロールにも一定のノイズ
29
結果
A. 読みを増やすと良くなる
B. imagination costを増やすと、読みを
減らすよう学習できてる
C. imagination costを増やすと、読みが
減ってtotal costは増える
D. imagination strategyは
1-step<n-step<tree
E. D.に同じ
下図は、生成されたimaginationとactionの
軌道
30
実験2:Discrete mazes
● 迷路を解くタスク
● discrete domainにも適用してみる
● perfect modelを与えている
● その他、meta controllerを与えてしまうなど、ちょっと怪しい
31
結果
● 上図:タスク中に現れたimagination
strategyの割合,状況により様々な
strategyがあり得る
● 下図上 : 迷路同じでゴールが異なる。
imaginationによって異なるタスクにも
汎化
● 下図下:迷路もゴールも異なる場合
32
まとめ
● プランニングの情報を用いて難しいcontinuous coutrolタスクの精度向上
● 加えて、meta controllerがimaginationのコストを見ながら、どこから読むのか、い
つまで読むのかを学習してくれる
● 今後はより広範なタスクへの適用に期待
● internal resource costをどう設計するかは謎
33
おまけ)プランニングに関して、その他の方向性
34
記号的推論、因果推論との統合
● Schema Networks: Zero-shot
Transfer with a Generative Causal
Model of Intuitive Physics[Kansky
2017]
○ ICML 2017
○ AIベンチャー, vicariousの論文
○ オブジェクト間の物理的な因果関係を獲
得して、目標から逆向きに推論する計画
問題を解く。物理法則が変化していない別
タスクにzero shotで適応できる。
○ DLじゃない
35
[Kansky 2017]Schema networks: Zero-shot transfer with a generative causal model of intuitive physics. Accepted at International Conference for Machine Learning, 2017, 2017.
物理的な関係推論
● Interaction Network[Battaglia 2016]
● NIPS 2016
● 物理的な運動推論ができる
● Visual Interaction Network[Watters 2016]
● 画像から物理的な運動推論が可能
36
[]Battaglia 2016]Interaction networks for learning about objects, relations and physics. In Advances in Neural Information Processing Systems, pages 4502–4510, 2016
[Watters 2016]Visual interaction networks,” CoRR, vol. abs/1706.01433, 2017. [Online]. Available: http://arxiv.org/abs/ 1706.01433.
これまで難しかった環境の予測モデルができる?
さらにその先?
● 既知の因果関係を組み合わせて、未知の因果関係を推測
○ 0ショットで環境のモデルを獲得できる可能性がある
37
まとめ
● プランニングの活用はRLにおいて大事
● Imagination-Augmented Agents for Deep Reinforcement Learningでは、モデル
にほぼ不可避な不正確性を扱う新しい方法を提案
● Learning model-based planning from scratchでは、プランニングの構築自体を学
習する枠組みを提案、新しい課題に着手している
● その他にも、プランニングの新しい側面にチャレンジするための要素が少しずつで
てきている
38

Contenu connexe

Tendances

[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
[DL輪読会]Dream to Control: Learning Behaviors by Latent ImaginationDeep Learning JP
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習Deep Learning JP
 
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKSDeep Learning JP
 
Learning to summarize from human feedback
Learning to summarize from human feedbackLearning to summarize from human feedback
Learning to summarize from human feedbackharmonylab
 
【輪読会】Braxlines: Fast and Interactive Toolkit for RL-driven Behavior Engineeri...
【輪読会】Braxlines: Fast and Interactive Toolkit for RL-driven Behavior Engineeri...【輪読会】Braxlines: Fast and Interactive Toolkit for RL-driven Behavior Engineeri...
【輪読会】Braxlines: Fast and Interactive Toolkit for RL-driven Behavior Engineeri...Deep Learning JP
 
Convolutional Neural Netwoks で自然言語処理をする
Convolutional Neural Netwoks で自然言語処理をするConvolutional Neural Netwoks で自然言語処理をする
Convolutional Neural Netwoks で自然言語処理をするDaiki Shimada
 
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...Deep Learning JP
 
Visualizing and understanding neural models in NLP
Visualizing and understanding neural models in NLPVisualizing and understanding neural models in NLP
Visualizing and understanding neural models in NLPNaoaki Okazaki
 
画像キャプションの自動生成
画像キャプションの自動生成画像キャプションの自動生成
画像キャプションの自動生成Yoshitaka Ushiku
 
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
Learning to forget continual prediction with lstm
Learning to forget continual prediction with lstmLearning to forget continual prediction with lstm
Learning to forget continual prediction with lstmFujimoto Keisuke
 
[DL輪読会]Relational inductive biases, deep learning, and graph networks
[DL輪読会]Relational inductive biases, deep learning, and graph networks[DL輪読会]Relational inductive biases, deep learning, and graph networks
[DL輪読会]Relational inductive biases, deep learning, and graph networksDeep Learning JP
 
Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Taiga Nomi
 
ニューラル機械翻訳の動向@IBIS2017
ニューラル機械翻訳の動向@IBIS2017ニューラル機械翻訳の動向@IBIS2017
ニューラル機械翻訳の動向@IBIS2017Toshiaki Nakazawa
 
最先端NLP勉強会2017_ACL17
最先端NLP勉強会2017_ACL17最先端NLP勉強会2017_ACL17
最先端NLP勉強会2017_ACL17Masayoshi Kondo
 
[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係についてDeep Learning JP
 
Generative adversarial nets
Generative adversarial netsGenerative adversarial nets
Generative adversarial netsKeisuke Hosaka
 

Tendances (19)

[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
 
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
 
深層学習による自然言語処理の研究動向
深層学習による自然言語処理の研究動向深層学習による自然言語処理の研究動向
深層学習による自然言語処理の研究動向
 
Learning to summarize from human feedback
Learning to summarize from human feedbackLearning to summarize from human feedback
Learning to summarize from human feedback
 
【輪読会】Braxlines: Fast and Interactive Toolkit for RL-driven Behavior Engineeri...
【輪読会】Braxlines: Fast and Interactive Toolkit for RL-driven Behavior Engineeri...【輪読会】Braxlines: Fast and Interactive Toolkit for RL-driven Behavior Engineeri...
【輪読会】Braxlines: Fast and Interactive Toolkit for RL-driven Behavior Engineeri...
 
Convolutional Neural Netwoks で自然言語処理をする
Convolutional Neural Netwoks で自然言語処理をするConvolutional Neural Netwoks で自然言語処理をする
Convolutional Neural Netwoks で自然言語処理をする
 
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
 
Visualizing and understanding neural models in NLP
Visualizing and understanding neural models in NLPVisualizing and understanding neural models in NLP
Visualizing and understanding neural models in NLP
 
画像キャプションの自動生成
画像キャプションの自動生成画像キャプションの自動生成
画像キャプションの自動生成
 
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)
教師なしオブジェクトマッチング(第2回ステアラボ人工知能セミナー)
 
Learning to forget continual prediction with lstm
Learning to forget continual prediction with lstmLearning to forget continual prediction with lstm
Learning to forget continual prediction with lstm
 
NLP2017 NMT Tutorial
NLP2017 NMT TutorialNLP2017 NMT Tutorial
NLP2017 NMT Tutorial
 
[DL輪読会]Relational inductive biases, deep learning, and graph networks
[DL輪読会]Relational inductive biases, deep learning, and graph networks[DL輪読会]Relational inductive biases, deep learning, and graph networks
[DL輪読会]Relational inductive biases, deep learning, and graph networks
 
Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷
 
ニューラル機械翻訳の動向@IBIS2017
ニューラル機械翻訳の動向@IBIS2017ニューラル機械翻訳の動向@IBIS2017
ニューラル機械翻訳の動向@IBIS2017
 
最先端NLP勉強会2017_ACL17
最先端NLP勉強会2017_ACL17最先端NLP勉強会2017_ACL17
最先端NLP勉強会2017_ACL17
 
[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について[DL輪読会]GQNと関連研究,世界モデルとの関係について
[DL輪読会]GQNと関連研究,世界モデルとの関係について
 
Generative adversarial nets
Generative adversarial netsGenerative adversarial nets
Generative adversarial nets
 

En vedette

[DL輪読会]One Model To Learn Them All
[DL輪読会]One Model To Learn Them All[DL輪読会]One Model To Learn Them All
[DL輪読会]One Model To Learn Them AllDeep Learning JP
 
[DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions [DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions Deep Learning JP
 
[DL輪読会]Learning to Act by Predicting the Future
[DL輪読会]Learning to Act by Predicting the Future[DL輪読会]Learning to Act by Predicting the Future
[DL輪読会]Learning to Act by Predicting the FutureDeep Learning JP
 
[DL輪読会]Opening the Black Box of Deep Neural Networks via Information
[DL輪読会]Opening the Black Box of Deep Neural Networks via Information[DL輪読会]Opening the Black Box of Deep Neural Networks via Information
[DL輪読会]Opening the Black Box of Deep Neural Networks via InformationDeep Learning JP
 
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...Deep Learning JP
 
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient DescentDeep Learning JP
 

En vedette (6)

[DL輪読会]One Model To Learn Them All
[DL輪読会]One Model To Learn Them All[DL輪読会]One Model To Learn Them All
[DL輪読会]One Model To Learn Them All
 
[DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions [DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions
 
[DL輪読会]Learning to Act by Predicting the Future
[DL輪読会]Learning to Act by Predicting the Future[DL輪読会]Learning to Act by Predicting the Future
[DL輪読会]Learning to Act by Predicting the Future
 
[DL輪読会]Opening the Black Box of Deep Neural Networks via Information
[DL輪読会]Opening the Black Box of Deep Neural Networks via Information[DL輪読会]Opening the Black Box of Deep Neural Networks via Information
[DL輪読会]Opening the Black Box of Deep Neural Networks via Information
 
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...
[DL輪読会]Deep Direct Reinforcement Learning for Financial Signal Representation...
 
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 

Similaire à [DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learning model-based planning from scratch

効果的なXPの導入を目的とした プラクティス間の相互作用の分析
効果的なXPの導入を目的とした プラクティス間の相互作用の分析効果的なXPの導入を目的とした プラクティス間の相互作用の分析
効果的なXPの導入を目的とした プラクティス間の相互作用の分析Makoto SAKAI
 
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...Deep Learning JP
 
LT.22 機械学習におけるPDCAを回せる環境構築の話
LT.22 機械学習におけるPDCAを回せる環境構築の話 LT.22 機械学習におけるPDCAを回せる環境構築の話
LT.22 機械学習におけるPDCAを回せる環境構築の話 GIG inc.
 
ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題Kenta Oono
 
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling ProblemDeep Learning JP
 
ChatGPTの仕組みの解説と実務でのLLMの適用の紹介_latest.pdf
ChatGPTの仕組みの解説と実務でのLLMの適用の紹介_latest.pdfChatGPTの仕組みの解説と実務でのLLMの適用の紹介_latest.pdf
ChatGPTの仕組みの解説と実務でのLLMの適用の紹介_latest.pdfGinpei Kobayashi
 
ビッグデータ&データマネジメント展
ビッグデータ&データマネジメント展ビッグデータ&データマネジメント展
ビッグデータ&データマネジメント展Recruit Technologies
 
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGA
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGAAn Introduction of DNN Compression Technology and Hardware Acceleration on FPGA
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGALeapMind Inc
 
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
[DL輪読会]Meta-Learning Probabilistic Inference for PredictionDeep Learning JP
 
How to organize data science project (データサイエンスプロジェクトの始め方101)
How to organize data science project (データサイエンスプロジェクトの始め方101)How to organize data science project (データサイエンスプロジェクトの始め方101)
How to organize data science project (データサイエンスプロジェクトの始め方101)Yasuyuki Kataoka
 
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...y-uti
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜Preferred Networks
 
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太Preferred Networks
 
Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Koichi Hamada
 
DeNAゲーム事業におけるデータエンジニアの貢献 [DeNA TechCon 2019]
DeNAゲーム事業におけるデータエンジニアの貢献 [DeNA TechCon 2019]DeNAゲーム事業におけるデータエンジニアの貢献 [DeNA TechCon 2019]
DeNAゲーム事業におけるデータエンジニアの貢献 [DeNA TechCon 2019]DeNA
 
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...Deep Learning JP
 
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平Preferred Networks
 
Batch Reinforcement Learning
Batch Reinforcement LearningBatch Reinforcement Learning
Batch Reinforcement LearningTakuma Oda
 

Similaire à [DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learning model-based planning from scratch (20)

効果的なXPの導入を目的とした プラクティス間の相互作用の分析
効果的なXPの導入を目的とした プラクティス間の相互作用の分析効果的なXPの導入を目的とした プラクティス間の相互作用の分析
効果的なXPの導入を目的とした プラクティス間の相互作用の分析
 
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
 
LT.22 機械学習におけるPDCAを回せる環境構築の話
LT.22 機械学習におけるPDCAを回せる環境構築の話 LT.22 機械学習におけるPDCAを回せる環境構築の話
LT.22 機械学習におけるPDCAを回せる環境構築の話
 
ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題ディープラーニング最近の発展とビジネス応用への課題
ディープラーニング最近の発展とビジネス応用への課題
 
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
 
ICML2017 参加報告会 山本康生
ICML2017 参加報告会 山本康生ICML2017 参加報告会 山本康生
ICML2017 参加報告会 山本康生
 
Hadoopカンファレンス2013
Hadoopカンファレンス2013Hadoopカンファレンス2013
Hadoopカンファレンス2013
 
ChatGPTの仕組みの解説と実務でのLLMの適用の紹介_latest.pdf
ChatGPTの仕組みの解説と実務でのLLMの適用の紹介_latest.pdfChatGPTの仕組みの解説と実務でのLLMの適用の紹介_latest.pdf
ChatGPTの仕組みの解説と実務でのLLMの適用の紹介_latest.pdf
 
ビッグデータ&データマネジメント展
ビッグデータ&データマネジメント展ビッグデータ&データマネジメント展
ビッグデータ&データマネジメント展
 
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGA
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGAAn Introduction of DNN Compression Technology and Hardware Acceleration on FPGA
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGA
 
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
[DL輪読会]Meta-Learning Probabilistic Inference for Prediction
 
How to organize data science project (データサイエンスプロジェクトの始め方101)
How to organize data science project (データサイエンスプロジェクトの始め方101)How to organize data science project (データサイエンスプロジェクトの始め方101)
How to organize data science project (データサイエンスプロジェクトの始め方101)
 
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...
 
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
 
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
 
Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017
 
DeNAゲーム事業におけるデータエンジニアの貢献 [DeNA TechCon 2019]
DeNAゲーム事業におけるデータエンジニアの貢献 [DeNA TechCon 2019]DeNAゲーム事業におけるデータエンジニアの貢献 [DeNA TechCon 2019]
DeNAゲーム事業におけるデータエンジニアの貢献 [DeNA TechCon 2019]
 
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...
 
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
 
Batch Reinforcement Learning
Batch Reinforcement LearningBatch Reinforcement Learning
Batch Reinforcement Learning
 

Plus de Deep Learning JP

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving PlannersDeep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについてDeep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-ResolutionDeep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxivDeep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLMDeep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place RecognitionDeep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究についてDeep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat ModelsDeep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...Deep Learning JP
 

Plus de Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
 

Dernier

SOPを理解する 2024/04/19 の勉強会で発表されたものです
SOPを理解する       2024/04/19 の勉強会で発表されたものですSOPを理解する       2024/04/19 の勉強会で発表されたものです
SOPを理解する 2024/04/19 の勉強会で発表されたものですiPride Co., Ltd.
 
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)Hiroki Ichikura
 
TSAL operation mechanism and circuit diagram.pdf
TSAL operation mechanism and circuit diagram.pdfTSAL operation mechanism and circuit diagram.pdf
TSAL operation mechanism and circuit diagram.pdftaisei2219
 
スマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムスマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムsugiuralab
 
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介Yuma Ohgami
 
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...Toru Tamaki
 
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略Ryo Sasaki
 
論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNetToru Tamaki
 
論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A surveyToru Tamaki
 

Dernier (9)

SOPを理解する 2024/04/19 の勉強会で発表されたものです
SOPを理解する       2024/04/19 の勉強会で発表されたものですSOPを理解する       2024/04/19 の勉強会で発表されたものです
SOPを理解する 2024/04/19 の勉強会で発表されたものです
 
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)
【早稲田AI研究会 講義資料】3DスキャンとTextTo3Dのツールを知ろう!(Vol.1)
 
TSAL operation mechanism and circuit diagram.pdf
TSAL operation mechanism and circuit diagram.pdfTSAL operation mechanism and circuit diagram.pdf
TSAL operation mechanism and circuit diagram.pdf
 
スマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムスマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システム
 
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介
 
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
 
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
 
論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet
 
論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey
 

[DL輪読会]Imagination-Augmented Agents for Deep Reinforcement Learning / Learning model-based planning from scratch