SlideShare une entreprise Scribd logo
1  sur  43
An introduction to
RADIATION EFFECT ON
ELECTRONIC DEVICES
By Francesco Poderico
www.neutronix-ltd.co.uk
francesco@neutronix-ltd.co.uk
Kind of Particle in space
• Photons
• Photoelectric
• Compton scattering
• Pair production
• Particles (Alpha, Proton (p),Beta (β), Photon (X + Gamma ray), Neutron)
•
Photon radiation
• Photons are particle representing an electromagnetic wave, composed
therefore from a discrete quantum of electromagnetic energy. E= hv
h = Plank constant v = Frequency of electromagnetic wave
• Example of photons = X rays, Gamma rays
•
Photoelectric effect
• All the energy of the photon (hv) is completely absorbed by the atom, and
an orbital electron is ejected
•
Ejected
electron
Gamma ray or X ray
E >=(0.5 MeV)
●Material ●Air ●Silicon (Si) ●Germanium
(Ge)
●Silicon Dioxide
(SiO )₂
●Energy to
create a couple
electron hole
●34 eV ●3.6 eV ●2.8 eV ●17 eV
Compton scattering effect
• Only a partial absorption, from the atom, an orbital electron is ejected +
creation of a photon with lower energy
•
 
Incident Gamma ray
Scattering photon
E= hv = 0.5 MeV – 3.5 MeV
Photon with lower energy
Electron-Positron pair production
• Collision with the nucleus
• The energy of the incident ray will be split in half (electron + positron) the
excess of energy will produce ionization in the travelled material
•
-0.51 MeV e
MeV e+0.51
E >= 1.02 MeV Incident gamma - ray
nucleus
positron
electron
ALPHA PARTICLES
• Alpha particles are basically Helium nucleus
• (the 2 orbit electrons are missing)
• Very slow compared with photon, electrons
• Produce heavy ionization per centimetre of travel
• Travel distance very little ( few centimetres in air, few mm in solid)
•
ALPHA PARTICLES
• Creation of alpha particle by decay of an heavy nucleus atom
alpha
Am Np + alpha
Beta particles
• Beta decay occurs when the neutron to proton ratio is too great in the
nucleus and causes instability.
• In simple words beta decay, a neutron is turned into a proton and an
electron.
•
Positron radiation
• There is also positron emission when the neutron to proton ratio is too
small. A proton turns into a neutron and a positron is emitted. A positron
is basically a positively charged electron.
Maximum Energy of particles in space
●Particle type ●Maximum Energy
●Trapped electrons ●10’s of MeV
●Trapped protons and Heavy
ions
●100’s of MeV
●Solar Protons ●GeV
●Solar Heavy Ions ●GeV
●Galactic cosmic rays ●TeV
Radiation Damage tree
• Cumulative
• Ionization
• MOS
• BJT
• Displacement
• BJT
• Single Event Effect
• SEU
• MOS
• SEE
• SEBO
• SEGR (catastrophic)
• SEL (catastrophic)
Ionization damage
• Effect the SiO2 in BJT and MOS
• The incident particle creates (directly or indirectly) a hole electron pair, the
hole get eventually capture in the SiO2, while the electron can escape.
Leaving as result a positive charge in the SiO2 oxide.
•
Ionization (electron-hole creation)
in Si and SiO2
• Direct mechanism
• incident photon (Gamma) create e+/e- pair - incident charged
particle (alpha, beta, p) creates an ionization track (along the track
of the incident particle itself) releasing energy along the track
•
• Indirect mechanism
• an incident heavy particle (alpha, p, Beta) has an elastic collision (no loss
of energy) with the nucleus of the Si or SiO2 => creating ionization
along the track of the secondary particles
•
Ionization (electron-hole creation)
in Si and SiO2
Ionization sources
LET the e-h generation unit
The quantity of e-h generate depends from
• The quantity of energy absorbed from the material from unit of length
LET = - dE/dx
LET = - 1/ρ dE/dx (space industry) ρ = material density [kg/m^3]
• LET represent an instantaneous ionization by a single particle (is used to estimate
SEE effects)
• LET depends on absorbing material, the ionizing particle and on it's energy
•
Effect of radiation on MOS
• SiO2 is the most sensible part regarding radiation
• Generation of e-h pairs
• e-h pairs generated in gate and Si substrate will recombine => no effect
• e-h pairs in SiO2, small part will recombine e- will go through the gate
(NMOS) h will go through the SiO2 interface
•
Cumulative Ionization in MOS Oxide, example N-
MOS
Cumulative Ionization in MOS Oxide, example N-
MOS
6. holes trapping in the oxide near the Si-SiO2 interface
Vgate
SiO2 INFO
•MobilityofelectroninSiO2is20cm²/Vs
•Mobilityofholesis10^(-4)10^(-11)cm²/Vs
•Energytocreateanelectronholepairisbetween16eVand18eV
•
Example1: charge estimation on SiO2 due to
a single particle
• Assuming a particle with a LET = 100 MeVV m²/mg, tox = 1μm, X = 2μm,Y =
3 μm
1. p = LET/ 18 eV number of electron holes pair by unit of length
2. ch=p* 1.6 *10^(-19) total charge by unit length
3. ch * density of SiO2 total charge deposited in SiO2 due to a particle
NOTICETHIS IS NOT ENOUGHT !!! do you know why?
•
Total Ionization Dose (what is a rad?)
• The absorbed dose D is equal to the absorbed energy on the unit of mass
• D = dE/dm [rad]
• 1 Gy = 100 rad
• 1 gray = 1 J/kg [m^2/s^2]
• Dose rate = absorbed dose for unit of time [rad/s]
• A dose must always be referred to the absorbing material, e.g. 100 krad is
wrong, 100 krad(SiO2) it's OK
•
Example 2:Total charge on SiO2 due toTID
• Assuming aTID = 35 krad, and we know the dimension x,y,z of the SiO2
structure, and the density of SiO2 do you know how to calculate the total
charge?
•
Displacement damage (BJT, OPTO)
• Caused mainly by Heavy particles (e.g neutrons, protons and electrons)
• The incident radiation “moves” the atoms of Si from their original position,
changing the characteristics of the material (impurity, extra energetic
level)
•
Total Ionization Dose Effects
• MOSTransistors
• BJTTransistors
• JFETsTransistors
• Silicon resistors
• MOS capacitance
•
TID Effects on MOS
•ThresholdvoltageshiftΔvt
•Leakagecurrents
•Transductance(gm)decrease
•
TID on N-MOS (on earth)
TID on N-MOS effect onVg after a lowTID
TID on N-MOS (radiation phase 2)
TID on PMOS
TID on PMOS
Leakage current in N-MOS byTID
• Trapped hole charge, cause electron to be attracted by them causing an
increase of the Leaked current. Please notice that on P-MOS we don't
have this problem!
•
Leakage current between adjacent N-MOS
• The leakage current increase even between adjacent N-MOS
•
Reduction ofTransconductance due toTID
•gm=(2μCoxIdW/L)½
•Asthemobilityμchangethetransconductancechangeaswell
•N-MOSandP-MOSinadifferentway,doyouknowwhy?
•
•
TID effects on NPN BJT
TID effects on PNP BJT
• In PNP holes e+ trapped in SiO2 migrates near the Si and induce additional
interface states.
• Β in PNP degrade more than NPN
•
Current gain β vs Ic
Displacement effect
• BJTTransistors
• No effect on MOS (because there is not recombination)
• In BJT a displacement creates a recombination current that has
the effect of reducing the β
•
Displacement effect
Radiation hardness criterion on BJT
(due to displacement damage andTID)
•The β decrease because if Ib2, ib3
•Ib2 and Ib3 depend from the recombination time of the minority charge τ.
•THEREFORE:
•If we make sure that the time for a minority charge to pass from the base to the emitter
is τ* <<τ we have Ib3* <<Ib3, Ib2*<< Ib2
•That's you should use RF BJT
•
Other displacement damage on BJT
•VCE saturation decrease
•Diodes voltage breakdown decreases.
OPTOCOUPLERS
Displacement damage effects:
•Βgaindecreases
•LEDlightemissiondecreases
•

Contenu connexe

Tendances

Flourescence spectrocopy
Flourescence spectrocopyFlourescence spectrocopy
Flourescence spectrocopyChris Sonntag
 
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting PatternIB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting PatternLawrence kok
 
Flourescence spectroscopy- instrumentation and applications
Flourescence spectroscopy-  instrumentation and applicationsFlourescence spectroscopy-  instrumentation and applications
Flourescence spectroscopy- instrumentation and applicationssinghsnehi01
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingLawrence kok
 
Radioactivity: physics form 5.
Radioactivity: physics form 5.Radioactivity: physics form 5.
Radioactivity: physics form 5.Ramli Rem
 
FLUORIMETRY by g.v.durgamani
 FLUORIMETRY by  g.v.durgamani FLUORIMETRY by  g.v.durgamani
FLUORIMETRY by g.v.durgamaniGvDurgamani
 
02 x ray production and its interaction with matter
02 x ray production and its interaction with matter02 x ray production and its interaction with matter
02 x ray production and its interaction with matterAkram Kothwal Syed
 
Infrared (IR) Spectroscopy
Infrared (IR) SpectroscopyInfrared (IR) Spectroscopy
Infrared (IR) SpectroscopyAshwani Dhingra
 
Naturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environmentsNaturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environmentsSSA KPI
 
Instrumentation fluorimetry
Instrumentation fluorimetryInstrumentation fluorimetry
Instrumentation fluorimetryPradeep Swarnkar
 

Tendances (20)

Neutron diffraction
Neutron diffraction Neutron diffraction
Neutron diffraction
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Flourescence spectrocopy
Flourescence spectrocopyFlourescence spectrocopy
Flourescence spectrocopy
 
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting PatternIB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
 
Flourescence spectroscopy- instrumentation and applications
Flourescence spectroscopy-  instrumentation and applicationsFlourescence spectroscopy-  instrumentation and applications
Flourescence spectroscopy- instrumentation and applications
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
 
Radioactivity: physics form 5.
Radioactivity: physics form 5.Radioactivity: physics form 5.
Radioactivity: physics form 5.
 
FLUORIMETRY by g.v.durgamani
 FLUORIMETRY by  g.v.durgamani FLUORIMETRY by  g.v.durgamani
FLUORIMETRY by g.v.durgamani
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Anta sharma
Anta sharmaAnta sharma
Anta sharma
 
02 x ray production and its interaction with matter
02 x ray production and its interaction with matter02 x ray production and its interaction with matter
02 x ray production and its interaction with matter
 
Spectrofluorimetry ppt
Spectrofluorimetry pptSpectrofluorimetry ppt
Spectrofluorimetry ppt
 
Infrared (IR) Spectroscopy
Infrared (IR) SpectroscopyInfrared (IR) Spectroscopy
Infrared (IR) Spectroscopy
 
Fluorimetry
FluorimetryFluorimetry
Fluorimetry
 
Naturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environmentsNaturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environments
 
Instrumentation fluorimetry
Instrumentation fluorimetryInstrumentation fluorimetry
Instrumentation fluorimetry
 
Radioactive decay
Radioactive decayRadioactive decay
Radioactive decay
 

Similaire à An introduction to radiation effect on electronic devices

Chapter1 breakdown in gases
Chapter1 breakdown in gasesChapter1 breakdown in gases
Chapter1 breakdown in gasesmukund mukund.m
 
Ion Implantation UPS.pdf
Ion Implantation UPS.pdfIon Implantation UPS.pdf
Ion Implantation UPS.pdfssuser0e2fb9
 
Radioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - SachinRadioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - SachinSACHINS700327
 
Scanning Electron Microscopy (SEM) Analysis.pdf
Scanning Electron Microscopy (SEM) Analysis.pdfScanning Electron Microscopy (SEM) Analysis.pdf
Scanning Electron Microscopy (SEM) Analysis.pdfSanDeepSharma926061
 
Interaction_photon_electron_with_matter.ppt
Interaction_photon_electron_with_matter.pptInteraction_photon_electron_with_matter.ppt
Interaction_photon_electron_with_matter.pptSUBHA575099
 
Scanning Electron Microscopy (SEM 2013).pptx
Scanning Electron Microscopy (SEM 2013).pptxScanning Electron Microscopy (SEM 2013).pptx
Scanning Electron Microscopy (SEM 2013).pptxAryaSehrawat1
 
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxPhotoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxInsaneInsane4
 
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxPhotoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxInsaneInsane4
 
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effect
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effectDiploma sem 2 applied science physics-unit 5-chap-2 photoelectric effect
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effectRai University
 
Materials_Ch2.pdf
Materials_Ch2.pdfMaterials_Ch2.pdf
Materials_Ch2.pdfsabry said
 
Introduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnologyIntroduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnologyaimanmukhtar1
 
sizedependentproperties.pptx
sizedependentproperties.pptxsizedependentproperties.pptx
sizedependentproperties.pptxAditya Bhardwaj
 
Specific charge.pptx
Specific charge.pptxSpecific charge.pptx
Specific charge.pptxSivababuMula
 
Implantation introduction
Implantation  introductionImplantation  introduction
Implantation introductionKamalakkannan K
 
Photon interaction with matter rahul
Photon   interaction with matter rahulPhoton   interaction with matter rahul
Photon interaction with matter rahulRahul Sankar
 
INTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTERINTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTERVinay Desai
 

Similaire à An introduction to radiation effect on electronic devices (20)

Chapter1 breakdown in gases
Chapter1 breakdown in gasesChapter1 breakdown in gases
Chapter1 breakdown in gases
 
Ion Implantation UPS.pdf
Ion Implantation UPS.pdfIon Implantation UPS.pdf
Ion Implantation UPS.pdf
 
Radioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - SachinRadioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - Sachin
 
Scanning Electron Microscopy (SEM) Analysis.pdf
Scanning Electron Microscopy (SEM) Analysis.pdfScanning Electron Microscopy (SEM) Analysis.pdf
Scanning Electron Microscopy (SEM) Analysis.pdf
 
Interaction_photon_electron_with_matter.ppt
Interaction_photon_electron_with_matter.pptInteraction_photon_electron_with_matter.ppt
Interaction_photon_electron_with_matter.ppt
 
BREAKDOWN IN GASES
BREAKDOWN IN GASESBREAKDOWN IN GASES
BREAKDOWN IN GASES
 
Scanning Electron Microscopy (SEM 2013).pptx
Scanning Electron Microscopy (SEM 2013).pptxScanning Electron Microscopy (SEM 2013).pptx
Scanning Electron Microscopy (SEM 2013).pptx
 
X-ray Production
X-ray ProductionX-ray Production
X-ray Production
 
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxPhotoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
 
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxPhotoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
 
Chapter 02- Breakdown in Gases (part-2)
Chapter 02- Breakdown in Gases (part-2)Chapter 02- Breakdown in Gases (part-2)
Chapter 02- Breakdown in Gases (part-2)
 
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effect
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effectDiploma sem 2 applied science physics-unit 5-chap-2 photoelectric effect
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effect
 
Materials_Ch2.pdf
Materials_Ch2.pdfMaterials_Ch2.pdf
Materials_Ch2.pdf
 
Introduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnologyIntroduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnology
 
sizedependentproperties.pptx
sizedependentproperties.pptxsizedependentproperties.pptx
sizedependentproperties.pptx
 
nbigagli_00393293223155
nbigagli_00393293223155nbigagli_00393293223155
nbigagli_00393293223155
 
Specific charge.pptx
Specific charge.pptxSpecific charge.pptx
Specific charge.pptx
 
Implantation introduction
Implantation  introductionImplantation  introduction
Implantation introduction
 
Photon interaction with matter rahul
Photon   interaction with matter rahulPhoton   interaction with matter rahul
Photon interaction with matter rahul
 
INTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTERINTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTER
 

Dernier

办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书zdzoqco
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdfvaibhavkanaujia
 
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一z xss
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Rndexperts
 
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一F dds
 
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一Fi sss
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...Rishabh Aryan
 
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree 毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree ttt fff
 
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一diploma 1
 
Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi
 
ARt app | UX Case Study
ARt app | UX Case StudyARt app | UX Case Study
ARt app | UX Case StudySophia Viganò
 
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证nhjeo1gg
 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfSumit Lathwal
 
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...mrchrns005
 
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts ServiceCall Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Servicejennyeacort
 
FiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfFiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfShivakumar Viswanathan
 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptMaryamAfzal41
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVAAnastasiya Kudinova
 
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services DubaiDubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubaikojalkojal131
 

Dernier (20)

办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdf
 
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025
 
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
 
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
 
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
 
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree 毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
 
Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.
 
ARt app | UX Case Study
ARt app | UX Case StudyARt app | UX Case Study
ARt app | UX Case Study
 
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdf
 
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
 
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts ServiceCall Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
 
FiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfFiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdf
 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis ppt
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
 
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services DubaiDubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
 

An introduction to radiation effect on electronic devices

  • 1. An introduction to RADIATION EFFECT ON ELECTRONIC DEVICES By Francesco Poderico www.neutronix-ltd.co.uk francesco@neutronix-ltd.co.uk
  • 2. Kind of Particle in space • Photons • Photoelectric • Compton scattering • Pair production • Particles (Alpha, Proton (p),Beta (β), Photon (X + Gamma ray), Neutron) •
  • 3. Photon radiation • Photons are particle representing an electromagnetic wave, composed therefore from a discrete quantum of electromagnetic energy. E= hv h = Plank constant v = Frequency of electromagnetic wave • Example of photons = X rays, Gamma rays •
  • 4. Photoelectric effect • All the energy of the photon (hv) is completely absorbed by the atom, and an orbital electron is ejected • Ejected electron Gamma ray or X ray E >=(0.5 MeV) ●Material ●Air ●Silicon (Si) ●Germanium (Ge) ●Silicon Dioxide (SiO )₂ ●Energy to create a couple electron hole ●34 eV ●3.6 eV ●2.8 eV ●17 eV
  • 5. Compton scattering effect • Only a partial absorption, from the atom, an orbital electron is ejected + creation of a photon with lower energy •   Incident Gamma ray Scattering photon E= hv = 0.5 MeV – 3.5 MeV Photon with lower energy
  • 6. Electron-Positron pair production • Collision with the nucleus • The energy of the incident ray will be split in half (electron + positron) the excess of energy will produce ionization in the travelled material • -0.51 MeV e MeV e+0.51 E >= 1.02 MeV Incident gamma - ray nucleus positron electron
  • 7. ALPHA PARTICLES • Alpha particles are basically Helium nucleus • (the 2 orbit electrons are missing) • Very slow compared with photon, electrons • Produce heavy ionization per centimetre of travel • Travel distance very little ( few centimetres in air, few mm in solid) •
  • 8. ALPHA PARTICLES • Creation of alpha particle by decay of an heavy nucleus atom alpha Am Np + alpha
  • 9. Beta particles • Beta decay occurs when the neutron to proton ratio is too great in the nucleus and causes instability. • In simple words beta decay, a neutron is turned into a proton and an electron. •
  • 10. Positron radiation • There is also positron emission when the neutron to proton ratio is too small. A proton turns into a neutron and a positron is emitted. A positron is basically a positively charged electron.
  • 11. Maximum Energy of particles in space ●Particle type ●Maximum Energy ●Trapped electrons ●10’s of MeV ●Trapped protons and Heavy ions ●100’s of MeV ●Solar Protons ●GeV ●Solar Heavy Ions ●GeV ●Galactic cosmic rays ●TeV
  • 12. Radiation Damage tree • Cumulative • Ionization • MOS • BJT • Displacement • BJT • Single Event Effect • SEU • MOS • SEE • SEBO • SEGR (catastrophic) • SEL (catastrophic)
  • 13. Ionization damage • Effect the SiO2 in BJT and MOS • The incident particle creates (directly or indirectly) a hole electron pair, the hole get eventually capture in the SiO2, while the electron can escape. Leaving as result a positive charge in the SiO2 oxide. •
  • 14. Ionization (electron-hole creation) in Si and SiO2 • Direct mechanism • incident photon (Gamma) create e+/e- pair - incident charged particle (alpha, beta, p) creates an ionization track (along the track of the incident particle itself) releasing energy along the track •
  • 15. • Indirect mechanism • an incident heavy particle (alpha, p, Beta) has an elastic collision (no loss of energy) with the nucleus of the Si or SiO2 => creating ionization along the track of the secondary particles • Ionization (electron-hole creation) in Si and SiO2
  • 17. LET the e-h generation unit The quantity of e-h generate depends from • The quantity of energy absorbed from the material from unit of length LET = - dE/dx LET = - 1/ρ dE/dx (space industry) ρ = material density [kg/m^3] • LET represent an instantaneous ionization by a single particle (is used to estimate SEE effects) • LET depends on absorbing material, the ionizing particle and on it's energy •
  • 18. Effect of radiation on MOS • SiO2 is the most sensible part regarding radiation • Generation of e-h pairs • e-h pairs generated in gate and Si substrate will recombine => no effect • e-h pairs in SiO2, small part will recombine e- will go through the gate (NMOS) h will go through the SiO2 interface •
  • 19. Cumulative Ionization in MOS Oxide, example N- MOS
  • 20. Cumulative Ionization in MOS Oxide, example N- MOS 6. holes trapping in the oxide near the Si-SiO2 interface Vgate
  • 22. Example1: charge estimation on SiO2 due to a single particle • Assuming a particle with a LET = 100 MeVV m²/mg, tox = 1μm, X = 2μm,Y = 3 μm 1. p = LET/ 18 eV number of electron holes pair by unit of length 2. ch=p* 1.6 *10^(-19) total charge by unit length 3. ch * density of SiO2 total charge deposited in SiO2 due to a particle NOTICETHIS IS NOT ENOUGHT !!! do you know why? •
  • 23. Total Ionization Dose (what is a rad?) • The absorbed dose D is equal to the absorbed energy on the unit of mass • D = dE/dm [rad] • 1 Gy = 100 rad • 1 gray = 1 J/kg [m^2/s^2] • Dose rate = absorbed dose for unit of time [rad/s] • A dose must always be referred to the absorbing material, e.g. 100 krad is wrong, 100 krad(SiO2) it's OK •
  • 24. Example 2:Total charge on SiO2 due toTID • Assuming aTID = 35 krad, and we know the dimension x,y,z of the SiO2 structure, and the density of SiO2 do you know how to calculate the total charge? •
  • 25. Displacement damage (BJT, OPTO) • Caused mainly by Heavy particles (e.g neutrons, protons and electrons) • The incident radiation “moves” the atoms of Si from their original position, changing the characteristics of the material (impurity, extra energetic level) •
  • 26. Total Ionization Dose Effects • MOSTransistors • BJTTransistors • JFETsTransistors • Silicon resistors • MOS capacitance •
  • 27. TID Effects on MOS •ThresholdvoltageshiftΔvt •Leakagecurrents •Transductance(gm)decrease •
  • 28. TID on N-MOS (on earth)
  • 29. TID on N-MOS effect onVg after a lowTID
  • 30. TID on N-MOS (radiation phase 2)
  • 33. Leakage current in N-MOS byTID • Trapped hole charge, cause electron to be attracted by them causing an increase of the Leaked current. Please notice that on P-MOS we don't have this problem! •
  • 34. Leakage current between adjacent N-MOS • The leakage current increase even between adjacent N-MOS •
  • 35. Reduction ofTransconductance due toTID •gm=(2μCoxIdW/L)½ •Asthemobilityμchangethetransconductancechangeaswell •N-MOSandP-MOSinadifferentway,doyouknowwhy? • •
  • 36. TID effects on NPN BJT
  • 37. TID effects on PNP BJT • In PNP holes e+ trapped in SiO2 migrates near the Si and induce additional interface states. • Β in PNP degrade more than NPN •
  • 39. Displacement effect • BJTTransistors • No effect on MOS (because there is not recombination) • In BJT a displacement creates a recombination current that has the effect of reducing the β •
  • 41. Radiation hardness criterion on BJT (due to displacement damage andTID) •The β decrease because if Ib2, ib3 •Ib2 and Ib3 depend from the recombination time of the minority charge τ. •THEREFORE: •If we make sure that the time for a minority charge to pass from the base to the emitter is τ* <<τ we have Ib3* <<Ib3, Ib2*<< Ib2 •That's you should use RF BJT •
  • 42. Other displacement damage on BJT •VCE saturation decrease •Diodes voltage breakdown decreases.