Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

How Big Data Can Impact The Society

ITB Model United Nation

  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

How Big Data Can Impact The Society

  1. 1. HOW BIG DATA CAN IMPACT THE SOCIETY CASE: DEMOCRACY 4.0 & SOCIETY 5.0 Ismail Fahmi, Ph.D. Director Media Kernels Indonesia (Drone Emprit) Lecturer at the University of Islam Indonesia Ismail.fahmi@gmail.com ITB MUN TALKS 28 MAY 2021 ITB Model United Nation
  2. 2. 2 1992 – 1997 Undergraduate, Electrical Engineering, ITB, Indonesia Head of Electrical Engineering Student Association of ITB 2003 – 2004 Master, Information Science, University of Groningen, NL 2004 – 2009 Doctor, Information Science, University of Groningen, NL 2009 – Now Engineer at Weborama (Paris/Amsterdam) 2014 – Now Founder PT. Media Kernels Indonesia, a Drone Emprit Company 2015 – Now Consultant at Perpustakaan Nasional, Inisiator Indonesia OneSearch 2017 – Now Lecturer at the IT Magister Program of the Universitas Islam Indonesia Ismail Fahmi, Ph.D. Ismail.fahmi@gmail.com
  3. 3. AGENDA • Data Explosion and Big Data • Where is our democracy, now? • Big Data and Democracy 4.0 • Big Data and Society 5.0 3
  4. 4. ABOUT DRONE EMPRIT 4
  5. 5. DATA EXPLOSION
  6. 6. DATA GROWTH 6
  7. 7. SOCIAL MEDIA CONTRIBUTION 7
  8. 8. SOCIAL MEDIA PLATFORMS IN INDONESIA 8 27% 52% 56% 2018 2019 2020 63.6% 2021
  9. 9. BIG DATA
  10. 10. BIG DATA DEFITION - EVOLUTION 10
  11. 11. CHARACTERISTICS OF BIG DATA SOURCES 11
  12. 12. BIG DATA ANALYTICS - FROM DATA TO ACTIONS 12
  13. 13. WHERE IS OUR DEMOCRACY, NOW?
  14. 14. QUESTION: IN INDUSTRY 4.0, WHERE IS OUR DEMOCRACY? 14
  15. 15. WHICH SOCIETY IS OURS? 15
  16. 16. GENERAL VOTING • extremely open to abuse • misused as a legitimation tool • badly informed citizens vote • some issues have been populistically manipulated E.g. by hoax, propaganda, and influence operation. 16
  17. 17. CURRENT SITUATION: VICIOUS CYCLE OF NOISES 17 Government Noise Public Noise Buzzers Buzzers
  18. 18. PROPOSED SOLUTION: DETECT SIGNAL (VOICES) FROM NOISES 18
  19. 19. IDEAL SITUATION: PUBLIC ENGAGEMENT 19 Government Big Data Analytics Signal Response, engagement Policy & PR
  20. 20. BIG DATA & DEMOCRACY 4.0
  21. 21. THE NEW SOCIAL CONTRACT: FROM REPRESENTATIVE TO PARTICIPATIVE •Participation is not as in a pure online voting. •Participative: • Personal engagement in civil society projects • Join the discussion and development of public policy and programs. 21
  22. 22. DEMOCRACY 4.0: PARTICIPATORY DECISION MAKING 22
  23. 23. WORKFLOW & TEAM 23 Operation Content Analis & Staf Ahli Big Data Media Intelligence Analysis and Strategy Policy Brief DPR, DPRD Reputation Building Social Media (FB page, FB group, IG, Twitter, TikTok, ..) Counter Narratives Online Media Data Strategy Content Conversation Media Listening Constituents
  24. 24. EXAMPLE – BIG DATA FOR PUBLIC SERVICES • Trend • Social Network • Aktor • Narasi • Topik/Isu • Opini • Geo Location • Sentimen • Emosi • Demografi • Bot • Difusi Informasi 24
  25. 25. EXAMPLE: PUBLIC RESPONSES 25
  26. 26. EXAMPLE: OPINION ANALYSIS STIGMA TOWARD COVID-19 PATIENTS • 8 Rasa Takut (tertular dan dikucilkan) masih banyak muncul sebagai penyebab stigma pasien maupun keluarganya. Penolakan penguburan dan pengusiran masih terjadi, lebih spesifiknya: warga melakukan penolakan dan pengusiran jenazah Covid-19. Selain itu, pengucilan lebih banyak terjadi pada pasien atau keluarganya pasca sembuh dari Covid-19. Pemberian bantuan terhadap pasien dilakukan berbagai pihak. Dampak PHK juga masih terjadi kepada pasien dan masyarakat pada umumnya. Penyebab 1.441 71% Perilaku Pengucilan Pengusiran 418 21% Takut Misinformasi Provokasi Tolak Penguburan Dampak Bantuan 180 9% PHK 1.005 49% 354 17% 5 0% 335 16% 68 3% 11 1% 84 4% 96 5% Perundungan 4 0%
  27. 27. EXAMPLE: PUBLIC OPINION MAPPING 27 Betweenness (Bridge)
  28. 28. SOCIETY 5.0
  29. 29. ORIGINATED FROM JAPAN 29
  30. 30. JAPAN’S PROBLEM – AGEING SOCIETY 30
  31. 31. SOCIETY 5.0 = IOT, BIG DATA, AI, ROBOT 31
  32. 32. SOCIETY 5.0: HUMAN CENTERED SOCIETY 32
  33. 33. ARE WE READY?
  34. 34. CIVILITY INDEX IS LOW 34
  35. 35. 35
  36. 36. 36
  37. 37. COMMONSENSE.ORG INITIATIVES 37 https://www.commonsense.org/education/digital-citizenship/curriculum
  38. 38. PREPARING OUR YOUNGER GENERATION 38
  39. 39. DIGITAL CITIZENSHIP 39 https://www.commonsensemedia.org/sites/default/files/uploads/ classroom_curriculum/commonsense_digitalcitizenshipcurriculum .pdf
  40. 40. CONCLUSION
  41. 41. CONCLUSION • Big data is inevitable. • We are in a Networked Society. However, some of the implementation of our democracy are still in “tribal” society. • Big data can help developing Democracy 4.0, a participatory decision making, by listening and analyzing public opinion related to public policy. • Combined with IoT, AI, and Robotics, Big Data support Society 5.0, a human centered society. • Are we ready? Don't’ forget, big data is about people. 41
  42. 42. THANK YOU FOR LISTENING 42

    Soyez le premier à commenter

ITB Model United Nation

Vues

Nombre de vues

122

Sur Slideshare

0

À partir des intégrations

0

Nombre d'intégrations

0

Actions

Téléchargements

14

Partages

0

Commentaires

0

Mentions J'aime

0

×