SlideShare une entreprise Scribd logo
1  sur  42
Télécharger pour lire hors ligne
Algorithmic Music
Discovery at Spotify
Chris Johnson
@MrChrisJohnson
January 13, 2014

Monday, January 13, 14
Who am I??
•Chris Johnson

– Machine Learning guy from NYC
– Focused on music recommendations
– Formerly a graduate student at UT Austin

Monday, January 13, 14
What is Spotify?

•
•

On demand music streaming service
“iTunes in the cloud”

Monday, January 13, 14

3
Section name

Monday, January 13, 14

4
Data at Spotify....
• 20 Million songs
• 24 Million active users
• 6 Million paying users
• 8 Million daily active users
• 1 TB of compressed data generated from users per day
• 700 node Hadoop Cluster
• 1 Million years worth of music streamed
• 1 Billion user generated playlists

Monday, January 13, 14

5
Challenge: 20 Million songs... how do we
recommend music to users?

Monday, January 13, 14

6
Recommendation Features
• Discover (personalized recommendations)
• Radio
• Related Artists
• Now Playing

Monday, January 13, 14

7
8

How can we find good
recommendations?
• Manual Curation

• Manually Tag Attributes

• Audio Content,
Metadata, Text Analysis

• Collaborative Filtering

Monday, January 13, 14
Collaborative Filtering - “The Netflix Prize”

Monday, January 13, 14

9
Collaborative Filtering

10

Hey,
I like tracks P, Q, R, S!
Well,
I like tracks Q, R, S, T!

Then you should check out
track P!

Nice! Btw try track T!

Image via Erik Bernhardsson
Monday, January 13, 14
Section name

Monday, January 13, 14

11
Difference between movie and music recs

•

Scale of catalog

60,000 movies

Monday, January 13, 14

20,000,000 songs

12
Difference between movie and music recs

•

Repeated consumption

Monday, January 13, 14

13
Difference between movie and music recs

•

Music is more niche

Monday, January 13, 14

14
“The Netflix Problem” Vs “The Spotify Problem

•Netflix:

Users explicitly “rate” movies

•Spotify:

Feedback is implicit through streaming behavior

Monday, January 13, 14

15
Section name

Monday, January 13, 14

16
Explicit Matrix Factorization

•Users explicitly rate a subset of the movie catalog
•Goal: predict how users will rate new movies
Movies

Users
Chris
Inception

Monday, January 13, 14

17
Explicit Matrix Factorization

18

•Approximate ratings matrix by the product of lowdimensional user and movie matrices
Minimize RMSE (root mean squared error)

•

?
1
2
?
5

•
•
•

3
?
?
?
2

5
?
3
?
?

?
1
2
5
4

= user
= user

rating for movie
latent factor vector

= item

latent factor vector

Monday, January 13, 14

X

Y
Inception
Chris

•
•
•

= bias for user
= bias for item
= regularization parameter
Implicit Matrix Factorization

19

•Replace Stream counts with binary labels
– 1 = streamed, 0 = never streamed

•Minimize weighted RMSE (root mean squared error) using a
function of stream counts as weights

10001001
00100100
10100011
01000100
00100100
10001001

•
•
•
•

= 1 if user
= user
=i tem

Monday, January 13, 14

streamed track
latent factor vector
latent factor vector

X

else 0

Y

•
•
•

= bias for user
= bias for item
= regularization parameter
Alternating Least Squares

• Initialize user and item vectors to random noise

• Fix item vectors and solve for optimal user vectors

– Take the derivative of loss function with respect to user’s vector, set
–

equal to 0, and solve
Results in a system of linear equations with closed form solution!

• Fix user vectors and solve for optimal item vectors
• Repeat until convergence
code: https://github.com/MrChrisJohnson/implicitMF
Monday, January 13, 14

20
Alternating Least Squares

• Note that:
• Then, we can pre-compute
–
–

once per iteration

and
only contain non-zero elements for tracks that
the user streamed
Using sparse matrix operations we can then compute each user’s
vector efficiently in
time where
is the number of
tracks the user streamed

code: https://github.com/MrChrisJohnson/implicitMF
Monday, January 13, 14

21
Alternating Least Squares

code: https://github.com/MrChrisJohnson/implicitMF
Monday, January 13, 14

22
How do we use the learned vectors?

•User-Item score is the dot product

•Item-Item similarity is the cosine similarity

•Both operations have trivial complexity based on the number of
latent factors

Monday, January 13, 14

23
Latent Factor Vectors in 2 dimensions

Monday, January 13, 14

24
Section name

Monday, January 13, 14

25
Scaling up Implicit Matrix Factorization
with Hadoop

Monday, January 13, 14

26
Hadoop at Spotify 2009

Monday, January 13, 14

27
Hadoop at Spotify 2014
700 Nodes in our London data center

Monday, January 13, 14

28
Implicit Matrix Factorization with Hadoop
Map step

29

Reduce step

item vectors
item%L=0

item vectors
item%L=1

user vectors
u%K=0

u%K=0
i%L=0

u%K=0
i%L=1

...

u%K=0
i % L = L-1

u%K=0

user vectors
u%K=1

u%K=1
i%L=0

u%K=1
i%L=1

...

...

u%K=1

...

...

...

...

u % K = K-1
i%L=0

...

...

u % K = K-1
i % L = L-1

user vectors
u % K = K-1

item vectors
i % L = L-1

u % K = K-1

all log entries
u%K=1
i%L=1

Figure via Erik Bernhardsson
Monday, January 13, 14
Implicit Matrix Factorization with Hadoop

30

One map task
Distributed
cache:
All user vectors
where u % K = x
Distributed
cache:
All item vectors
where i % L = y

Mapper

Emit contributions

Reducer

New vector!

Map input:
tuples (u, i, count)
where
u%K=x
and
i%L=y

Figure via Erik Bernhardsson
Monday, January 13, 14
Implicit Matrix Factorization with Spark

31

Spark

Vs
Hadoop

http://www.slideshare.net/Hadoop_Summit/spark-and-shark
Monday, January 13, 14
Section name

Monday, January 13, 14

32
Approximate Nearest Neighbors

code: https://github.com/Spotify/annoy
Monday, January 13, 14

33
Ensemble of Latent Factor Models

34

Figure via Erik Bernhardsson
Monday, January 13, 14
AB-Testing Recommendations

Monday, January 13, 14

35
Open Problems

•How to go from predictive model to related artists? (learning

to rank?)
How do you learn from user feedback?
How do you deal with observation bias in the user feedback?
(active learning?)
How to factor in temporal information?
How much value in content based recommendations?
How to best evaluate model performance?
How to best train an ensemble?

•
•
•
•
•
•

Monday, January 13, 14

36
Section name

37

Thank You!

Monday, January 13, 14
Section name

Monday, January 13, 14

38
Section name

Monday, January 13, 14

39
Section name

Monday, January 13, 14

40
Section name

Monday, January 13, 14

41
Section name

Monday, January 13, 14

42

Contenu connexe

Tendances

Music Recommendations at Scale with Spark
Music Recommendations at Scale with SparkMusic Recommendations at Scale with Spark
Music Recommendations at Scale with SparkChris Johnson
 
Machine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupMachine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupAndy Sloane
 
Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014Erik Bernhardsson
 
Scala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music RecommendationsScala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music RecommendationsChris Johnson
 
Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.Esh Vckay
 
Homepage Personalization at Spotify
Homepage Personalization at SpotifyHomepage Personalization at Spotify
Homepage Personalization at SpotifyOguz Semerci
 
Big data and machine learning @ Spotify
Big data and machine learning @ SpotifyBig data and machine learning @ Spotify
Big data and machine learning @ SpotifyOscar Carlsson
 
How Apache Drives Music Recommendations At Spotify
How Apache Drives Music Recommendations At SpotifyHow Apache Drives Music Recommendations At Spotify
How Apache Drives Music Recommendations At SpotifyJosh Baer
 
The Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and PainThe Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and PainRafał Wojdyła
 
Scala Data Pipelines @ Spotify
Scala Data Pipelines @ SpotifyScala Data Pipelines @ Spotify
Scala Data Pipelines @ SpotifyNeville Li
 
Recommending and Searching (Research @ Spotify)
Recommending and Searching (Research @ Spotify)Recommending and Searching (Research @ Spotify)
Recommending and Searching (Research @ Spotify)Mounia Lalmas-Roelleke
 
The Evolution of Big Data at Spotify
The Evolution of Big Data at SpotifyThe Evolution of Big Data at Spotify
The Evolution of Big Data at SpotifyJosh Baer
 
SVD and the Netflix Dataset
SVD and the Netflix DatasetSVD and the Netflix Dataset
SVD and the Netflix DatasetBen Mabey
 
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...Hakka Labs
 
ML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive AnalyticsML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive AnalyticsErik Bernhardsson
 
Matrix Factorization In Recommender Systems
Matrix Factorization In Recommender SystemsMatrix Factorization In Recommender Systems
Matrix Factorization In Recommender SystemsYONG ZHENG
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyChris Johnson
 
Music Recommendation 2018
Music Recommendation 2018Music Recommendation 2018
Music Recommendation 2018Fabien Gouyon
 

Tendances (20)

Music Recommendations at Scale with Spark
Music Recommendations at Scale with SparkMusic Recommendations at Scale with Spark
Music Recommendations at Scale with Spark
 
Machine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupMachine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data Meetup
 
Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014
 
Scala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music RecommendationsScala Data Pipelines for Music Recommendations
Scala Data Pipelines for Music Recommendations
 
Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.
 
Homepage Personalization at Spotify
Homepage Personalization at SpotifyHomepage Personalization at Spotify
Homepage Personalization at Spotify
 
Big data and machine learning @ Spotify
Big data and machine learning @ SpotifyBig data and machine learning @ Spotify
Big data and machine learning @ Spotify
 
How Apache Drives Music Recommendations At Spotify
How Apache Drives Music Recommendations At SpotifyHow Apache Drives Music Recommendations At Spotify
How Apache Drives Music Recommendations At Spotify
 
The Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and PainThe Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and Pain
 
Recommending and searching @ Spotify
Recommending and searching @ SpotifyRecommending and searching @ Spotify
Recommending and searching @ Spotify
 
Scala Data Pipelines @ Spotify
Scala Data Pipelines @ SpotifyScala Data Pipelines @ Spotify
Scala Data Pipelines @ Spotify
 
Recommending and Searching (Research @ Spotify)
Recommending and Searching (Research @ Spotify)Recommending and Searching (Research @ Spotify)
Recommending and Searching (Research @ Spotify)
 
The Evolution of Big Data at Spotify
The Evolution of Big Data at SpotifyThe Evolution of Big Data at Spotify
The Evolution of Big Data at Spotify
 
SVD and the Netflix Dataset
SVD and the Netflix DatasetSVD and the Netflix Dataset
SVD and the Netflix Dataset
 
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
 
ML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive AnalyticsML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive Analytics
 
Matrix Factorization In Recommender Systems
Matrix Factorization In Recommender SystemsMatrix Factorization In Recommender Systems
Matrix Factorization In Recommender Systems
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and Spotify
 
Search @ Spotify
Search @ Spotify Search @ Spotify
Search @ Spotify
 
Music Recommendation 2018
Music Recommendation 2018Music Recommendation 2018
Music Recommendation 2018
 

En vedette

Becoming Rhizomatic?
Becoming Rhizomatic?Becoming Rhizomatic?
Becoming Rhizomatic?Mark Ingham
 
Big Practical Recommendations with Alternating Least Squares
Big Practical Recommendations with Alternating Least SquaresBig Practical Recommendations with Alternating Least Squares
Big Practical Recommendations with Alternating Least SquaresData Science London
 
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015Till Rohrmann
 
Fast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasetsFast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasetsGravity - Rock Solid Recommendations
 
Microservices at Spotify
Microservices at SpotifyMicroservices at Spotify
Microservices at SpotifyKevin Goldsmith
 
Amazon.com: the Hidden Empire - Update 2013
Amazon.com: the Hidden Empire - Update 2013Amazon.com: the Hidden Empire - Update 2013
Amazon.com: the Hidden Empire - Update 2013Fabernovel
 

En vedette (6)

Becoming Rhizomatic?
Becoming Rhizomatic?Becoming Rhizomatic?
Becoming Rhizomatic?
 
Big Practical Recommendations with Alternating Least Squares
Big Practical Recommendations with Alternating Least SquaresBig Practical Recommendations with Alternating Least Squares
Big Practical Recommendations with Alternating Least Squares
 
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015
Computing recommendations at extreme scale with Apache Flink @Buzzwords 2015
 
Fast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasetsFast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasets
 
Microservices at Spotify
Microservices at SpotifyMicroservices at Spotify
Microservices at Spotify
 
Amazon.com: the Hidden Empire - Update 2013
Amazon.com: the Hidden Empire - Update 2013Amazon.com: the Hidden Empire - Update 2013
Amazon.com: the Hidden Empire - Update 2013
 

Similaire à Algorithmic Music Recommendations at Spotify

Collaborative Filtering with Spark
Collaborative Filtering with SparkCollaborative Filtering with Spark
Collaborative Filtering with SparkChris Johnson
 
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...icwe2015
 
Deezer - Big data as a streaming service
Deezer - Big data as a streaming serviceDeezer - Big data as a streaming service
Deezer - Big data as a streaming serviceJulie Knibbe
 
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...Timo van Niedek
 
Models for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationModels for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationArjen de Vries
 
Recommendation Systems Roadtrip
Recommendation Systems RoadtripRecommendation Systems Roadtrip
Recommendation Systems RoadtripThe Real Dyl
 
Real-world News Recommender Systems
Real-world News Recommender SystemsReal-world News Recommender Systems
Real-world News Recommender Systemskib_83
 
Recsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem RevisitedRecsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem RevisitedXavier Amatriain
 
Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Karthik Murugesan
 
Recsys 2018 overview and highlights
Recsys 2018 overview and highlightsRecsys 2018 overview and highlights
Recsys 2018 overview and highlightsSandra Garcia
 
Approximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupApproximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupErik Bernhardsson
 
Approximate Nearest Neighbors and Vector Models by Erik Bernhardsson
Approximate Nearest Neighbors and Vector Models by Erik BernhardssonApproximate Nearest Neighbors and Vector Models by Erik Bernhardsson
Approximate Nearest Neighbors and Vector Models by Erik BernhardssonHakka Labs
 
Recommendation Systems
Recommendation SystemsRecommendation Systems
Recommendation SystemsRobin Reni
 
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...Alexandros Karatzoglou
 
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...LINE Corp.
 
Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?Arjen de Vries
 
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...Sc Huang
 
Quettra Design Problem Solution - Deepti Chafekar
Quettra Design Problem Solution - Deepti ChafekarQuettra Design Problem Solution - Deepti Chafekar
Quettra Design Problem Solution - Deepti Chafekarquettra
 

Similaire à Algorithmic Music Recommendations at Spotify (20)

Collaborative Filtering with Spark
Collaborative Filtering with SparkCollaborative Filtering with Spark
Collaborative Filtering with Spark
 
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
(SoWeMine Workshop) "#nowplaying on #Spotify: Leveraging Spotify Information ...
 
Deezer - Big data as a streaming service
Deezer - Big data as a streaming serviceDeezer - Big data as a streaming service
Deezer - Big data as a streaming service
 
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
 
Models for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationModels for Information Retrieval and Recommendation
Models for Information Retrieval and Recommendation
 
Recommendation Systems Roadtrip
Recommendation Systems RoadtripRecommendation Systems Roadtrip
Recommendation Systems Roadtrip
 
Real-world News Recommender Systems
Real-world News Recommender SystemsReal-world News Recommender Systems
Real-world News Recommender Systems
 
Recsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem RevisitedRecsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem Revisited
 
Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Trends in Music Recommendations 2018
Trends in Music Recommendations 2018
 
Recsys 2018 overview and highlights
Recsys 2018 overview and highlightsRecsys 2018 overview and highlights
Recsys 2018 overview and highlights
 
Time frequency analysis_journey
Time frequency analysis_journeyTime frequency analysis_journey
Time frequency analysis_journey
 
Approximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupApproximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetup
 
Approximate Nearest Neighbors and Vector Models by Erik Bernhardsson
Approximate Nearest Neighbors and Vector Models by Erik BernhardssonApproximate Nearest Neighbors and Vector Models by Erik Bernhardsson
Approximate Nearest Neighbors and Vector Models by Erik Bernhardsson
 
Recommendation Systems
Recommendation SystemsRecommendation Systems
Recommendation Systems
 
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
 
Recommender Systems and Linked Open Data
Recommender Systems and Linked Open DataRecommender Systems and Linked Open Data
Recommender Systems and Linked Open Data
 
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...
18.02.05_IAAI2018_Mobille Network Failure Event Detection and Forecasting wit...
 
Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?
 
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...
Random Walk by User Trust and Temporal Issues toward Sparsity Problem in Soci...
 
Quettra Design Problem Solution - Deepti Chafekar
Quettra Design Problem Solution - Deepti ChafekarQuettra Design Problem Solution - Deepti Chafekar
Quettra Design Problem Solution - Deepti Chafekar
 

Dernier

Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 

Dernier (20)

Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 

Algorithmic Music Recommendations at Spotify

  • 1. Algorithmic Music Discovery at Spotify Chris Johnson @MrChrisJohnson January 13, 2014 Monday, January 13, 14
  • 2. Who am I?? •Chris Johnson – Machine Learning guy from NYC – Focused on music recommendations – Formerly a graduate student at UT Austin Monday, January 13, 14
  • 3. What is Spotify? • • On demand music streaming service “iTunes in the cloud” Monday, January 13, 14 3
  • 5. Data at Spotify.... • 20 Million songs • 24 Million active users • 6 Million paying users • 8 Million daily active users • 1 TB of compressed data generated from users per day • 700 node Hadoop Cluster • 1 Million years worth of music streamed • 1 Billion user generated playlists Monday, January 13, 14 5
  • 6. Challenge: 20 Million songs... how do we recommend music to users? Monday, January 13, 14 6
  • 7. Recommendation Features • Discover (personalized recommendations) • Radio • Related Artists • Now Playing Monday, January 13, 14 7
  • 8. 8 How can we find good recommendations? • Manual Curation • Manually Tag Attributes • Audio Content, Metadata, Text Analysis • Collaborative Filtering Monday, January 13, 14
  • 9. Collaborative Filtering - “The Netflix Prize” Monday, January 13, 14 9
  • 10. Collaborative Filtering 10 Hey, I like tracks P, Q, R, S! Well, I like tracks Q, R, S, T! Then you should check out track P! Nice! Btw try track T! Image via Erik Bernhardsson Monday, January 13, 14
  • 12. Difference between movie and music recs • Scale of catalog 60,000 movies Monday, January 13, 14 20,000,000 songs 12
  • 13. Difference between movie and music recs • Repeated consumption Monday, January 13, 14 13
  • 14. Difference between movie and music recs • Music is more niche Monday, January 13, 14 14
  • 15. “The Netflix Problem” Vs “The Spotify Problem •Netflix: Users explicitly “rate” movies •Spotify: Feedback is implicit through streaming behavior Monday, January 13, 14 15
  • 17. Explicit Matrix Factorization •Users explicitly rate a subset of the movie catalog •Goal: predict how users will rate new movies Movies Users Chris Inception Monday, January 13, 14 17
  • 18. Explicit Matrix Factorization 18 •Approximate ratings matrix by the product of lowdimensional user and movie matrices Minimize RMSE (root mean squared error) • ? 1 2 ? 5 • • • 3 ? ? ? 2 5 ? 3 ? ? ? 1 2 5 4 = user = user rating for movie latent factor vector = item latent factor vector Monday, January 13, 14 X Y Inception Chris • • • = bias for user = bias for item = regularization parameter
  • 19. Implicit Matrix Factorization 19 •Replace Stream counts with binary labels – 1 = streamed, 0 = never streamed •Minimize weighted RMSE (root mean squared error) using a function of stream counts as weights 10001001 00100100 10100011 01000100 00100100 10001001 • • • • = 1 if user = user =i tem Monday, January 13, 14 streamed track latent factor vector latent factor vector X else 0 Y • • • = bias for user = bias for item = regularization parameter
  • 20. Alternating Least Squares • Initialize user and item vectors to random noise • Fix item vectors and solve for optimal user vectors – Take the derivative of loss function with respect to user’s vector, set – equal to 0, and solve Results in a system of linear equations with closed form solution! • Fix user vectors and solve for optimal item vectors • Repeat until convergence code: https://github.com/MrChrisJohnson/implicitMF Monday, January 13, 14 20
  • 21. Alternating Least Squares • Note that: • Then, we can pre-compute – – once per iteration and only contain non-zero elements for tracks that the user streamed Using sparse matrix operations we can then compute each user’s vector efficiently in time where is the number of tracks the user streamed code: https://github.com/MrChrisJohnson/implicitMF Monday, January 13, 14 21
  • 22. Alternating Least Squares code: https://github.com/MrChrisJohnson/implicitMF Monday, January 13, 14 22
  • 23. How do we use the learned vectors? •User-Item score is the dot product •Item-Item similarity is the cosine similarity •Both operations have trivial complexity based on the number of latent factors Monday, January 13, 14 23
  • 24. Latent Factor Vectors in 2 dimensions Monday, January 13, 14 24
  • 26. Scaling up Implicit Matrix Factorization with Hadoop Monday, January 13, 14 26
  • 27. Hadoop at Spotify 2009 Monday, January 13, 14 27
  • 28. Hadoop at Spotify 2014 700 Nodes in our London data center Monday, January 13, 14 28
  • 29. Implicit Matrix Factorization with Hadoop Map step 29 Reduce step item vectors item%L=0 item vectors item%L=1 user vectors u%K=0 u%K=0 i%L=0 u%K=0 i%L=1 ... u%K=0 i % L = L-1 u%K=0 user vectors u%K=1 u%K=1 i%L=0 u%K=1 i%L=1 ... ... u%K=1 ... ... ... ... u % K = K-1 i%L=0 ... ... u % K = K-1 i % L = L-1 user vectors u % K = K-1 item vectors i % L = L-1 u % K = K-1 all log entries u%K=1 i%L=1 Figure via Erik Bernhardsson Monday, January 13, 14
  • 30. Implicit Matrix Factorization with Hadoop 30 One map task Distributed cache: All user vectors where u % K = x Distributed cache: All item vectors where i % L = y Mapper Emit contributions Reducer New vector! Map input: tuples (u, i, count) where u%K=x and i%L=y Figure via Erik Bernhardsson Monday, January 13, 14
  • 31. Implicit Matrix Factorization with Spark 31 Spark Vs Hadoop http://www.slideshare.net/Hadoop_Summit/spark-and-shark Monday, January 13, 14
  • 33. Approximate Nearest Neighbors code: https://github.com/Spotify/annoy Monday, January 13, 14 33
  • 34. Ensemble of Latent Factor Models 34 Figure via Erik Bernhardsson Monday, January 13, 14
  • 36. Open Problems •How to go from predictive model to related artists? (learning to rank?) How do you learn from user feedback? How do you deal with observation bias in the user feedback? (active learning?) How to factor in temporal information? How much value in content based recommendations? How to best evaluate model performance? How to best train an ensemble? • • • • • • Monday, January 13, 14 36