SlideShare une entreprise Scribd logo
1  sur  35
Télécharger pour lire hors ligne
Emerging Infotainment Systems and In-Car Apps
From a User Experience Perspective
Kingston University,
UXD: Digital Media Final Project
K1350078 Robert Gardner-Sharp
  2
Contents
Abstract.................................................................................. 3
Introduction .................................................................................................. 4
1.1 Evolution of In-Car Interfaces.................................................................. 4
1.2 Smartphones and Apps ........................................................................... 6
1.3 Current Market ........................................................................................ 7
1.4 User Experience Industry......................................................................... 8
‘Smart’ Connected Cars ............................................................................. 9
2.1 The Internet of Things ............................................................................ 9
2.2 A Multi-Device Ecosystem..................................................................... 10
Safety and Infotainment ..........................................................................11
3.1 Distraction and Cognitive Load ............................................................. 11
3.2 Disparate Infotainment Systems ........................................................... 14
3.3 Tesla to Navdy ...................................................................................... 16
3.4 Safety Limitations ................................................................................. 18
Design and Evaluation ..............................................................................19
4.1 Guidelines .............................................................................................. 19
4.2 Factors and Measures ........................................................................... 25
Discussion....................................................................................................29
References...................................................................................................31
  3
Applications (apps) are becoming evermore ubiquitous. Their diverse and
dynamic services and features are proving essential to how people are
connecting to, and experiencing, the world around them. The expectation and
demand from users to access apps and have a connected digital experience has
seen apps rapidly spreading beyond handheld devices into wearable tech, smart
homes and automobiles; arguably “the ultimate mobile device of all” (AT&T
2014).
With existing in-car infotainment systems from the likes of Ford, GM
Motors and BMW, and the launch of Apple’s CarPlay and Google’s Android Auto,
this new platform is increasingly attracting a wealth of companies looking to
ensure their digital presence in users’ cars. As we move towards seamless
experiences across multiple, connected devices, companies will need to ensure
their apps are optimised to car interfaces and offering a tailored and safe
experience for drivers. This paper not only divulges this bourgeoning in-car
infotainment industry, but also conveys its inherent challenges and complexities,
particularly for user experience. Through an assessment of multi-disciplinary
discourse on cognitive load in high-risk context of use, and a collection of design
and usability theory and practice, insights are gained that inform and inspire the
wider adoption of in-car infotainment systems as viable and compelling platforms
in user experience.
Abstract
	
  
  4
	
  
The 80’s saw fictional, conceptual and novel car interfaces capturing the
imaginations of the public. In 1982 the TV series Knight Rider portrayed artificial
car intelligence in the form of a Pontiac Trans Am called ‘KITT’ with a digital
dashboard, in-built video screens and make-believe voice recognition, and in
1985 Etak, Inc., launched their Electronic Navigation System (Shuldiner 1985:
65) (Figure 1); one of the world’s first publicly available in-car digital maps that
was displayed on a 4½-inch green vector monitor and programed with cassette
tapes (Parkinson and Spilker 1996: 294). However, it would be two decades
later that in-car interfaces would eventually see widespread commercial success.
With advancements in technology, significantly lower manufacturing
costs and access to high precision Global Positioning System (GPS) signals, which
were only made fully available for US civilian use after the Clinton Administration
lifted military GPS “Selective Availability” in 2000 (Sadeh 2002: 275), portable
devices offering touchscreen GPS navigation from the likes of TomTom, Garmin
and Navman became prodigious performers of the in-car technology market on
an international scale (Mintel 2009) (Figure 2). Emerging at this time were other
more niche, and what was then considered somewhat novel, portable/
aftermarket multimedia ‘car stereo’ systems offering features such as video and
MP3 playback, DVD drives, Bluetooth, and GPS Navigation services on widescreen
LCD monitors (Figure 3). Furthermore, a limited number of luxury vehicles also
entered the market with factory in-built infotainment systems that included GPS
Navigation.
1. Introduction
Evolution of In-Car Interfaces
Figure 1. Etak,
Inc., Electronic
Navigation
System
  5
Figure 3. A 2003 Rosen Necvox portable/aftermarket system installed into the
dashboard stereo port with features including DVD and TV viewing
Figure 2. Example of a portable GPS Navigation device positioned on the main window
  6
Smartphones and Apps
The smartphone revolution offered high computing capability and “all the power
of being connected to the internet in the palm of one’s hand” (Rollins and
Sandberg 2013: 2). In 2007 Apple released their iPhone and iTunes app store
and by 2010 the mobile industry was seeing a rapid “rise of smartphones, apps
and the mobile web… with the majority of smartphone owners (62%) having
downloaded apps on their devices” (Nielsen 2011). Arguably “the ultimate
convergence device” (Hayden and Webster 2014: 1), smartphones offer built-in
capabilities of camera, connectedness and geolocation for apps to utilise (Allen
et al., 2010: 3). Not only did car sat-nav apps on smartphones pose a great
challenge to the portable GPS Navigation market (Mintel 2009) but the new
paradigm of ubiquitous computing and increasing demand for seamless
connectivity has also meant ‘car inhabitants’ expect to be able to “entertain
themselves and communicate with the world outside, [with] all useful and
interesting information flow[ing] fluently… without distracting him/her from the
primary driving task” (Damiani et al., 2009: 95).
In response to the market, Nokia released Car Mode in 2011; “the world’s
first in-car infotainment solution based on MirrorLink™” (Nokia 2011). The
technology transforms smartphones into automobile operating systems enabling
drivers to interact with their smartphone and apps while driving. Through utilising
the in-car infotainment interface and/or the car’s dashboard and steering wheel
controls, MirrorLink gives users safer “access to their smartphone apps while
driving, allowing them to be connected and responsible at the same time”
(MirrorLink 2014) (Figure 4). This collaborative project between Nokia Research
Center and the Consumer Electronics for Automotive (CE4A) led to the
formation of the Car Connectivity Consortium; an initiative bridging leading car
manufacturers and mobile phone makers in the development of global standards
for phone-centric car connectivity solutions (O’Donnell 2012).
Figure 4. MirrorLink with a Nokia 701 being plugged into an Alpine head unit
  7
Current Market
Juniper Research’s latest report anticipates widespread adoption of in-car apps
over the next five years with “revenues from consumer and commercial
telematics reach[ing] just short of $20 billion by the end of the forecast period
in 2018” (Juniper 2014). Alongside the continued success of MirrorLink,
currently supported by many of the latest vehicles and smartphones (including
Honda, Mercedes-Benz, Skoda, Volkswagen, Toyota, and HTC, Samsung, Sony,
and Nokia), 2014 has seen both Apple’s iPhone and Google’s Android launching
their own in-car solutions (CarPlay and AndroidAuto respectively) that
exclusively synchronise their smartphones with compatible infotainment systems.
Smartphone users comprise 62% of the UK adult population (Ofcom 2014) with
61.1% of consumers using Google’s Android OS followed by 27.1% using Apple’s
iOS (Kantar 2014), so, the introduction of Android Auto and CarPlay (Figure 5)
is set to significantly help drive the momentum of the in-car apps market (Tode
2014).
Although both economical and luxury car manufacturers have been
offering in-built infotainment systems for the better part of a decade, in 2012
the headline ‘Automakers Rush to Offer Apps in Cars’ appeared in USA Today
highlighting the need for automakers to “fill a gap in their customers’ electronic
lives” (Woodyard 2012). The past few years have since seen several car
manufacturers offering a diverse library of apps directly through their in-built
systems “similar to what consumers have come to expect from their
smartphones” (Thibaut 2013): Toyota’s in-car infotainment system Entune
offers access to popular services such as Pandora, Yelp, OpenTable and
MovieTickets.com, and Nissan’s in-car infotainment system NissanConnect
includes Facebook, Google and iHeartRadio apps.
Figure 5. Driving while connected to Apple CarPlay
  8
User Experience Industry
The rise of in-car infotainment systems and apps ensues a multitude of
companies looking to ensure their digital presence in users’ cars. Prospective
clients will be turning to the user experience industry as they endeavour to
produce apps that are optimised for in-car interfaces with tailored experiences
for drivers. Furthermore, proposed in-car apps require certification from the car
manufacturers or in-car solution providers (e.g. MirrorLink via the Car
Connectivity Consortium) before they are made accessible to drivers, therefore,
it is essential that specialist usability testing be carried out prior to submission.
Aside from specialist agencies, such as Testronic Laboratories, Belguim, user
experience professionals seeking to work on in-car apps and infotainment
services will need to consider alternative or adapted approaches, methods and
practices to accommodate this new platform and its complex context of use.
This paper will provide insights into in-car infotainment systems to
encourage the adoption of automobile ux services. Through reference to
academic literature, scientific studies and experiments, presentations, and
theory, this paper conveys various innovations, issues, solutions, guidelines, and
measures essential to the automobile infotainment industry.
  9
	
  
The projected ‘Internet of Things’ sees ubiquitous internet and everyday devices,
equipped with sensors and connectivity, working together and operating
automatically in response to context, environment and what we are doing
(Duncan 2014). In facilitating a seamless, digitally-connected future, the Internet
of Things is transforming the way we interact with machines and technology and
the way they interact with each other.
Such ‘smart’ ‘things’ are already permeating our everyday lives; the LG
Smart ThinQ Refrigerator notifies you, on its 8-inch display and/or smartphone
app, when food has run out or gone off and instantly connects to an online
shopping basket, while the Nest thermostat, that allows people to check and
adjust home temperature settings from their smartphone, can even learn the
homeowner’s routines to adjust temperatures around the home automatically.
Although many in-car GPS Navigation services offer live traffic updates while
driving, the Internet of Things vision would go a step further and, for example,
have the driver’s car automatically email their boss that they are stuck in traffic
on a motorway (Carter 2012).
The progression towards an Internet of Things will undoubtedly inspire
the development of innovative in-car apps that are utilising the car’s ‘big data’
and are connected to, and communicating with, multiple devices in a wide
network. Designers are led to taking a wider view of the whole system in its
entirety, looking at “how different parts on the system interrelate, and especially
how the user features in that interaction” (McEwan and Cassimally 2013: 22).
2. ‘Smart’ Connected Cars
The Internet of Things
Figure 6.
Imagined
connectivity
	
  
  10
A Multi-Device Ecosystem
Being in the midst of an important behavioural shift to a multi-device model, it is
essential that we recognise that connected devices can form a multi-device
experience as a connected group as opposed to being just a set of silo devices.
Experiences should focus on how the set of connected devices can best serve
users’ needs as they move between activities and contexts throughout the day
in order to create natural, fluid, multi-device experiences that allow for dynamic
changes. Levin (2014) promotes adopting a holistic ecosystem experience that
can employ any, or a combination, of three design approaches:
1. Consistent design; replicating the basic experience across the different
devices, porting the same content and core features in a like manner
[and reflecting brand identity].
2. Continuous design; where the user experience shifts/flows between
devices accompanying the user in their set of activities, within different
contexts, en route to their information or entertainment goal.
3. Complementary design; when multiple devices interact as an ensemble,
which together create a complete experience.
(Levin 2014: 21)
Anticipating the implications of an Internet of Things and appreciating the
wider ecosystem of an in-car app is of great importance and benefit during the
design lifecycle of an in-car app. However, what must always take precedence
above all else is the design of an in-car app to be appropriate and safe for drivers
to use (while driving or not). Through fostering an ‘ecosystem,’ designers should
“capture the dynamically changing needs and contexts that accompany shifting
devices, putting the emphasis on delivering the right thing at the right place at
the right time” (Levin 2014: 3) and in the ‘right way’.
  11
1
In 2012 a survey by AAA Foundation for Traffic Safety in the US found that 94%
of drivers considered texting while driving “a serious threat” with 87% favouring
texting bans, however, more than a third admitted reading a text or e-mail while
driving in the past month and 70% reported talking on their mobiles while driving
(O’Donnell 2012). While there has been a plethora of research into the dangers
of mobile usage while driving (Figure 7), there is still wide debate over the use of
in-car infotainment systems and particularly smartphone synchronised solutions.
Rennecker and Halgren’s (2014) talk ‘Designing Healthcare Technologies:
Motivating Users by Decreasing Cognitive Load’ at the UXPA14 conference
highlighted UX issues for medical professionals working in a complex, precarious
context. What was most fascinating were the similarities made with the car
environment for drivers. In both contexts the risks of errors are high due to
frequent interruptions, multi-tasking, high-risk tasks and competing demands all
of which impact heavily on cognitive load; the amount of mental resources
required to operate a system. Rennecker and Halgren presented the three types
of human cognitive load commonly referred to in cognitive load theory in relation
to healthcare: intrinsic load, extrinsic load and germane load (Figure 8).
There are three types of distraction while driving; visual - looking away
from the road, manual - reaching out for something instead of keeping hands not
on the steering wheel and/or cognitive - lack of mental focus on the information
critical to safe driving. A study into ‘Visual Attention in Driving: The Effects of
Cognitive Load and Visual Disruption’ Lee et al., (2007) observed that cognitive
load and short glances away from the road are “additive in their tendency to
increase the likelihood of drivers missing safety-critical events” (2007: 731).
3. Safety and
Infotainment
Distraction and Cognitive Load
Figure 7. Extreme
example of a taxi
dashboard, China
	
  
2
  12
The study states that even devices that do not require glances away from the
road, such as voice controlled systems, can nevertheless “impose a cognitive
load that may interfere with driving performance” (2007: 721). Furthermore,
drivers’ awareness of the dangers are imperfect, potentially leading to them
underestimating the consequence of seemingly inconsequential distractions,
therefore, Lee et al., concludes that “drivers may benefit from feedback
regarding how in-vehicle information systems undermine visual attention” (2007
:732).
Published at the time of writing, the most recent research into in-car
infotainment systems from the AAA Foundation for Traffic Safety, by Strayer et
al., (2014), assesses cognitive distraction associated with performing voice-
based interactions while driving. Through excluding driver visual and manual
requirements in the experimental design, the researchers could hypothesise “any
impairment to driving must be caused by the diversion of attention from the
task of operating the motor vehicle” (2014: 2). Using a combination of
performance indices, three experiments were carried out, each testing nine tasks
(Figure 9), to produce ‘cognitive workload’ measures on a scale of 1 to 5 (1
being low distraction and 5 being comparable to complex maths problems and
word memorisation).
Figure 8. 3 Kinds of Cognitive Load (Rennecker and Halgren 2014)
  13
Results were positive for short, simple (Wizard-of-Oz) voice commands;
scoring 1.88 on the cognitive workload scale “close to listening to an audio-book
(Strayer et al., 2013)” (Strayer et al., 2014: 22). However, voice-based
interactions overall were deemed to create “significant impairments to driving”
(2014: 25) with certain interactions exerting dangerously high levels of driver
cognitive load, particularly when frustrating usability issues and erroneous
commands occurred. Controversially, out of seven systems tested, the study
revealed Apple CarPlay produced the highest cognitive workload scale for drivers,
with the “the lowest rating of intuitiveness and the highest rating of complexity”
(2014: 24) (Figure 9 and Figure 10).
Figure 9. Cognitive workload scale (Strayer et al., 2014)
Figure 10. Strayer et al.,’s smart cars distraction ratings (O’Callaghan 2014)
  14
Nesselrath (2013) outlines three levels of driving-related activities in his
study on cognitive load in the automotive domain:
1. The maneuvering of the car, e.g. steering and operating the pedals.
2. Maintaining safety while driving, e.g. using windshield wipers, control of
lights and turning signals.
3. The control of comfort, infotainment and entertainment functions.
(Nesselrath 2013: 66)
He states that it cannot be denied in-car infotainment systems are an
additional flood of cognitive stimuli which harbours the risk of distracting the
driver from their primary task, namely to steer the car (Nesselrath 2013: 266).
Therefore, it is crucial, and soon to be more strictly regulated government
legislation in the US and UK (Carfrae 2014), that a lower priority task, such as
interacting or operating an in-car app, does not interfere with or distract from
tasks with a higher priority and has a low effect on the driver’s cognitive load.
Disparate Infotainment Systems
Both in-built and portable/aftermarket in-car infotainment systems have
continued to vary in screen size, positioning and functionality since their earliest
introduction. There is little consensus, and some conflicting discourse, on the
varying affects of display positioning on driver glance behaviour and the affects
of user-interface touch interaction (touchscreen, tapping, flicking, swiping,
pinching etc.,) on distraction.
Wittmann et al.,’s (2006) research into infotainment system positioning
stresses the importance of taking careful consideration of the placement of
onboard displays for the presentation of visual information in the car. The study
states that distances between displays and the outside line of sight had a
significant effect on driving performance and their subjective mental workload
measures (Figure 11). In conclusion, the nearer the infotainment system is
positioned to the windscreen (e.g. above the middle-console or above the
dashboard) “the less detrimental effect has the onboard visuo-motor control of a
secondary task on the actual driving performance” (Wittmann et al., 2006: 196).
Fuller et al.,’s (2008) research into infotainment system positioning
anticipated that driving performance would suffer when their in-vehicle task was
performed with a monitor in positions with greater visual angle from the road
and greater reach distance. However, contrary to Wittmann et al (2005), the
study concluded there was “no significant difference in driving performance
between different in-vehicle task monitor positions… the RMS [Root Mean
Square] error and delay were approximately the same for all” (Fuller et al., 2008:
1896). Such in agreement of ‘safest’ practice and the lack of universalisable
standards for in-car infotainment systems has led to an open market in which
“no two [systems] are alike” (Palermo 2013) (Figure 12).
  15
Some car models’ infotainment systems have touchscreen functionality
while others do not, some offer voice recognition but some only operate through
physical buttons and switches. While many infotainment systems are now
multimodal; controlled by a variety of inputs such as touchscreen, speech and
physical buttons (commonly located on the steering wheel), consumers are still
encouraged to compare cars and “check that the location of the inputs works for
[them]” (Consumer Reports 2013: 19). Increasingly, car manufacturers are
offering customers a choice of varying levels of interactivity and
conspicuousness from their range of infotainment systems.
Figure 11. Display location results (Wittmann et al., 2006: 195)
Figure 12. (Clockwise from the top) Acura TLX, Audi A6, Ford EcoSport and MINI
  16
Tesla to Navdy
Two very unique systems that epitomise either end of the infotainment
spectrum are the in-built Tesla Model S display (Figure 13) and the Navdy
portable/aftermarket Head-Up Display (HUD) (Figure 14):
Telsa Model S
Named Motor Trend Car of the Year 2013, Telsa Model S’s infotainment
system impressed all the judges with its “unique user interface, courtesy of the
giant [17-inch] touch screen in the center of the car that controls everything
from the air-conditioning to the nav system to the sound system to the car's
steering, suspension, and brake regeneration settings… the Model S interior is
virtually button-free” (MacKenzie 2013). The unprecedented size of the in-car
display takes up almost all of the dashboard space replacing conventional
buttons with a software driven “upgradeable dash… that could be updated over
the air to provide new functionality as the years go on” User Interface Manager,
Bennan Bobllett (Tengler 2013).
The electric luxury car has two display screens, the second being a 7-inch
non-touchscreen instrument cluster positioned behind the steering wheel. When
the car is stationary the instrument cluster shows which doors are open etc., and
then changes to a speedometer and power gauge with images on either side
showing battery life, navigation and audio information while driving (CNET 2013).
Physical buttons and a scroll on the steering wheel control the instrument cluster
and there is also a button for operating the somewhat ‘limited’ voice command.
The voice command of the Tesla Model S works in conjunction with the central
touchscreen display but essentially just functions as an alternative to keyboard
typed searches (requiring the final selection of song name or destination to be
made on the central touchscreen display).
Although the 17-inch touchscreen allows for larger digital buttons, which
reduces usability issues and gaze/concentration time (Evarts 2013), the Tesla
Model S display has received mixed reaction from both consumers and user
experience professional. There are concerns with having a constant large bright
glare from the display while driving and/or the amount of eye/hand coordination
when reaching out to the display. Nevertheless, Tesla have undoubtedly
extended the paradigm of touchscreen as an input and pushed the boundaries of
in-car UI and UX to break new ground with design and stimulate further discourse
and innovation in the automobile industry.
Navdy
The soon to be released (2015) Navdy HUD is a portable/aftermarket
device that can be mounted on almost any car dashboard and is inspired by the
need to fulfil a solution for maximum in-car functionality without creating driver
distraction. “You’re not looking down at knobs and buttons and touchscreens.
You’re able to keep your eyes on the road at all times. Improving safety is one of
our big goals… and we’re doing everything we can to ensure driver’s eyes stay
on the road.” CEO, Doug Simpson (TelematicsWire 2014).
Through utilising voice commands and hand gesture recognition, Navdy
can display essential car data, GPS Navigation, read and respond to text
messages and play requested music on a projected transparent screen seemingly
  17
	
   hovering six feet in front of the driver. With both connection to the cars on-
board computer and a Bluetooth connected smartphone, the Navy provides a
unique interface and interaction for popular apps including Twitter, Facebook and
Spotify (Navdy 2014).
Although it has yet to take to the road and been approved by actual
consumers, the Navdy should not be taken lightly; despite concerns of increased
cognitive load from any modal interaction type, there is research in favour of
‘glance-free’ HUD solutions over touchscreen interaction, and displays positioned
below the diver’s line of sight. This novel HUD solution may in fact pioneer the
future direction for in-car infotainment systems.
Figure 13. Tesla Model S touchscreen and instrument cluster
Figure 14. Navdy portable/aftermarket HUD installed on a dashboard
  18
Safety Limitations
When working with in-car apps user experience practitioners will have no control
over the inherent safety of the manufactures’ chosen infotainment systems. The
design and evaluation of apps will be constrained by the limitations of the wide
variety of existing infotainment systems. An app that tests well and is deemed
appropriate in its function, user interface and interaction on one car’s
infotainment system has the potential to be inappropriate and/or hazardous on
others. By staying up-to-date with research around the safety of particular types
of in-car interactions and systems, the user experience practitioner can make
more informed assessments and recommendations during the app’s life-cycle.
In-car apps are likely to require a high level of optimisation for effective
and appropriate usage in different car models. Adjustments should be made to
compensate for any potentially problematic interactions or equally exploit any
alternative interactions that may encourage safer usage; for example, enabling
control of the app from the steering wheel rather that the touchscreen input
could reduce cognitive load from eye/hand coordination. Certain alerts, such as a
Facebook updates or Twitter messages, may be acceptable on a HUD system, as
a side notice while driving, but could be too great a distraction on a touchscreen
display. Such alerts to content rich information may tempt a driver to redirect
their focus to the infotainment system and make them feel compelled to browse
further; a high-risk task that would be more appropriate after the car has parked
(see Guidelines p.23).
  19
There are fundamental user experience design principles that are derived from a
combination of theory-based knowledge, experience and common sense, and are
intended as generalizable abstractions for thinking about different aspects of
design. Various principles have been proposed and interpreted by theorists in
Human Computer Interaction for any interaction design and therefore should be
assignable and informative to in-car infotainment systems and in-car apps (Figure
16). Nevertheless, in certain design situation, some design principles may be in
conflict with each other or at odds with product design goals and objectives so
will require design trade-offs. Design principles are not intended to be followed
blindly but rather act as guidance for sensible interface design (Mandel 2013:
80).
4. Design and Evaluation
Guidelines
	
   Hansen (1971)	
   Shneiderman (1987)	
   Norman
(1988)	
  
Morville
(2004)	
  
1.	
   Know the user	
   Strive for consistency	
   Visibility	
   Useful	
  
2.	
   Minimise
memorisation	
  
Enable shortcuts	
   Feedback	
   Usable	
  
3.	
   Optimise operations	
   Informative feedback	
   Constraints	
   Desirable	
  
4.	
   Engineer for errors	
   Design to yield closure	
   Mapping	
   Findable	
  
5.	
   	
   Simple error handling	
   Consistency	
   Accessible	
  
6.	
   	
   Easy reversal of actions	
   Affordance	
   Credible	
  
7.	
   	
   User in control 	
   Valuable	
  
8.	
   	
   Reduce short-term
memory load
	
   	
  
	
  Figure 16. Table of Design Principles gathered from various theorists
Figure 15.
Wireframe car
sculpture
	
  
  20
Usability guidelines from other devices that utilise relevant interactions,
such as touchscreen, natural language user interface/voice control, haptics,
gestures, etc., can still offer valuable insights for automotive UX design.
Previewing his recent finding at the UXPA14 conference, Hoober’s (2014)
presentation ‘Fingers, Thumbs & People: Designing for the way your users really
hold and touch their phones and tablet’ discussed the impact of fingers and
hands covering areas of the screen and revealed how objects in the corners of
screens have lower accuracy than those in the centre. His re-evaluation of
hitherto knowledge in touchscreen theory conveys original ideas on designing to
avoid errors and takes advantage of his new findings (see more
http://4ourth.com/wiki/General%20Touch%20Interaction%20Guidelines).
1. Your users are not like you:
a. Design for every users
b. Accept that users change
c. Plan for every device
2. Users prefer to touch the centre of the screen:
a. Place key actions in the middle
b. Secondary actions along the top and bottom
3. Users prefer to view the centre of the screen:
a. Place key content in the middle
b. Allow users to scroll content to comfortable viewing positions
4. Fingers get in the way:
a. Make room for fingers around targets
b. Put your content or functions where they won’t be covered
c. Leave room for gestures and scroll
5. Different devices are used in different ways:
a. Support all input types
b. Predict use by device class
c. Account for distance by adjusting sizes
6. Touch is imprecise:
a. Make touch targets as large as possible
b. Tap entire containers
c. Design in lists and large boxes
7. Touch is inconsistent:
a. Design by zones
b. Don’t force edge selection
c. Very large spacing along the top and bottom
8. People only click what they see:
a. Attract the eye
b. Afford action
c. Be readable
d. Inspire confidence
9. Don’t forget cases and bezels:
a. Provide room for edge taps and off-screen gesture
  21
10. Work at human scales
a. Paper is your friend
b. Test and demonstrate on real devices
c. Pixels are a lie - plan accordingly
(Hoober 2014)
In ‘Designing Healthcare Technologies,’ Rennecker and Halgren (2014)
present their six ‘Design Rules for Reducing Cognitive Load’. The guidelines,
which are directed at but not exclusive to hospital technology, offer design
solutions transferable to other demanding, sensitive and high-risk contexts of
use (such as while driving):
1. Be Simple:
a. Be Minimal
i. Be direct Less is more
ii. Show only what you really need
iii. Group related information
iv. Use a clean visual design
b. Be Direct
i. Careful use of abbreviations
ii. Careful use of icons
iii. Make alert states obvious
2. Be Helpful:
a. Provide Guidance
i. Through the workflow
ii. Next steps
iii. Access to help
b. Prevent Errors
i. Make it obvious
ii. Make it easy
iii. Make it “dummy-proof”
iv. Prevent omissions
3. Be Smart:
a. Be a Natural Extension… of the user
i. Hold information in memory of the user
ii. Perform calculations for the user
b. Be a Natural Extension … of the task
i. Providing the right tools at the right time
ii. Recognise errors or alert conditions
iii. Be easy to ignore when not needed
iv. Be difficult to ignore when there’s danger
4. Be Calm:
a. Be Attractive
i. Use soothing colours
ii. Use a neutral colour palette
iii. Provide ample white space
b. Be Mindful
i. Careful use of animation
  22
ii. Pay attention to use of audio*
iii. Avoid causing “alarm fatigue”
5. Be Consistent:
a. Provide simple, consistent workflows
i. Within the design
ii. Across your product line
iii. Across similar medical devices
iv. With users’ expectations
b. Predict use by device class
c. Account for distance by adjusting sizes
6. Be a Team Player:
a. Take a systems engineering perspective
b. Avoid local success, global failure
i. Consider the other technology being used in conjunction
with yours:
Competitors’ products
Other products from your company
Non-related technology (smartphones, tablets, medical
devices, etc.)
ii. Each technology might have their own unique:
Workflows
Audio sounds
Visual alerts
Icon sets & colour palette
(Rennecker and Halgren 2014)
* See also: Blattner et al., (1989) Earcons and Icons: Their Structure and Commond
Design Principles and Gärdenfors (2001) Auditory Interfaces A Design Platform
Guidelines specific to in-car infotainment systems, in the reduction of
cognitive load and distraction, can be found by the National Highway Traffic
Safety Administration (NHTSA), Department of Transportation’s ‘Visual-Manual
NHTSA Driver Distraction Guidelines For In-Vehicle Electronic Devices’ (2012)
and are based upon a set of fundamental principles:
1. The driver’s eyes should usually be looking at the road ahead
2. The driver should be able to keep at least one hand on the
steering wheel while performing a secondary task (both
driving-related and non-driving related)
3. The distraction induced by any secondary task performed while
driving should not exceed that associated with a baseline
reference task (manual radio tuning)
4. Any task performed by a driver should be interruptible at any
time
5. The driver, not the system/device, should control the pace of
task interactions
  23
6. Displays should be easy for the driver to see and content
presented should be easily discernible
(NHTSA 2012: 10)
The full ‘voluntary’ guidelines from NHTSA include the recommendation
that the time a driver takes their eyes off the road to perform any task should
be limited to 2 seconds at a time and 12 seconds in total. The guidelines also
recommend the types of operations and in-car apps that should be disabled and
only be accessible when the car is parked, such as: Manual text entry for the
purposes of text messaging and internet browsing; Video-based entertainment
and communications like video phoning or video conferencing; Display of certain
types of text, including text messages, web pages, social media content (2012:
217). (Follow up Phase 2 and Phase 3 guidelines are due to address
visual/manual interfaces for portable/aftermarket electronic devices and voice-
based auditory interfaces for both in-built and portable/aftermarket devices,
respectively).
A prior study by Steven et al.,’s (2002) ‘Design Guidelines for Safety of In-
Vehicle Information Systems (IVIS),’ for the Transport Research Laboratory, also
recognised that “complex information and control actions should not be
designed for use in a moving vehicle because they can be too distracting for
drivers” (2002: 34). It includes the following recommends for system dialogue in
a moving car:
1. Any IVIS functions that are accessible, but not designed for
use when the vehicle is in motion, must be clearly indicated as
being restricted
2. Long sequences of interactions with the system should not be
required. Drivers should be allowed to interrupt the sequence
at any time without consequence
3. There should be a balance between the breadth and height of
menus. The number of choices should be limited to three or
four options to minimise the complexity and interaction time
4. An ‘off’ or ‘mute’ option should be available
5. System response (eg feedback, confirmation) to driver input
should be timely (<250ms) and clearly perceptible
6. Avoid unnecessary attention-grabbing techniques (eg Boeing’s
Dark and Silent cockpit metaphor: ‘Do not blink or beep unless
absolutely necessary’)
7. Prioritise information
8. Drivers should be able to initiate and control the pace of
interaction with the system; no time-critical responses should
be required when providing input to the system
  24
10. Do not display information when the driver is busy, although
this guideline is for more advanced “intelligent” systems, eg
GIDS (Michon, 1993).
(Steven et al., 2002: 35)
Individual car manufacturers and in-car infotainment solution providers
have their own specific design principles and guidelines. In order for an in-car app
to be made accessible in particular vehicles, or through the various solution
providers, it must meet their unique requirements. Increasingly, these companies
are initiating open-source development platforms with access to their guidelines,
Software Development Kit (SDK) and Application Programming Interfaces (APIs)
online (Figure 17). There are no universalisable guidelines or standards for the
development of in-car apps, however, alliances, such as the Car Connectivity
Consortium do work closely with over 70% of the world’s automakers in their
vision and pursuit for global standards in phone-centric car connectivity solutions
(MirrorLink 2014).
	
   Company	
   Service	
   Development	
  
	
   Ford	
   Sync AppLink	
   https://developer.ford.com	
  
GM Motors
Group	
  
MyLink,
IntelliLink,
CUE,
OnStar	
  
https://developer.gm.com/index.php	
  
BMW Group
	
  
AppCenter,
iDrive,
ConnectedDrive,
MINI Connected,
Rolls-Royce Connect	
  
http://www.bmw-carit.com
http://www.gpsbusinessnews.com/BMW-
Offers-SDK-to-Third-Party-App-
Developers_a3745.html
Toyota Entune,
QNX
http://www.qnx.com/download/group.htm
l?programid=26072
	
   	
   	
   	
  
	
   Car
Connectivity
Concortium
MirrorLink	
   http://www.mirrorlink.com/developer-
registration
http://www.mirrorlink.com/sites/default/fi
les/docs/Session1_MirrorLink%20for%20
App%20Developers.pdf	
  
Apple	
   Apple CarPlay	
   https://developer.apple.com/carplay/
Google AndriodAuto http://developer.android.com/auto/overvi
ew.html#architecture
	
   OpenCar OpenCar Connect,
InsideTrack
http://www.opencar.com/for-developers/
	
  
CarManufacturersSolutionProvidersOther
Figure 17. Table of links to company guidelines, Software Development Kit (SDK) and
Application Programming Interfaces (APIs)
  25
Factors and Measures
There are key factors, integral to assessments of usability, which have been
identified and interpreted by various theorists in Human Computer Interaction.
Harvey and Stanton (2014) present five significant authors’ contributions to
usability factors (Figure 18) that they synthesised into a single list of 10 high-
level usability factors:
1. Effectiveness
2. Efficiency
3. Satisfaction
4. Learnability
5. Memorability
6. Flexibility
7. Perceived usefulness
8. Task match
9. Task characteristics
10. User criteria
(Harvey and Stanton 2014: 28)
Harvey and Stanton analysed the process of defining such usability
factors for an IVIS [in-car infotainment system] through in depth consideration
of the context-of-use “in order to specify more detailed, and therefore more
useful, criteria and Key Performance Indicators (KPIs)” (2014: 28). The 10 high-
level factors were translated as 12 IVIS-specific criteria (Figure 19) with KPIs
included for each criterion: “these describe how the criteria should be measured
in terms of IVIS task times, error rates, task structure, input styles, user
satisfaction, and driving performance” (2014: 34).
Figure 18. Key usability factors proposed by the significant authors in the field (Harvey
and Stanton 2014: 29)
  26
A list of four main categories of measures for in-car infotainment
evaluation are summarized below with examples of their use in practice and
references for further study:
Subjective Measures
Involving the assessment of people’s attitudes and opinions towards an
infotainment system with some methods using expert evaluators to identify
potential errors, highlight usability issues, and suggest design improvements
(Harvey and Stanton 2014: 52).
Nesselrath (2013) states that a traditional way to assess the subjective
cognitive load of a user is introspection which can be acquired by a in-depth
interviews or questionnaire e.g. with the NASA Task Load Index (NASA-TLX).
However, “because this method is an intrusive procedure and would add an
additional task to the cognitive load it can only be done after the experience…
cannot be used for real-time assessment” (Nesselrath 2013: 69).
Physiological Measures
Based on the premise that the user’s cognitive stress is reflected in the
human physiology, potential physiological indicators can include: heart rate
variability; brain activity; galvanic skin response; eye activity; respiration rate
variability and muscle tension (Nesselrath 2013: 67, and Engen et al., 2009: 2).
In Strayer et al.,’s (2014) experiments for the AAA Foundation study, a
selection of participants were equipped with a Zephyr BioHarness 3 Heart Rate
Monitor, attached around the participant’s chest and either an electro-
encephalographic (EEG) cap, with built-in electrodes for measuring electrical
brain activity, or Electrooculogram (EOG) electrodes placed at the lateral canthi
of both eyes (horizontal) and above and below the left eye (vertical) to track
eye movements and record eye blinks (Strayer et al., 2014: 9) (Figure 20).
Figure 19. General usability criteria made specific to in-car infotainment systems
(Harvey and Stanton 2014: 35)
  27
Performance Measures
Based on the premise that performance of a task solution is influenced by
cognitive load, various concepts are used to estimate performance and provide
insights into cognitive load. Task processing requirements can be evaluated by
considering the amount of time required, error rate and/or type or errors, and
the response or reaction time to a stimulus event. Other frequently used
indicators include brake reaction time, lateral control, longitudinal control, visual
management, and interaction with other vehicles (Nesselrath 2013: 67 and
Engen et al., 2009: 2).
Performance indices used to asses mental workload in Strayer et al.,’s
(2014) experiments for the AAA Foundation study included reaction time and
accuracy in response to a Peripheral Light Detection Task, designed by Precision
Driving Research, Inc. It used mounted LED lights and a micro-switch attached to
participant’s thumb that was depressed in response to a green light (2014: 8)
(See also: ISO 2012). Other tests included Brake Reaction Time which was
measured as the interval between the onset of the pace car’s brake lights and
the onset of the participant’s breaking response and Following Distance
measured as the distance between the rear car bumper of the pace car and the
front bumper of the participant’s car at the moment of brake onset (2014: 14).
Figure 20. AAA Foundation study field-testing measures in an instrumented
research vehicle through residential roadways (Strayer et al., 2014)
  28
Behavioural Measures
Chen et al., (2013) defines responsive-based behavioural features as
those that can be extracted from user activity that is predominantly related to
deliberate/voluntary task completion, for example, eye-gaze tracking, application
usage, gesture input or any other kind of interactive input used to issue system
commands (2013: 5). Speech cues are also acknowledged as having a
relationship to cognitive load based on hither-to research showing features that
vary according to task difficulty include pitch, prosody, speech rate, speech
energy, and speech frequency (2013: 6). In addition, high level of disfluencies,
fillers, breaks or mispronunciations are considered speech indicators of cognitive
stress (Oviatt et al., 2003: 48).
Findings from a soon to be published study ‘Emotion matters:
Implications for distracted driving’ by Chan and Singhal (2015) brings to light
the detrimental effects of negative emotional auditory content on driving
performance. The results demonstrate that emotion-related auditory distraction
can differentially affect driving performance depending on the valence of the
emotional content; negative distractions reduced lateral control and slowed
driving speeds compared to positive and neutral distractions (Chan and Singhal
2015: 302).
  29
It is apparent that we are on the fringe of significant advancements in car
connectivity and a hugely profitable in-car app market. Exactly how in-car
infotainment will mature and play its role in the envisioned Internet of Things is
still uncertain, but, it will no doubt be a rewarding endeavour to engage in, and
contribute to, its current state and development. This study has conveyed the
challenges and complexities that the user experience industry faces in the
automobile domain while equally showing how design principles and current and
adapted ux practices can be utilised, alongside multi-disciplinary approaches, to
limit and lessen them.
Although there are concerns about increased cognitive load and
distraction during certain types of infotainment use, in the near future, this may
not be an issue; technological developments in autonomous cars are leading the
way for self-driving and safety ‘conscious’ vehicles that remove driver human
error much-like the vision portrayed in 2004 film iRobot (Figure 21). Google are
in the process of developing and testing driverless cars (Whitwam 2014) and
2013 has already seen the release of the Mercedes S-Class “loaded with the
technology that promotes ultimate safety:” autonomous steering; lane keeping;
acceleration/braking; parking; accident avoidance and driver fatigue detection
(Kurylko 2014).
For now, infotainment remains a somewhat fractional domain, with
indecisive government legislation, and nonconcurrent theory on safety.
Moreover, the user experience practitioner may well be faced with ethical
dilemmas, such as working on products that do not meet critical guidelines or fail
safety testing. However, what must be upheld is the responsibility for
5. Discussion Figure 21.
iRobot Audi car in
‘Auto’ steering
wheel free mode
  30
safeguarding drivers through conscientious, and exceptional usability design
whilst maintaining creative, meaningful, impressionable and aesthetically pleasing
experiences.
Indeed a seemingly impossible task, but surely that is what is at the heart of
great user experience; the pursuit to create seamless solutions to real-world
problems from a user-centric perspective.
  31
AT&T (2014) AT&T hails connected car as “ultimate mobile device” [online],
Available at:
http://www.mobileworldlive.com/att-hails-connected-car-ultimate-mobile-device
	
  
Allen, S., Graupera, V., and Lundrigan, L. (2010) Pro Smartphone Cross-Platform
Development: iPhone, Blackberry, Windows Mobile, and Android Development and
Distribution. SpringerLink.
Blattner, M.M., Sumikawa, A.D. and Greenberg, R.M. (1989) ‘Earcons and Icons:
Their Structure and Commond Design Principles.’ Human-Computer Interaction,
vol.4, pp.1-44.
Carfrae, J. (2014) US legislation to limit in-car technology [online], Available at:
http://www.businesscar.co.uk/news/2014/us-legislation-to-limit-in-car-
technology
Carter (2012) The Internet of Things: how it'll revolutionise your devices
[online], Available at:
http://www.techradar.com/news/internet/the-internet-of-things-how-it-ll-
revolutionise-your-devices-958669	
  
Chan, M. and Singhal, A. (2015) ‘Emotion matters: Implications for distracted
driving.’ Safety Science, 02/2015; 72:302–309.
Chen, F., Ruiz, N., Choi, E., Epps, J., Khawaja, M.A., Taib, R., Yin, B. and
Wang, Y. (2013) ‘Multimodal behavior and interaction as indicators of cognitive
load.’ ACM Trans. Interact. Intell. Syst., 2,4, pp.22:1–22:36.
	
  
CNET (2013) Tesla progresses in cabin tech [online], Available at:
http://www.cnet.com/pictures/tesla-progresses-in-cabin-tech-pictures/6/
	
  
Consumer Reports (2013) ‘Connect with your car: How to plug in your music,
apps, and lifestyle.’ Consumer Reports Magazine. April, 18-22.
	
  
Damiani, S., Deregibus, E. and Andreone, L. (2009) ‘Driver-vehicle interface and
interaction: where are they going?’ Eur. Transp. Res. Rev. 1:87-96.
Duncan, G. (2014) You can’t avoid ‘the internet of things’ hype, so you might as
well understand it [online], Available at:
http://www.digitaltrends.com/home/heck-internet-things-dont-yet/
Engen, T., Lervåg, L.E. and Moen, T. (2009) ‘Evaluation of IVIS/ADAS using
driving simulators: Comparing performance measures in different environments.’
Proceedings of the European Transport Conference, The Netherlands.
	
  
References
  32
Evarts, E. (2013) Driving the Tesla Model S is like using an iPad, thanks to
leading-edge interior [online], Available at:
http://www.consumerreports.org/cro/news/2013/05/driving-the-tesla-model-s-
is-like-using-an-ipad-thanks-to-leading-edge-interior/index.htm
	
  
Fuller, H.J., Tsimhoni, O. and Reed, M.P. (2008). ‘Effect of in-vehicle touch
screen position on driver performance.’ Proceedings of the 52nd Annual Meeting
of the Human Factors and Ergonomics Society. New York City.
Gärdenfors, D. (2001) Auditory Interfaces A Design Platform. [online], Available
at:
http://www.jld.se/dsounds/auditoryinterfaces.pdf
Hansen, W.J. (1971) User Engineering Principles for Interactive Systems.
Proceeding AFIPS ’71 (Fall). Proceedings of the November 16-18, 1971, Joint
Computer Conference, 523-532. New York, NY, USA: ACM Press.
Harvey, C. and Stanton, N.A. (2014) Usability Evaluation for In-Vehicle Systems.
London: CRC Press.
Hayden, T., and Webster, T. (2014) The Mobile Commerce Revolution: Business
Success in a Wireless World. Que.
Hoober, S. (2014) Fingers, Thumbs and People. User Experience Professional
Association (UXPA) Conference, 23 July, London. [online], Available at:
http://www.slideshare.net/shoobe01/30min-fingers-touchpeoples
Juniper (2014) Press Release: Connected Car Opportunity to Reach $20 Billion
by 2018 Driven by Soft Revenues, Juniper Research Finds [online], Available at:
http://www.juniperresearch.com/viewpressrelease.php?pr=454
Kantar (2014) Smartphone OS market share [online], Available at:
http://www.kantarworldpanel.com/global/smartphone-os-market-share/
	
  
Kuryklo, D. (2014) Mercedes-Benz’s autonomous driving features dominate the
industry – and will for years [online], Available at:
http://www.autonews.com/article/20140804/OEM06/308049979/mercedes-
benzs-autonomous-driving-features-dominate-the-industry
Lee, Y. (2007) Cognitive Load and the Guidance of Attention in Complex
Dynamic Environments. Iowa: University of Iowa, UMI.	
  
	
  
Levin, M. (2014) Designing Multi-Device Experiences. Cambridge: O’Reily	
  
	
  
MacKenzie, A. (2013) Motor Trend Car of the Year: Tesla Model S [online],
Available at:
http://www.motortrend.com/oftheyear/car/1301_2013_motor_trend_car_of_
the_year_tesla_model_s/viewall.html?__federated=1
Mandel, T. (2013) ‘Golden Rules of User Experience Design.’ Internet User
Experience (IUE) Conference, 10 April, Arizona. [online], Available at:
http://www.slideshare.net/theomandel/golden-rules-of-user-experience-design-
theo-mandel-updated
  33
McEwan, A., and Cassimally, H. (2013) Designing the Internet of Things.
Chichester: John Waley & Sons.
Mintel (2009) Satellite Navigation Systems, UK, October 2009 [online], Available
at:
http://store.mintel.com/satellite-navigation-systems-uk-october-
2009?cookie_test=true
MirrorLink (2014) What is MirrorLink? [online], Available at:
http://mirrorlink.jvc.com/faq.html
Moreville, P. (2004) User Experience Honeycomb [online], Available at:
http://semanticstudios.com/user_experience_design/
Navdy (2014) The notifications you want from the apps you love [online],
Available:
https://www.navdy.com
Nesselrath, R. (2013) ‘Towards a Cognitive Load Aware Multimodal Dialogue
Framework for the Automotive Domain.’ Intelligent Environments (IE), 9th
International Conference. pp. 266-269. IEEE.
NHTSA (2012) ‘Visual-Manual NHTSA Driver Distraction Guidelines For In-Vehicle
Electronic Devices.’ National Highway Traffic Safety Administration, Washington,
DC.
	
  
Nielson, J. (2011) Report the rise of smartphones, apps and the mobile web
[online], Available at:
http://www.nielsen.com/us/en/insights/news/2011/report-the-rise-of-
smartphones-apps-and-the-mobile-web.html
Norman, D.A. (1988) The Design of Everyday Things. New York: Doubleday
Nokia (2011) Nokia Car Mode drives fusion of cars with smart services [online],
Available at:
http://company.nokia.com/en/news/press-releases/2011/09/13/nokia-car-
mode-drives-fusion-of-cars-with-smartphone-services
	
  
Ofcom (2014) Adults’ Media Use and Attitudes Report 2014 [online], Available
at:
http://stakeholders.ofcom.org.uk/market-data-research/other/research-
publications/adults/adults-media-lit-14/
O’Callaghan, J. (2014) Is 'talking' to your car DANGEROUS? Study finds tech
significantly distracts drivers - and Apple's Siri is the worst offender. [online],
Available at:
http://www.dailymail.co.uk/sciencetech/article-2783457/Is-talking-car-
DANGEROUS-Study-finds-smart-tech-significantly-distracts-drivers-Apple-s-Siri-
worst-offender.html
O’Donnell, J. (2012) Disconnects in the distracted-driving blame game [online]
Available at:
http://usatoday30.usatoday.com/money/autos/story/2012-04-29/car-
phones/54633246/1
  34
Oviatt, S., Coulston, R. and Lunsford, R. (2004) ‘When do we interact
multimodally?: cognitive load and multimodal communication patterns.’
6th international conference on Multimodal interfaces, ser. ICMI New York: ACM,
pp.129–136.
Palermo (2013) Infotainment Systems: A Comparison [online], Available at:
http://www.autotrader.com/research/article/best-cars/203387/infotainment-
systems-a-comparison.jsp
Parkinson, W. and Spilker, J.J. (1996) ‘Progress In Astronautics and Aeronautics.’
Global Positioning System: Theory and Applications, Volume 2. Washington, DC.
QNX (2012) QNX CAR 2 all about infotainment system personalization [online],
Available at:
http://articles.sae.org/11353/
Rollins, M., and Sandberg, R. (2013) The Business of Android Apps Development:
Making and Marketing Apps that Succeed on Google Play, Amazon Appstore and
More. New York: Apress
Rennecker, J. and Halgren, S. (2014) Designing Healthcare Technologies:
Motivating Users by Decreasing Cognitive Load. User Experience Professional
Association (UXPA) Conference, 23 July, London. [online], Available at:
http://www.slideshare.net/UXPA/designing-healthcare-technologies-motivating-
users-by-decreasing-cognitive-load-julie-rennecker-and-shannon-
halgren?related=2
Steven, A. (2002) Design guidelines for safety of in-vehicle information systems.
TRL Limited.
Shuldiner, H. (1985) ‘Here now: computerized navigator for your car.’ Popular
Science, June, pp. 64-67.
Sadeh, E. (2002) Space Politics and Policy An Evolutionary Perspective New
York: Kluwer Academic Publishers.
Strayer, D.L., Turrill, J., Coleman, J., Oritz, E.V. and Cooper, J.M. (2014)
Measuring cognitive distraction in the automobile II: Assessing in-vehicle voice
based interactive technologies (October). AAA Foundation for Traffic Safety.
Shneiderman, B. (1987) Designing the user interface: strategies for
effective human computer interaction. Reading
MA: Addison-Wesley,
TelematicsWire (2014) Navdy launches dashboard Head-Up Display (HUD):
Google Glass for your Car [online], Available at:
http://telematicswire.net/navdy-launches-dashboard-head-up-display-hud-
google-glass-for-your-car/
Thibaut, J. (2013) Study Forecasts Billion Dollar Market For In-Car Apps Within
Five Years [online], Available at:
http://translogic.aolautos.com/2013/05/24/study-forecasts-billion-dollar-
market-for-in-car-apps-within-fiv/
  35
	
   Tengler, S. (2013) Tesla’s Groundbreaking UX: An interview with User Interface
Manager Brennan Boblett [online], Available at:
http://uxmag.com/articles/tesla’s-groundbreaking-ux-an-interview-with-user-
interface-manager-brennan-boblett
Tode, C. (2014) In-vehicle apps to proliferate thanks to Apple’s CarPlay: report
[online], Available at:
http://www.mobilemarketer.com/cms/news/research/17889.html
Whitwam, R. (2014) How Google’s self-driving cars detect and avoid obstacles
[online], Available at:
http://www.extremetech.com/extreme/189486-how-googles-self-driving-cars-
detect-and-avoid-obstacles
Wittmann, M., Kiss, M., Gugg, P., Steffen, A., Fink, M., Pöppel, E. and Kamiya, H.
(2006) ‘Effects of display position of a visual in-vehicle task on simulated
driving.’ Applied Ergonomics, 37(2), 187-199.
Woodyard, C. (2012) Automakers rush to offer apps in cars [online], Available
at:
http://usatoday30.usatoday.com/money/autos/story/2012-01-05/auto-
apps/52392492/1
	
  

Contenu connexe

Tendances

Autonomous Vehicles
Autonomous VehiclesAutonomous Vehicles
Autonomous VehiclesYamini Verma
 
Autonomous vehicles: becoming economically feasible through improvements in l...
Autonomous vehicles: becoming economically feasible through improvements in l...Autonomous vehicles: becoming economically feasible through improvements in l...
Autonomous vehicles: becoming economically feasible through improvements in l...Jeffrey Funk
 
Introduction of Android Auto
Introduction of Android AutoIntroduction of Android Auto
Introduction of Android AutoZaicheng Qi
 
Car remote systems
Car remote systemsCar remote systems
Car remote systemsCattovic
 
Verification of IVI Over-The-Air using UML/OCL
Verification of IVI Over-The-Air using UML/OCLVerification of IVI Over-The-Air using UML/OCL
Verification of IVI Over-The-Air using UML/OCLSeungjoo Kim
 
Driverless Car Technology: Patent Landscape Analysis
Driverless Car Technology: Patent Landscape AnalysisDriverless Car Technology: Patent Landscape Analysis
Driverless Car Technology: Patent Landscape AnalysisLexInnova
 
NIGHT VISION SYSTEM IN AUTOMOBILES
 NIGHT VISION SYSTEM IN AUTOMOBILES NIGHT VISION SYSTEM IN AUTOMOBILES
NIGHT VISION SYSTEM IN AUTOMOBILESAnjali Yadav
 
Autonomous car ; google car
Autonomous car ; google carAutonomous car ; google car
Autonomous car ; google carsachin kumar
 
Autonomous or self driving cars
Autonomous or self driving carsAutonomous or self driving cars
Autonomous or self driving carsSandeep Nayak
 
The data defined-vehicle_architecture
The data defined-vehicle_architectureThe data defined-vehicle_architecture
The data defined-vehicle_architectureSebastian Wedeniwski
 
Ericsson’s Connected Vehicle Cloud(CVC)
Ericsson’s Connected Vehicle Cloud(CVC)Ericsson’s Connected Vehicle Cloud(CVC)
Ericsson’s Connected Vehicle Cloud(CVC)Ericsson
 
Principles of a vehicle infotainment platform - Hans-Ulrich Michel, BMW
Principles of a vehicle infotainment platform - Hans-Ulrich Michel, BMWPrinciples of a vehicle infotainment platform - Hans-Ulrich Michel, BMW
Principles of a vehicle infotainment platform - Hans-Ulrich Michel, BMWmfrancis
 

Tendances (20)

Autonomous Vehicles
Autonomous VehiclesAutonomous Vehicles
Autonomous Vehicles
 
Autonomous vehicles: becoming economically feasible through improvements in l...
Autonomous vehicles: becoming economically feasible through improvements in l...Autonomous vehicles: becoming economically feasible through improvements in l...
Autonomous vehicles: becoming economically feasible through improvements in l...
 
Introduction of Android Auto
Introduction of Android AutoIntroduction of Android Auto
Introduction of Android Auto
 
Smart car
Smart carSmart car
Smart car
 
Car remote systems
Car remote systemsCar remote systems
Car remote systems
 
Verification of IVI Over-The-Air using UML/OCL
Verification of IVI Over-The-Air using UML/OCLVerification of IVI Over-The-Air using UML/OCL
Verification of IVI Over-The-Air using UML/OCL
 
Self driving car
Self driving carSelf driving car
Self driving car
 
Connected Car Technology
Connected Car TechnologyConnected Car Technology
Connected Car Technology
 
Driverless Car Technology: Patent Landscape Analysis
Driverless Car Technology: Patent Landscape AnalysisDriverless Car Technology: Patent Landscape Analysis
Driverless Car Technology: Patent Landscape Analysis
 
FOTA Upgrade on Automotive and IoT Industry
FOTA Upgrade on Automotive and IoT IndustryFOTA Upgrade on Automotive and IoT Industry
FOTA Upgrade on Automotive and IoT Industry
 
Autonomous car
Autonomous carAutonomous car
Autonomous car
 
NIGHT VISION SYSTEM IN AUTOMOBILES
 NIGHT VISION SYSTEM IN AUTOMOBILES NIGHT VISION SYSTEM IN AUTOMOBILES
NIGHT VISION SYSTEM IN AUTOMOBILES
 
What is Telematics & How Does It Work?
What is Telematics & How Does It Work?What is Telematics & How Does It Work?
What is Telematics & How Does It Work?
 
Autonomous car ; google car
Autonomous car ; google carAutonomous car ; google car
Autonomous car ; google car
 
SMART Vehicle Secure PPT
SMART Vehicle Secure PPTSMART Vehicle Secure PPT
SMART Vehicle Secure PPT
 
Autonomous or self driving cars
Autonomous or self driving carsAutonomous or self driving cars
Autonomous or self driving cars
 
Digital Cinema
Digital CinemaDigital Cinema
Digital Cinema
 
The data defined-vehicle_architecture
The data defined-vehicle_architectureThe data defined-vehicle_architecture
The data defined-vehicle_architecture
 
Ericsson’s Connected Vehicle Cloud(CVC)
Ericsson’s Connected Vehicle Cloud(CVC)Ericsson’s Connected Vehicle Cloud(CVC)
Ericsson’s Connected Vehicle Cloud(CVC)
 
Principles of a vehicle infotainment platform - Hans-Ulrich Michel, BMW
Principles of a vehicle infotainment platform - Hans-Ulrich Michel, BMWPrinciples of a vehicle infotainment platform - Hans-Ulrich Michel, BMW
Principles of a vehicle infotainment platform - Hans-Ulrich Michel, BMW
 

En vedette

The Connected Car: Driving Towards the Future
The Connected Car: Driving Towards the FutureThe Connected Car: Driving Towards the Future
The Connected Car: Driving Towards the FutureNudge Software Inc.
 
Building Beautiful High Performance Connected Car Applications
Building Beautiful High Performance Connected Car ApplicationsBuilding Beautiful High Performance Connected Car Applications
Building Beautiful High Performance Connected Car ApplicationsJason Wiener
 
Social Media Marketing Case Study - Ford
Social Media Marketing Case Study - FordSocial Media Marketing Case Study - Ford
Social Media Marketing Case Study - FordKreata Global
 
Your partner for the connected car evolution
Your partner for the  connected car evolutionYour partner for the  connected car evolution
Your partner for the connected car evolutionprhaskitt
 
The connected car 2011
The connected car 2011The connected car 2011
The connected car 2011Fjord
 
Human Computer Interaction - Final Report of a concept Car Infotainment System
Human Computer Interaction - Final Report of a concept Car Infotainment SystemHuman Computer Interaction - Final Report of a concept Car Infotainment System
Human Computer Interaction - Final Report of a concept Car Infotainment SystemRam G Athreya
 
Predictive Innovations within In-Car Infotainment, Jaguar Land Rover
Predictive Innovations within In-Car Infotainment, Jaguar Land RoverPredictive Innovations within In-Car Infotainment, Jaguar Land Rover
Predictive Innovations within In-Car Infotainment, Jaguar Land RoverInnovation Enterprise
 
Ford car on the cloud
Ford car on the cloudFord car on the cloud
Ford car on the cloudBala Iyer
 
MONETIZING THE CONNECTED CAR, Citi 2013 Connected Car Symposium
MONETIZING  THE CONNECTED CAR, Citi 2013 Connected Car SymposiumMONETIZING  THE CONNECTED CAR, Citi 2013 Connected Car Symposium
MONETIZING THE CONNECTED CAR, Citi 2013 Connected Car SymposiumArynga
 
Connected Car as New Marketplace SxSW 2016
Connected Car as New Marketplace  SxSW 2016Connected Car as New Marketplace  SxSW 2016
Connected Car as New Marketplace SxSW 2016Jason Hoover
 
Digital Lifestyle: Car Infotainment & Public Safety Crisis
Digital Lifestyle: Car Infotainment & Public Safety CrisisDigital Lifestyle: Car Infotainment & Public Safety Crisis
Digital Lifestyle: Car Infotainment & Public Safety CrisisNurul Ashikin Ibrahim
 
In-Car Infotainment Market is Expected to Reach $33.8 Billion, Globally by 2022
In-Car Infotainment Market is Expected to Reach $33.8 Billion, Globally by 2022In-Car Infotainment Market is Expected to Reach $33.8 Billion, Globally by 2022
In-Car Infotainment Market is Expected to Reach $33.8 Billion, Globally by 2022Allied Market Research
 

En vedette (15)

The Connected Car: Driving Towards the Future
The Connected Car: Driving Towards the FutureThe Connected Car: Driving Towards the Future
The Connected Car: Driving Towards the Future
 
Developing for the Connected Car
Developing for the Connected CarDeveloping for the Connected Car
Developing for the Connected Car
 
Building Beautiful High Performance Connected Car Applications
Building Beautiful High Performance Connected Car ApplicationsBuilding Beautiful High Performance Connected Car Applications
Building Beautiful High Performance Connected Car Applications
 
Social Media Marketing Case Study - Ford
Social Media Marketing Case Study - FordSocial Media Marketing Case Study - Ford
Social Media Marketing Case Study - Ford
 
Your partner for the connected car evolution
Your partner for the  connected car evolutionYour partner for the  connected car evolution
Your partner for the connected car evolution
 
The connected car 2011
The connected car 2011The connected car 2011
The connected car 2011
 
Human Computer Interaction - Final Report of a concept Car Infotainment System
Human Computer Interaction - Final Report of a concept Car Infotainment SystemHuman Computer Interaction - Final Report of a concept Car Infotainment System
Human Computer Interaction - Final Report of a concept Car Infotainment System
 
Predictive Innovations within In-Car Infotainment, Jaguar Land Rover
Predictive Innovations within In-Car Infotainment, Jaguar Land RoverPredictive Innovations within In-Car Infotainment, Jaguar Land Rover
Predictive Innovations within In-Car Infotainment, Jaguar Land Rover
 
Ford car on the cloud
Ford car on the cloudFord car on the cloud
Ford car on the cloud
 
MONETIZING THE CONNECTED CAR, Citi 2013 Connected Car Symposium
MONETIZING  THE CONNECTED CAR, Citi 2013 Connected Car SymposiumMONETIZING  THE CONNECTED CAR, Citi 2013 Connected Car Symposium
MONETIZING THE CONNECTED CAR, Citi 2013 Connected Car Symposium
 
Connected Car as New Marketplace SxSW 2016
Connected Car as New Marketplace  SxSW 2016Connected Car as New Marketplace  SxSW 2016
Connected Car as New Marketplace SxSW 2016
 
Digital Lifestyle: Car Infotainment & Public Safety Crisis
Digital Lifestyle: Car Infotainment & Public Safety CrisisDigital Lifestyle: Car Infotainment & Public Safety Crisis
Digital Lifestyle: Car Infotainment & Public Safety Crisis
 
Connected Vehicle Data Platform
Connected Vehicle Data PlatformConnected Vehicle Data Platform
Connected Vehicle Data Platform
 
In-Car Infotainment Market is Expected to Reach $33.8 Billion, Globally by 2022
In-Car Infotainment Market is Expected to Reach $33.8 Billion, Globally by 2022In-Car Infotainment Market is Expected to Reach $33.8 Billion, Globally by 2022
In-Car Infotainment Market is Expected to Reach $33.8 Billion, Globally by 2022
 
Virtual Assistant for car owners | Interactive manual for infotainment & conn...
Virtual Assistant for car owners | Interactive manual for infotainment & conn...Virtual Assistant for car owners | Interactive manual for infotainment & conn...
Virtual Assistant for car owners | Interactive manual for infotainment & conn...
 

Similaire à Automobile UX: Emerging Infotainment Systems and In-Car Apps From a User Experience Perspective

Autotechinsider March 2010 Newsletter V1
Autotechinsider March 2010 Newsletter V1Autotechinsider March 2010 Newsletter V1
Autotechinsider March 2010 Newsletter V1coachdave
 
10 Mobile Trends for 2014 and Beyond (May 2014)
10 Mobile Trends for 2014 and Beyond (May 2014)10 Mobile Trends for 2014 and Beyond (May 2014)
10 Mobile Trends for 2014 and Beyond (May 2014)Karen Sanchez
 
Nov 2010 Newsletter Autotechinsider Llc
Nov 2010 Newsletter Autotechinsider LlcNov 2010 Newsletter Autotechinsider Llc
Nov 2010 Newsletter Autotechinsider Llccoachdave
 
CES 2013 overview
CES 2013 overview CES 2013 overview
CES 2013 overview coachdave
 
Managing Creativity and Innovation
Managing Creativity and InnovationManaging Creativity and Innovation
Managing Creativity and InnovationMohamadanasElmir
 
IRJET- The Smart in-Car Technology
IRJET-  	  The Smart in-Car TechnologyIRJET-  	  The Smart in-Car Technology
IRJET- The Smart in-Car TechnologyIRJET Journal
 
User Interface and Future Interaction Technologies
User Interface and Future Interaction Technologies User Interface and Future Interaction Technologies
User Interface and Future Interaction Technologies Carlos Hugo Huertas Pérez
 
Connected car solutions: one of the major business drivers for the automotive...
Connected car solutions: one of the major business drivers for the automotive...Connected car solutions: one of the major business drivers for the automotive...
Connected car solutions: one of the major business drivers for the automotive...Pierre Audoin Consultants
 
Smart phones, big data & your car
Smart phones, big data & your carSmart phones, big data & your car
Smart phones, big data & your carNash Ogden
 
How close are autonomous vehicles to consumers? - San Francisco Green Careers
How close are autonomous vehicles to consumers? - San Francisco Green CareersHow close are autonomous vehicles to consumers? - San Francisco Green Careers
How close are autonomous vehicles to consumers? - San Francisco Green Careerskeysjhzvoanjq
 
Telefonica’s Global M2M MD Surya Mendonca interview - Telematics news
Telefonica’s Global M2M MD Surya Mendonca interview  - Telematics newsTelefonica’s Global M2M MD Surya Mendonca interview  - Telematics news
Telefonica’s Global M2M MD Surya Mendonca interview - Telematics newsTelefónica IoT
 
The Connected Vehicle: Viewing the Road Ahead
The Connected Vehicle: Viewing the Road AheadThe Connected Vehicle: Viewing the Road Ahead
The Connected Vehicle: Viewing the Road AheadAccenture Insurance
 
RAILWAY SAFETY PROTECTION WITH ANDROID MOBILE APPLICATION FOR 5G NEW RADIO NE...
RAILWAY SAFETY PROTECTION WITH ANDROID MOBILE APPLICATION FOR 5G NEW RADIO NE...RAILWAY SAFETY PROTECTION WITH ANDROID MOBILE APPLICATION FOR 5G NEW RADIO NE...
RAILWAY SAFETY PROTECTION WITH ANDROID MOBILE APPLICATION FOR 5G NEW RADIO NE...ijcsit
 
Railway Safety Protection with Android Mobile Application for 5G New Radio Ne...
Railway Safety Protection with Android Mobile Application for 5G New Radio Ne...Railway Safety Protection with Android Mobile Application for 5G New Radio Ne...
Railway Safety Protection with Android Mobile Application for 5G New Radio Ne...AIRCC Publishing Corporation
 
CONTENT & APPS FOR AUTOMOTIVE EUROPE 2014
CONTENT & APPS FOR AUTOMOTIVE EUROPE 2014CONTENT & APPS FOR AUTOMOTIVE EUROPE 2014
CONTENT & APPS FOR AUTOMOTIVE EUROPE 2014Nicola Barozzi 🚘✔
 
Intelligent in vehicle infotainment the key differentiator
Intelligent in vehicle infotainment the key differentiatorIntelligent in vehicle infotainment the key differentiator
Intelligent in vehicle infotainment the key differentiatorVageeshKumarBM6504
 

Similaire à Automobile UX: Emerging Infotainment Systems and In-Car Apps From a User Experience Perspective (20)

Autotechinsider March 2010 Newsletter V1
Autotechinsider March 2010 Newsletter V1Autotechinsider March 2010 Newsletter V1
Autotechinsider March 2010 Newsletter V1
 
Mirror doc
Mirror docMirror doc
Mirror doc
 
Report
Report Report
Report
 
JWT: 10 Mobile Trends for 2014 and Beyond (May 2014)
JWT: 10 Mobile Trends for 2014 and Beyond (May 2014)JWT: 10 Mobile Trends for 2014 and Beyond (May 2014)
JWT: 10 Mobile Trends for 2014 and Beyond (May 2014)
 
10 Mobile Trends for 2014 and Beyond (May 2014)
10 Mobile Trends for 2014 and Beyond (May 2014)10 Mobile Trends for 2014 and Beyond (May 2014)
10 Mobile Trends for 2014 and Beyond (May 2014)
 
Nov 2010 Newsletter Autotechinsider Llc
Nov 2010 Newsletter Autotechinsider LlcNov 2010 Newsletter Autotechinsider Llc
Nov 2010 Newsletter Autotechinsider Llc
 
CES 2013 overview
CES 2013 overview CES 2013 overview
CES 2013 overview
 
Managing Creativity and Innovation
Managing Creativity and InnovationManaging Creativity and Innovation
Managing Creativity and Innovation
 
IRJET- The Smart in-Car Technology
IRJET-  	  The Smart in-Car TechnologyIRJET-  	  The Smart in-Car Technology
IRJET- The Smart in-Car Technology
 
User Interface and Future Interaction Technologies
User Interface and Future Interaction Technologies User Interface and Future Interaction Technologies
User Interface and Future Interaction Technologies
 
Connected car solutions: one of the major business drivers for the automotive...
Connected car solutions: one of the major business drivers for the automotive...Connected car solutions: one of the major business drivers for the automotive...
Connected car solutions: one of the major business drivers for the automotive...
 
A1803030111
A1803030111A1803030111
A1803030111
 
Smart phones, big data & your car
Smart phones, big data & your carSmart phones, big data & your car
Smart phones, big data & your car
 
How close are autonomous vehicles to consumers? - San Francisco Green Careers
How close are autonomous vehicles to consumers? - San Francisco Green CareersHow close are autonomous vehicles to consumers? - San Francisco Green Careers
How close are autonomous vehicles to consumers? - San Francisco Green Careers
 
Telefonica’s Global M2M MD Surya Mendonca interview - Telematics news
Telefonica’s Global M2M MD Surya Mendonca interview  - Telematics newsTelefonica’s Global M2M MD Surya Mendonca interview  - Telematics news
Telefonica’s Global M2M MD Surya Mendonca interview - Telematics news
 
The Connected Vehicle: Viewing the Road Ahead
The Connected Vehicle: Viewing the Road AheadThe Connected Vehicle: Viewing the Road Ahead
The Connected Vehicle: Viewing the Road Ahead
 
RAILWAY SAFETY PROTECTION WITH ANDROID MOBILE APPLICATION FOR 5G NEW RADIO NE...
RAILWAY SAFETY PROTECTION WITH ANDROID MOBILE APPLICATION FOR 5G NEW RADIO NE...RAILWAY SAFETY PROTECTION WITH ANDROID MOBILE APPLICATION FOR 5G NEW RADIO NE...
RAILWAY SAFETY PROTECTION WITH ANDROID MOBILE APPLICATION FOR 5G NEW RADIO NE...
 
Railway Safety Protection with Android Mobile Application for 5G New Radio Ne...
Railway Safety Protection with Android Mobile Application for 5G New Radio Ne...Railway Safety Protection with Android Mobile Application for 5G New Radio Ne...
Railway Safety Protection with Android Mobile Application for 5G New Radio Ne...
 
CONTENT & APPS FOR AUTOMOTIVE EUROPE 2014
CONTENT & APPS FOR AUTOMOTIVE EUROPE 2014CONTENT & APPS FOR AUTOMOTIVE EUROPE 2014
CONTENT & APPS FOR AUTOMOTIVE EUROPE 2014
 
Intelligent in vehicle infotainment the key differentiator
Intelligent in vehicle infotainment the key differentiatorIntelligent in vehicle infotainment the key differentiator
Intelligent in vehicle infotainment the key differentiator
 

Dernier

OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureEric D. Schabell
 
How Accurate are Carbon Emissions Projections?
How Accurate are Carbon Emissions Projections?How Accurate are Carbon Emissions Projections?
How Accurate are Carbon Emissions Projections?IES VE
 
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfIaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfDaniel Santiago Silva Capera
 
20230202 - Introduction to tis-py
20230202 - Introduction to tis-py20230202 - Introduction to tis-py
20230202 - Introduction to tis-pyJamie (Taka) Wang
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7DianaGray10
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024SkyPlanner
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationIES VE
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6DianaGray10
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfJamie (Taka) Wang
 
Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfAijun Zhang
 
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...Aggregage
 
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IES VE
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxGDSC PJATK
 
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...Will Schroeder
 
UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1DianaGray10
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1DianaGray10
 
AI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity WebinarAI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity WebinarPrecisely
 
Introduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxIntroduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxMatsuo Lab
 
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...DianaGray10
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URLRuncy Oommen
 

Dernier (20)

OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability Adventure
 
How Accurate are Carbon Emissions Projections?
How Accurate are Carbon Emissions Projections?How Accurate are Carbon Emissions Projections?
How Accurate are Carbon Emissions Projections?
 
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdfIaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
IaC & GitOps in a Nutshell - a FridayInANuthshell Episode.pdf
 
20230202 - Introduction to tis-py
20230202 - Introduction to tis-py20230202 - Introduction to tis-py
20230202 - Introduction to tis-py
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
 
UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6UiPath Studio Web workshop series - Day 6
UiPath Studio Web workshop series - Day 6
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
 
Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdf
 
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
 
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
 
Cybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptxCybersecurity Workshop #1.pptx
Cybersecurity Workshop #1.pptx
 
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...
 
UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1UiPath Platform: The Backend Engine Powering Your Automation - Session 1
UiPath Platform: The Backend Engine Powering Your Automation - Session 1
 
Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1Secure your environment with UiPath and CyberArk technologies - Session 1
Secure your environment with UiPath and CyberArk technologies - Session 1
 
AI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity WebinarAI You Can Trust - Ensuring Success with Data Integrity Webinar
AI You Can Trust - Ensuring Success with Data Integrity Webinar
 
Introduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxIntroduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptx
 
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...
Connector Corner: Extending LLM automation use cases with UiPath GenAI connec...
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URL
 

Automobile UX: Emerging Infotainment Systems and In-Car Apps From a User Experience Perspective

  • 1. Emerging Infotainment Systems and In-Car Apps From a User Experience Perspective Kingston University, UXD: Digital Media Final Project K1350078 Robert Gardner-Sharp
  • 2.   2 Contents Abstract.................................................................................. 3 Introduction .................................................................................................. 4 1.1 Evolution of In-Car Interfaces.................................................................. 4 1.2 Smartphones and Apps ........................................................................... 6 1.3 Current Market ........................................................................................ 7 1.4 User Experience Industry......................................................................... 8 ‘Smart’ Connected Cars ............................................................................. 9 2.1 The Internet of Things ............................................................................ 9 2.2 A Multi-Device Ecosystem..................................................................... 10 Safety and Infotainment ..........................................................................11 3.1 Distraction and Cognitive Load ............................................................. 11 3.2 Disparate Infotainment Systems ........................................................... 14 3.3 Tesla to Navdy ...................................................................................... 16 3.4 Safety Limitations ................................................................................. 18 Design and Evaluation ..............................................................................19 4.1 Guidelines .............................................................................................. 19 4.2 Factors and Measures ........................................................................... 25 Discussion....................................................................................................29 References...................................................................................................31
  • 3.   3 Applications (apps) are becoming evermore ubiquitous. Their diverse and dynamic services and features are proving essential to how people are connecting to, and experiencing, the world around them. The expectation and demand from users to access apps and have a connected digital experience has seen apps rapidly spreading beyond handheld devices into wearable tech, smart homes and automobiles; arguably “the ultimate mobile device of all” (AT&T 2014). With existing in-car infotainment systems from the likes of Ford, GM Motors and BMW, and the launch of Apple’s CarPlay and Google’s Android Auto, this new platform is increasingly attracting a wealth of companies looking to ensure their digital presence in users’ cars. As we move towards seamless experiences across multiple, connected devices, companies will need to ensure their apps are optimised to car interfaces and offering a tailored and safe experience for drivers. This paper not only divulges this bourgeoning in-car infotainment industry, but also conveys its inherent challenges and complexities, particularly for user experience. Through an assessment of multi-disciplinary discourse on cognitive load in high-risk context of use, and a collection of design and usability theory and practice, insights are gained that inform and inspire the wider adoption of in-car infotainment systems as viable and compelling platforms in user experience. Abstract  
  • 4.   4   The 80’s saw fictional, conceptual and novel car interfaces capturing the imaginations of the public. In 1982 the TV series Knight Rider portrayed artificial car intelligence in the form of a Pontiac Trans Am called ‘KITT’ with a digital dashboard, in-built video screens and make-believe voice recognition, and in 1985 Etak, Inc., launched their Electronic Navigation System (Shuldiner 1985: 65) (Figure 1); one of the world’s first publicly available in-car digital maps that was displayed on a 4½-inch green vector monitor and programed with cassette tapes (Parkinson and Spilker 1996: 294). However, it would be two decades later that in-car interfaces would eventually see widespread commercial success. With advancements in technology, significantly lower manufacturing costs and access to high precision Global Positioning System (GPS) signals, which were only made fully available for US civilian use after the Clinton Administration lifted military GPS “Selective Availability” in 2000 (Sadeh 2002: 275), portable devices offering touchscreen GPS navigation from the likes of TomTom, Garmin and Navman became prodigious performers of the in-car technology market on an international scale (Mintel 2009) (Figure 2). Emerging at this time were other more niche, and what was then considered somewhat novel, portable/ aftermarket multimedia ‘car stereo’ systems offering features such as video and MP3 playback, DVD drives, Bluetooth, and GPS Navigation services on widescreen LCD monitors (Figure 3). Furthermore, a limited number of luxury vehicles also entered the market with factory in-built infotainment systems that included GPS Navigation. 1. Introduction Evolution of In-Car Interfaces Figure 1. Etak, Inc., Electronic Navigation System
  • 5.   5 Figure 3. A 2003 Rosen Necvox portable/aftermarket system installed into the dashboard stereo port with features including DVD and TV viewing Figure 2. Example of a portable GPS Navigation device positioned on the main window
  • 6.   6 Smartphones and Apps The smartphone revolution offered high computing capability and “all the power of being connected to the internet in the palm of one’s hand” (Rollins and Sandberg 2013: 2). In 2007 Apple released their iPhone and iTunes app store and by 2010 the mobile industry was seeing a rapid “rise of smartphones, apps and the mobile web… with the majority of smartphone owners (62%) having downloaded apps on their devices” (Nielsen 2011). Arguably “the ultimate convergence device” (Hayden and Webster 2014: 1), smartphones offer built-in capabilities of camera, connectedness and geolocation for apps to utilise (Allen et al., 2010: 3). Not only did car sat-nav apps on smartphones pose a great challenge to the portable GPS Navigation market (Mintel 2009) but the new paradigm of ubiquitous computing and increasing demand for seamless connectivity has also meant ‘car inhabitants’ expect to be able to “entertain themselves and communicate with the world outside, [with] all useful and interesting information flow[ing] fluently… without distracting him/her from the primary driving task” (Damiani et al., 2009: 95). In response to the market, Nokia released Car Mode in 2011; “the world’s first in-car infotainment solution based on MirrorLink™” (Nokia 2011). The technology transforms smartphones into automobile operating systems enabling drivers to interact with their smartphone and apps while driving. Through utilising the in-car infotainment interface and/or the car’s dashboard and steering wheel controls, MirrorLink gives users safer “access to their smartphone apps while driving, allowing them to be connected and responsible at the same time” (MirrorLink 2014) (Figure 4). This collaborative project between Nokia Research Center and the Consumer Electronics for Automotive (CE4A) led to the formation of the Car Connectivity Consortium; an initiative bridging leading car manufacturers and mobile phone makers in the development of global standards for phone-centric car connectivity solutions (O’Donnell 2012). Figure 4. MirrorLink with a Nokia 701 being plugged into an Alpine head unit
  • 7.   7 Current Market Juniper Research’s latest report anticipates widespread adoption of in-car apps over the next five years with “revenues from consumer and commercial telematics reach[ing] just short of $20 billion by the end of the forecast period in 2018” (Juniper 2014). Alongside the continued success of MirrorLink, currently supported by many of the latest vehicles and smartphones (including Honda, Mercedes-Benz, Skoda, Volkswagen, Toyota, and HTC, Samsung, Sony, and Nokia), 2014 has seen both Apple’s iPhone and Google’s Android launching their own in-car solutions (CarPlay and AndroidAuto respectively) that exclusively synchronise their smartphones with compatible infotainment systems. Smartphone users comprise 62% of the UK adult population (Ofcom 2014) with 61.1% of consumers using Google’s Android OS followed by 27.1% using Apple’s iOS (Kantar 2014), so, the introduction of Android Auto and CarPlay (Figure 5) is set to significantly help drive the momentum of the in-car apps market (Tode 2014). Although both economical and luxury car manufacturers have been offering in-built infotainment systems for the better part of a decade, in 2012 the headline ‘Automakers Rush to Offer Apps in Cars’ appeared in USA Today highlighting the need for automakers to “fill a gap in their customers’ electronic lives” (Woodyard 2012). The past few years have since seen several car manufacturers offering a diverse library of apps directly through their in-built systems “similar to what consumers have come to expect from their smartphones” (Thibaut 2013): Toyota’s in-car infotainment system Entune offers access to popular services such as Pandora, Yelp, OpenTable and MovieTickets.com, and Nissan’s in-car infotainment system NissanConnect includes Facebook, Google and iHeartRadio apps. Figure 5. Driving while connected to Apple CarPlay
  • 8.   8 User Experience Industry The rise of in-car infotainment systems and apps ensues a multitude of companies looking to ensure their digital presence in users’ cars. Prospective clients will be turning to the user experience industry as they endeavour to produce apps that are optimised for in-car interfaces with tailored experiences for drivers. Furthermore, proposed in-car apps require certification from the car manufacturers or in-car solution providers (e.g. MirrorLink via the Car Connectivity Consortium) before they are made accessible to drivers, therefore, it is essential that specialist usability testing be carried out prior to submission. Aside from specialist agencies, such as Testronic Laboratories, Belguim, user experience professionals seeking to work on in-car apps and infotainment services will need to consider alternative or adapted approaches, methods and practices to accommodate this new platform and its complex context of use. This paper will provide insights into in-car infotainment systems to encourage the adoption of automobile ux services. Through reference to academic literature, scientific studies and experiments, presentations, and theory, this paper conveys various innovations, issues, solutions, guidelines, and measures essential to the automobile infotainment industry.
  • 9.   9   The projected ‘Internet of Things’ sees ubiquitous internet and everyday devices, equipped with sensors and connectivity, working together and operating automatically in response to context, environment and what we are doing (Duncan 2014). In facilitating a seamless, digitally-connected future, the Internet of Things is transforming the way we interact with machines and technology and the way they interact with each other. Such ‘smart’ ‘things’ are already permeating our everyday lives; the LG Smart ThinQ Refrigerator notifies you, on its 8-inch display and/or smartphone app, when food has run out or gone off and instantly connects to an online shopping basket, while the Nest thermostat, that allows people to check and adjust home temperature settings from their smartphone, can even learn the homeowner’s routines to adjust temperatures around the home automatically. Although many in-car GPS Navigation services offer live traffic updates while driving, the Internet of Things vision would go a step further and, for example, have the driver’s car automatically email their boss that they are stuck in traffic on a motorway (Carter 2012). The progression towards an Internet of Things will undoubtedly inspire the development of innovative in-car apps that are utilising the car’s ‘big data’ and are connected to, and communicating with, multiple devices in a wide network. Designers are led to taking a wider view of the whole system in its entirety, looking at “how different parts on the system interrelate, and especially how the user features in that interaction” (McEwan and Cassimally 2013: 22). 2. ‘Smart’ Connected Cars The Internet of Things Figure 6. Imagined connectivity  
  • 10.   10 A Multi-Device Ecosystem Being in the midst of an important behavioural shift to a multi-device model, it is essential that we recognise that connected devices can form a multi-device experience as a connected group as opposed to being just a set of silo devices. Experiences should focus on how the set of connected devices can best serve users’ needs as they move between activities and contexts throughout the day in order to create natural, fluid, multi-device experiences that allow for dynamic changes. Levin (2014) promotes adopting a holistic ecosystem experience that can employ any, or a combination, of three design approaches: 1. Consistent design; replicating the basic experience across the different devices, porting the same content and core features in a like manner [and reflecting brand identity]. 2. Continuous design; where the user experience shifts/flows between devices accompanying the user in their set of activities, within different contexts, en route to their information or entertainment goal. 3. Complementary design; when multiple devices interact as an ensemble, which together create a complete experience. (Levin 2014: 21) Anticipating the implications of an Internet of Things and appreciating the wider ecosystem of an in-car app is of great importance and benefit during the design lifecycle of an in-car app. However, what must always take precedence above all else is the design of an in-car app to be appropriate and safe for drivers to use (while driving or not). Through fostering an ‘ecosystem,’ designers should “capture the dynamically changing needs and contexts that accompany shifting devices, putting the emphasis on delivering the right thing at the right place at the right time” (Levin 2014: 3) and in the ‘right way’.
  • 11.   11 1 In 2012 a survey by AAA Foundation for Traffic Safety in the US found that 94% of drivers considered texting while driving “a serious threat” with 87% favouring texting bans, however, more than a third admitted reading a text or e-mail while driving in the past month and 70% reported talking on their mobiles while driving (O’Donnell 2012). While there has been a plethora of research into the dangers of mobile usage while driving (Figure 7), there is still wide debate over the use of in-car infotainment systems and particularly smartphone synchronised solutions. Rennecker and Halgren’s (2014) talk ‘Designing Healthcare Technologies: Motivating Users by Decreasing Cognitive Load’ at the UXPA14 conference highlighted UX issues for medical professionals working in a complex, precarious context. What was most fascinating were the similarities made with the car environment for drivers. In both contexts the risks of errors are high due to frequent interruptions, multi-tasking, high-risk tasks and competing demands all of which impact heavily on cognitive load; the amount of mental resources required to operate a system. Rennecker and Halgren presented the three types of human cognitive load commonly referred to in cognitive load theory in relation to healthcare: intrinsic load, extrinsic load and germane load (Figure 8). There are three types of distraction while driving; visual - looking away from the road, manual - reaching out for something instead of keeping hands not on the steering wheel and/or cognitive - lack of mental focus on the information critical to safe driving. A study into ‘Visual Attention in Driving: The Effects of Cognitive Load and Visual Disruption’ Lee et al., (2007) observed that cognitive load and short glances away from the road are “additive in their tendency to increase the likelihood of drivers missing safety-critical events” (2007: 731). 3. Safety and Infotainment Distraction and Cognitive Load Figure 7. Extreme example of a taxi dashboard, China   2
  • 12.   12 The study states that even devices that do not require glances away from the road, such as voice controlled systems, can nevertheless “impose a cognitive load that may interfere with driving performance” (2007: 721). Furthermore, drivers’ awareness of the dangers are imperfect, potentially leading to them underestimating the consequence of seemingly inconsequential distractions, therefore, Lee et al., concludes that “drivers may benefit from feedback regarding how in-vehicle information systems undermine visual attention” (2007 :732). Published at the time of writing, the most recent research into in-car infotainment systems from the AAA Foundation for Traffic Safety, by Strayer et al., (2014), assesses cognitive distraction associated with performing voice- based interactions while driving. Through excluding driver visual and manual requirements in the experimental design, the researchers could hypothesise “any impairment to driving must be caused by the diversion of attention from the task of operating the motor vehicle” (2014: 2). Using a combination of performance indices, three experiments were carried out, each testing nine tasks (Figure 9), to produce ‘cognitive workload’ measures on a scale of 1 to 5 (1 being low distraction and 5 being comparable to complex maths problems and word memorisation). Figure 8. 3 Kinds of Cognitive Load (Rennecker and Halgren 2014)
  • 13.   13 Results were positive for short, simple (Wizard-of-Oz) voice commands; scoring 1.88 on the cognitive workload scale “close to listening to an audio-book (Strayer et al., 2013)” (Strayer et al., 2014: 22). However, voice-based interactions overall were deemed to create “significant impairments to driving” (2014: 25) with certain interactions exerting dangerously high levels of driver cognitive load, particularly when frustrating usability issues and erroneous commands occurred. Controversially, out of seven systems tested, the study revealed Apple CarPlay produced the highest cognitive workload scale for drivers, with the “the lowest rating of intuitiveness and the highest rating of complexity” (2014: 24) (Figure 9 and Figure 10). Figure 9. Cognitive workload scale (Strayer et al., 2014) Figure 10. Strayer et al.,’s smart cars distraction ratings (O’Callaghan 2014)
  • 14.   14 Nesselrath (2013) outlines three levels of driving-related activities in his study on cognitive load in the automotive domain: 1. The maneuvering of the car, e.g. steering and operating the pedals. 2. Maintaining safety while driving, e.g. using windshield wipers, control of lights and turning signals. 3. The control of comfort, infotainment and entertainment functions. (Nesselrath 2013: 66) He states that it cannot be denied in-car infotainment systems are an additional flood of cognitive stimuli which harbours the risk of distracting the driver from their primary task, namely to steer the car (Nesselrath 2013: 266). Therefore, it is crucial, and soon to be more strictly regulated government legislation in the US and UK (Carfrae 2014), that a lower priority task, such as interacting or operating an in-car app, does not interfere with or distract from tasks with a higher priority and has a low effect on the driver’s cognitive load. Disparate Infotainment Systems Both in-built and portable/aftermarket in-car infotainment systems have continued to vary in screen size, positioning and functionality since their earliest introduction. There is little consensus, and some conflicting discourse, on the varying affects of display positioning on driver glance behaviour and the affects of user-interface touch interaction (touchscreen, tapping, flicking, swiping, pinching etc.,) on distraction. Wittmann et al.,’s (2006) research into infotainment system positioning stresses the importance of taking careful consideration of the placement of onboard displays for the presentation of visual information in the car. The study states that distances between displays and the outside line of sight had a significant effect on driving performance and their subjective mental workload measures (Figure 11). In conclusion, the nearer the infotainment system is positioned to the windscreen (e.g. above the middle-console or above the dashboard) “the less detrimental effect has the onboard visuo-motor control of a secondary task on the actual driving performance” (Wittmann et al., 2006: 196). Fuller et al.,’s (2008) research into infotainment system positioning anticipated that driving performance would suffer when their in-vehicle task was performed with a monitor in positions with greater visual angle from the road and greater reach distance. However, contrary to Wittmann et al (2005), the study concluded there was “no significant difference in driving performance between different in-vehicle task monitor positions… the RMS [Root Mean Square] error and delay were approximately the same for all” (Fuller et al., 2008: 1896). Such in agreement of ‘safest’ practice and the lack of universalisable standards for in-car infotainment systems has led to an open market in which “no two [systems] are alike” (Palermo 2013) (Figure 12).
  • 15.   15 Some car models’ infotainment systems have touchscreen functionality while others do not, some offer voice recognition but some only operate through physical buttons and switches. While many infotainment systems are now multimodal; controlled by a variety of inputs such as touchscreen, speech and physical buttons (commonly located on the steering wheel), consumers are still encouraged to compare cars and “check that the location of the inputs works for [them]” (Consumer Reports 2013: 19). Increasingly, car manufacturers are offering customers a choice of varying levels of interactivity and conspicuousness from their range of infotainment systems. Figure 11. Display location results (Wittmann et al., 2006: 195) Figure 12. (Clockwise from the top) Acura TLX, Audi A6, Ford EcoSport and MINI
  • 16.   16 Tesla to Navdy Two very unique systems that epitomise either end of the infotainment spectrum are the in-built Tesla Model S display (Figure 13) and the Navdy portable/aftermarket Head-Up Display (HUD) (Figure 14): Telsa Model S Named Motor Trend Car of the Year 2013, Telsa Model S’s infotainment system impressed all the judges with its “unique user interface, courtesy of the giant [17-inch] touch screen in the center of the car that controls everything from the air-conditioning to the nav system to the sound system to the car's steering, suspension, and brake regeneration settings… the Model S interior is virtually button-free” (MacKenzie 2013). The unprecedented size of the in-car display takes up almost all of the dashboard space replacing conventional buttons with a software driven “upgradeable dash… that could be updated over the air to provide new functionality as the years go on” User Interface Manager, Bennan Bobllett (Tengler 2013). The electric luxury car has two display screens, the second being a 7-inch non-touchscreen instrument cluster positioned behind the steering wheel. When the car is stationary the instrument cluster shows which doors are open etc., and then changes to a speedometer and power gauge with images on either side showing battery life, navigation and audio information while driving (CNET 2013). Physical buttons and a scroll on the steering wheel control the instrument cluster and there is also a button for operating the somewhat ‘limited’ voice command. The voice command of the Tesla Model S works in conjunction with the central touchscreen display but essentially just functions as an alternative to keyboard typed searches (requiring the final selection of song name or destination to be made on the central touchscreen display). Although the 17-inch touchscreen allows for larger digital buttons, which reduces usability issues and gaze/concentration time (Evarts 2013), the Tesla Model S display has received mixed reaction from both consumers and user experience professional. There are concerns with having a constant large bright glare from the display while driving and/or the amount of eye/hand coordination when reaching out to the display. Nevertheless, Tesla have undoubtedly extended the paradigm of touchscreen as an input and pushed the boundaries of in-car UI and UX to break new ground with design and stimulate further discourse and innovation in the automobile industry. Navdy The soon to be released (2015) Navdy HUD is a portable/aftermarket device that can be mounted on almost any car dashboard and is inspired by the need to fulfil a solution for maximum in-car functionality without creating driver distraction. “You’re not looking down at knobs and buttons and touchscreens. You’re able to keep your eyes on the road at all times. Improving safety is one of our big goals… and we’re doing everything we can to ensure driver’s eyes stay on the road.” CEO, Doug Simpson (TelematicsWire 2014). Through utilising voice commands and hand gesture recognition, Navdy can display essential car data, GPS Navigation, read and respond to text messages and play requested music on a projected transparent screen seemingly
  • 17.   17   hovering six feet in front of the driver. With both connection to the cars on- board computer and a Bluetooth connected smartphone, the Navy provides a unique interface and interaction for popular apps including Twitter, Facebook and Spotify (Navdy 2014). Although it has yet to take to the road and been approved by actual consumers, the Navdy should not be taken lightly; despite concerns of increased cognitive load from any modal interaction type, there is research in favour of ‘glance-free’ HUD solutions over touchscreen interaction, and displays positioned below the diver’s line of sight. This novel HUD solution may in fact pioneer the future direction for in-car infotainment systems. Figure 13. Tesla Model S touchscreen and instrument cluster Figure 14. Navdy portable/aftermarket HUD installed on a dashboard
  • 18.   18 Safety Limitations When working with in-car apps user experience practitioners will have no control over the inherent safety of the manufactures’ chosen infotainment systems. The design and evaluation of apps will be constrained by the limitations of the wide variety of existing infotainment systems. An app that tests well and is deemed appropriate in its function, user interface and interaction on one car’s infotainment system has the potential to be inappropriate and/or hazardous on others. By staying up-to-date with research around the safety of particular types of in-car interactions and systems, the user experience practitioner can make more informed assessments and recommendations during the app’s life-cycle. In-car apps are likely to require a high level of optimisation for effective and appropriate usage in different car models. Adjustments should be made to compensate for any potentially problematic interactions or equally exploit any alternative interactions that may encourage safer usage; for example, enabling control of the app from the steering wheel rather that the touchscreen input could reduce cognitive load from eye/hand coordination. Certain alerts, such as a Facebook updates or Twitter messages, may be acceptable on a HUD system, as a side notice while driving, but could be too great a distraction on a touchscreen display. Such alerts to content rich information may tempt a driver to redirect their focus to the infotainment system and make them feel compelled to browse further; a high-risk task that would be more appropriate after the car has parked (see Guidelines p.23).
  • 19.   19 There are fundamental user experience design principles that are derived from a combination of theory-based knowledge, experience and common sense, and are intended as generalizable abstractions for thinking about different aspects of design. Various principles have been proposed and interpreted by theorists in Human Computer Interaction for any interaction design and therefore should be assignable and informative to in-car infotainment systems and in-car apps (Figure 16). Nevertheless, in certain design situation, some design principles may be in conflict with each other or at odds with product design goals and objectives so will require design trade-offs. Design principles are not intended to be followed blindly but rather act as guidance for sensible interface design (Mandel 2013: 80). 4. Design and Evaluation Guidelines   Hansen (1971)   Shneiderman (1987)   Norman (1988)   Morville (2004)   1.   Know the user   Strive for consistency   Visibility   Useful   2.   Minimise memorisation   Enable shortcuts   Feedback   Usable   3.   Optimise operations   Informative feedback   Constraints   Desirable   4.   Engineer for errors   Design to yield closure   Mapping   Findable   5.     Simple error handling   Consistency   Accessible   6.     Easy reversal of actions   Affordance   Credible   7.     User in control   Valuable   8.     Reduce short-term memory load      Figure 16. Table of Design Principles gathered from various theorists Figure 15. Wireframe car sculpture  
  • 20.   20 Usability guidelines from other devices that utilise relevant interactions, such as touchscreen, natural language user interface/voice control, haptics, gestures, etc., can still offer valuable insights for automotive UX design. Previewing his recent finding at the UXPA14 conference, Hoober’s (2014) presentation ‘Fingers, Thumbs & People: Designing for the way your users really hold and touch their phones and tablet’ discussed the impact of fingers and hands covering areas of the screen and revealed how objects in the corners of screens have lower accuracy than those in the centre. His re-evaluation of hitherto knowledge in touchscreen theory conveys original ideas on designing to avoid errors and takes advantage of his new findings (see more http://4ourth.com/wiki/General%20Touch%20Interaction%20Guidelines). 1. Your users are not like you: a. Design for every users b. Accept that users change c. Plan for every device 2. Users prefer to touch the centre of the screen: a. Place key actions in the middle b. Secondary actions along the top and bottom 3. Users prefer to view the centre of the screen: a. Place key content in the middle b. Allow users to scroll content to comfortable viewing positions 4. Fingers get in the way: a. Make room for fingers around targets b. Put your content or functions where they won’t be covered c. Leave room for gestures and scroll 5. Different devices are used in different ways: a. Support all input types b. Predict use by device class c. Account for distance by adjusting sizes 6. Touch is imprecise: a. Make touch targets as large as possible b. Tap entire containers c. Design in lists and large boxes 7. Touch is inconsistent: a. Design by zones b. Don’t force edge selection c. Very large spacing along the top and bottom 8. People only click what they see: a. Attract the eye b. Afford action c. Be readable d. Inspire confidence 9. Don’t forget cases and bezels: a. Provide room for edge taps and off-screen gesture
  • 21.   21 10. Work at human scales a. Paper is your friend b. Test and demonstrate on real devices c. Pixels are a lie - plan accordingly (Hoober 2014) In ‘Designing Healthcare Technologies,’ Rennecker and Halgren (2014) present their six ‘Design Rules for Reducing Cognitive Load’. The guidelines, which are directed at but not exclusive to hospital technology, offer design solutions transferable to other demanding, sensitive and high-risk contexts of use (such as while driving): 1. Be Simple: a. Be Minimal i. Be direct Less is more ii. Show only what you really need iii. Group related information iv. Use a clean visual design b. Be Direct i. Careful use of abbreviations ii. Careful use of icons iii. Make alert states obvious 2. Be Helpful: a. Provide Guidance i. Through the workflow ii. Next steps iii. Access to help b. Prevent Errors i. Make it obvious ii. Make it easy iii. Make it “dummy-proof” iv. Prevent omissions 3. Be Smart: a. Be a Natural Extension… of the user i. Hold information in memory of the user ii. Perform calculations for the user b. Be a Natural Extension … of the task i. Providing the right tools at the right time ii. Recognise errors or alert conditions iii. Be easy to ignore when not needed iv. Be difficult to ignore when there’s danger 4. Be Calm: a. Be Attractive i. Use soothing colours ii. Use a neutral colour palette iii. Provide ample white space b. Be Mindful i. Careful use of animation
  • 22.   22 ii. Pay attention to use of audio* iii. Avoid causing “alarm fatigue” 5. Be Consistent: a. Provide simple, consistent workflows i. Within the design ii. Across your product line iii. Across similar medical devices iv. With users’ expectations b. Predict use by device class c. Account for distance by adjusting sizes 6. Be a Team Player: a. Take a systems engineering perspective b. Avoid local success, global failure i. Consider the other technology being used in conjunction with yours: Competitors’ products Other products from your company Non-related technology (smartphones, tablets, medical devices, etc.) ii. Each technology might have their own unique: Workflows Audio sounds Visual alerts Icon sets & colour palette (Rennecker and Halgren 2014) * See also: Blattner et al., (1989) Earcons and Icons: Their Structure and Commond Design Principles and Gärdenfors (2001) Auditory Interfaces A Design Platform Guidelines specific to in-car infotainment systems, in the reduction of cognitive load and distraction, can be found by the National Highway Traffic Safety Administration (NHTSA), Department of Transportation’s ‘Visual-Manual NHTSA Driver Distraction Guidelines For In-Vehicle Electronic Devices’ (2012) and are based upon a set of fundamental principles: 1. The driver’s eyes should usually be looking at the road ahead 2. The driver should be able to keep at least one hand on the steering wheel while performing a secondary task (both driving-related and non-driving related) 3. The distraction induced by any secondary task performed while driving should not exceed that associated with a baseline reference task (manual radio tuning) 4. Any task performed by a driver should be interruptible at any time 5. The driver, not the system/device, should control the pace of task interactions
  • 23.   23 6. Displays should be easy for the driver to see and content presented should be easily discernible (NHTSA 2012: 10) The full ‘voluntary’ guidelines from NHTSA include the recommendation that the time a driver takes their eyes off the road to perform any task should be limited to 2 seconds at a time and 12 seconds in total. The guidelines also recommend the types of operations and in-car apps that should be disabled and only be accessible when the car is parked, such as: Manual text entry for the purposes of text messaging and internet browsing; Video-based entertainment and communications like video phoning or video conferencing; Display of certain types of text, including text messages, web pages, social media content (2012: 217). (Follow up Phase 2 and Phase 3 guidelines are due to address visual/manual interfaces for portable/aftermarket electronic devices and voice- based auditory interfaces for both in-built and portable/aftermarket devices, respectively). A prior study by Steven et al.,’s (2002) ‘Design Guidelines for Safety of In- Vehicle Information Systems (IVIS),’ for the Transport Research Laboratory, also recognised that “complex information and control actions should not be designed for use in a moving vehicle because they can be too distracting for drivers” (2002: 34). It includes the following recommends for system dialogue in a moving car: 1. Any IVIS functions that are accessible, but not designed for use when the vehicle is in motion, must be clearly indicated as being restricted 2. Long sequences of interactions with the system should not be required. Drivers should be allowed to interrupt the sequence at any time without consequence 3. There should be a balance between the breadth and height of menus. The number of choices should be limited to three or four options to minimise the complexity and interaction time 4. An ‘off’ or ‘mute’ option should be available 5. System response (eg feedback, confirmation) to driver input should be timely (<250ms) and clearly perceptible 6. Avoid unnecessary attention-grabbing techniques (eg Boeing’s Dark and Silent cockpit metaphor: ‘Do not blink or beep unless absolutely necessary’) 7. Prioritise information 8. Drivers should be able to initiate and control the pace of interaction with the system; no time-critical responses should be required when providing input to the system
  • 24.   24 10. Do not display information when the driver is busy, although this guideline is for more advanced “intelligent” systems, eg GIDS (Michon, 1993). (Steven et al., 2002: 35) Individual car manufacturers and in-car infotainment solution providers have their own specific design principles and guidelines. In order for an in-car app to be made accessible in particular vehicles, or through the various solution providers, it must meet their unique requirements. Increasingly, these companies are initiating open-source development platforms with access to their guidelines, Software Development Kit (SDK) and Application Programming Interfaces (APIs) online (Figure 17). There are no universalisable guidelines or standards for the development of in-car apps, however, alliances, such as the Car Connectivity Consortium do work closely with over 70% of the world’s automakers in their vision and pursuit for global standards in phone-centric car connectivity solutions (MirrorLink 2014).   Company   Service   Development     Ford   Sync AppLink   https://developer.ford.com   GM Motors Group   MyLink, IntelliLink, CUE, OnStar   https://developer.gm.com/index.php   BMW Group   AppCenter, iDrive, ConnectedDrive, MINI Connected, Rolls-Royce Connect   http://www.bmw-carit.com http://www.gpsbusinessnews.com/BMW- Offers-SDK-to-Third-Party-App- Developers_a3745.html Toyota Entune, QNX http://www.qnx.com/download/group.htm l?programid=26072           Car Connectivity Concortium MirrorLink   http://www.mirrorlink.com/developer- registration http://www.mirrorlink.com/sites/default/fi les/docs/Session1_MirrorLink%20for%20 App%20Developers.pdf   Apple   Apple CarPlay   https://developer.apple.com/carplay/ Google AndriodAuto http://developer.android.com/auto/overvi ew.html#architecture   OpenCar OpenCar Connect, InsideTrack http://www.opencar.com/for-developers/   CarManufacturersSolutionProvidersOther Figure 17. Table of links to company guidelines, Software Development Kit (SDK) and Application Programming Interfaces (APIs)
  • 25.   25 Factors and Measures There are key factors, integral to assessments of usability, which have been identified and interpreted by various theorists in Human Computer Interaction. Harvey and Stanton (2014) present five significant authors’ contributions to usability factors (Figure 18) that they synthesised into a single list of 10 high- level usability factors: 1. Effectiveness 2. Efficiency 3. Satisfaction 4. Learnability 5. Memorability 6. Flexibility 7. Perceived usefulness 8. Task match 9. Task characteristics 10. User criteria (Harvey and Stanton 2014: 28) Harvey and Stanton analysed the process of defining such usability factors for an IVIS [in-car infotainment system] through in depth consideration of the context-of-use “in order to specify more detailed, and therefore more useful, criteria and Key Performance Indicators (KPIs)” (2014: 28). The 10 high- level factors were translated as 12 IVIS-specific criteria (Figure 19) with KPIs included for each criterion: “these describe how the criteria should be measured in terms of IVIS task times, error rates, task structure, input styles, user satisfaction, and driving performance” (2014: 34). Figure 18. Key usability factors proposed by the significant authors in the field (Harvey and Stanton 2014: 29)
  • 26.   26 A list of four main categories of measures for in-car infotainment evaluation are summarized below with examples of their use in practice and references for further study: Subjective Measures Involving the assessment of people’s attitudes and opinions towards an infotainment system with some methods using expert evaluators to identify potential errors, highlight usability issues, and suggest design improvements (Harvey and Stanton 2014: 52). Nesselrath (2013) states that a traditional way to assess the subjective cognitive load of a user is introspection which can be acquired by a in-depth interviews or questionnaire e.g. with the NASA Task Load Index (NASA-TLX). However, “because this method is an intrusive procedure and would add an additional task to the cognitive load it can only be done after the experience… cannot be used for real-time assessment” (Nesselrath 2013: 69). Physiological Measures Based on the premise that the user’s cognitive stress is reflected in the human physiology, potential physiological indicators can include: heart rate variability; brain activity; galvanic skin response; eye activity; respiration rate variability and muscle tension (Nesselrath 2013: 67, and Engen et al., 2009: 2). In Strayer et al.,’s (2014) experiments for the AAA Foundation study, a selection of participants were equipped with a Zephyr BioHarness 3 Heart Rate Monitor, attached around the participant’s chest and either an electro- encephalographic (EEG) cap, with built-in electrodes for measuring electrical brain activity, or Electrooculogram (EOG) electrodes placed at the lateral canthi of both eyes (horizontal) and above and below the left eye (vertical) to track eye movements and record eye blinks (Strayer et al., 2014: 9) (Figure 20). Figure 19. General usability criteria made specific to in-car infotainment systems (Harvey and Stanton 2014: 35)
  • 27.   27 Performance Measures Based on the premise that performance of a task solution is influenced by cognitive load, various concepts are used to estimate performance and provide insights into cognitive load. Task processing requirements can be evaluated by considering the amount of time required, error rate and/or type or errors, and the response or reaction time to a stimulus event. Other frequently used indicators include brake reaction time, lateral control, longitudinal control, visual management, and interaction with other vehicles (Nesselrath 2013: 67 and Engen et al., 2009: 2). Performance indices used to asses mental workload in Strayer et al.,’s (2014) experiments for the AAA Foundation study included reaction time and accuracy in response to a Peripheral Light Detection Task, designed by Precision Driving Research, Inc. It used mounted LED lights and a micro-switch attached to participant’s thumb that was depressed in response to a green light (2014: 8) (See also: ISO 2012). Other tests included Brake Reaction Time which was measured as the interval between the onset of the pace car’s brake lights and the onset of the participant’s breaking response and Following Distance measured as the distance between the rear car bumper of the pace car and the front bumper of the participant’s car at the moment of brake onset (2014: 14). Figure 20. AAA Foundation study field-testing measures in an instrumented research vehicle through residential roadways (Strayer et al., 2014)
  • 28.   28 Behavioural Measures Chen et al., (2013) defines responsive-based behavioural features as those that can be extracted from user activity that is predominantly related to deliberate/voluntary task completion, for example, eye-gaze tracking, application usage, gesture input or any other kind of interactive input used to issue system commands (2013: 5). Speech cues are also acknowledged as having a relationship to cognitive load based on hither-to research showing features that vary according to task difficulty include pitch, prosody, speech rate, speech energy, and speech frequency (2013: 6). In addition, high level of disfluencies, fillers, breaks or mispronunciations are considered speech indicators of cognitive stress (Oviatt et al., 2003: 48). Findings from a soon to be published study ‘Emotion matters: Implications for distracted driving’ by Chan and Singhal (2015) brings to light the detrimental effects of negative emotional auditory content on driving performance. The results demonstrate that emotion-related auditory distraction can differentially affect driving performance depending on the valence of the emotional content; negative distractions reduced lateral control and slowed driving speeds compared to positive and neutral distractions (Chan and Singhal 2015: 302).
  • 29.   29 It is apparent that we are on the fringe of significant advancements in car connectivity and a hugely profitable in-car app market. Exactly how in-car infotainment will mature and play its role in the envisioned Internet of Things is still uncertain, but, it will no doubt be a rewarding endeavour to engage in, and contribute to, its current state and development. This study has conveyed the challenges and complexities that the user experience industry faces in the automobile domain while equally showing how design principles and current and adapted ux practices can be utilised, alongside multi-disciplinary approaches, to limit and lessen them. Although there are concerns about increased cognitive load and distraction during certain types of infotainment use, in the near future, this may not be an issue; technological developments in autonomous cars are leading the way for self-driving and safety ‘conscious’ vehicles that remove driver human error much-like the vision portrayed in 2004 film iRobot (Figure 21). Google are in the process of developing and testing driverless cars (Whitwam 2014) and 2013 has already seen the release of the Mercedes S-Class “loaded with the technology that promotes ultimate safety:” autonomous steering; lane keeping; acceleration/braking; parking; accident avoidance and driver fatigue detection (Kurylko 2014). For now, infotainment remains a somewhat fractional domain, with indecisive government legislation, and nonconcurrent theory on safety. Moreover, the user experience practitioner may well be faced with ethical dilemmas, such as working on products that do not meet critical guidelines or fail safety testing. However, what must be upheld is the responsibility for 5. Discussion Figure 21. iRobot Audi car in ‘Auto’ steering wheel free mode
  • 30.   30 safeguarding drivers through conscientious, and exceptional usability design whilst maintaining creative, meaningful, impressionable and aesthetically pleasing experiences. Indeed a seemingly impossible task, but surely that is what is at the heart of great user experience; the pursuit to create seamless solutions to real-world problems from a user-centric perspective.
  • 31.   31 AT&T (2014) AT&T hails connected car as “ultimate mobile device” [online], Available at: http://www.mobileworldlive.com/att-hails-connected-car-ultimate-mobile-device   Allen, S., Graupera, V., and Lundrigan, L. (2010) Pro Smartphone Cross-Platform Development: iPhone, Blackberry, Windows Mobile, and Android Development and Distribution. SpringerLink. Blattner, M.M., Sumikawa, A.D. and Greenberg, R.M. (1989) ‘Earcons and Icons: Their Structure and Commond Design Principles.’ Human-Computer Interaction, vol.4, pp.1-44. Carfrae, J. (2014) US legislation to limit in-car technology [online], Available at: http://www.businesscar.co.uk/news/2014/us-legislation-to-limit-in-car- technology Carter (2012) The Internet of Things: how it'll revolutionise your devices [online], Available at: http://www.techradar.com/news/internet/the-internet-of-things-how-it-ll- revolutionise-your-devices-958669   Chan, M. and Singhal, A. (2015) ‘Emotion matters: Implications for distracted driving.’ Safety Science, 02/2015; 72:302–309. Chen, F., Ruiz, N., Choi, E., Epps, J., Khawaja, M.A., Taib, R., Yin, B. and Wang, Y. (2013) ‘Multimodal behavior and interaction as indicators of cognitive load.’ ACM Trans. Interact. Intell. Syst., 2,4, pp.22:1–22:36.   CNET (2013) Tesla progresses in cabin tech [online], Available at: http://www.cnet.com/pictures/tesla-progresses-in-cabin-tech-pictures/6/   Consumer Reports (2013) ‘Connect with your car: How to plug in your music, apps, and lifestyle.’ Consumer Reports Magazine. April, 18-22.   Damiani, S., Deregibus, E. and Andreone, L. (2009) ‘Driver-vehicle interface and interaction: where are they going?’ Eur. Transp. Res. Rev. 1:87-96. Duncan, G. (2014) You can’t avoid ‘the internet of things’ hype, so you might as well understand it [online], Available at: http://www.digitaltrends.com/home/heck-internet-things-dont-yet/ Engen, T., Lervåg, L.E. and Moen, T. (2009) ‘Evaluation of IVIS/ADAS using driving simulators: Comparing performance measures in different environments.’ Proceedings of the European Transport Conference, The Netherlands.   References
  • 32.   32 Evarts, E. (2013) Driving the Tesla Model S is like using an iPad, thanks to leading-edge interior [online], Available at: http://www.consumerreports.org/cro/news/2013/05/driving-the-tesla-model-s- is-like-using-an-ipad-thanks-to-leading-edge-interior/index.htm   Fuller, H.J., Tsimhoni, O. and Reed, M.P. (2008). ‘Effect of in-vehicle touch screen position on driver performance.’ Proceedings of the 52nd Annual Meeting of the Human Factors and Ergonomics Society. New York City. Gärdenfors, D. (2001) Auditory Interfaces A Design Platform. [online], Available at: http://www.jld.se/dsounds/auditoryinterfaces.pdf Hansen, W.J. (1971) User Engineering Principles for Interactive Systems. Proceeding AFIPS ’71 (Fall). Proceedings of the November 16-18, 1971, Joint Computer Conference, 523-532. New York, NY, USA: ACM Press. Harvey, C. and Stanton, N.A. (2014) Usability Evaluation for In-Vehicle Systems. London: CRC Press. Hayden, T., and Webster, T. (2014) The Mobile Commerce Revolution: Business Success in a Wireless World. Que. Hoober, S. (2014) Fingers, Thumbs and People. User Experience Professional Association (UXPA) Conference, 23 July, London. [online], Available at: http://www.slideshare.net/shoobe01/30min-fingers-touchpeoples Juniper (2014) Press Release: Connected Car Opportunity to Reach $20 Billion by 2018 Driven by Soft Revenues, Juniper Research Finds [online], Available at: http://www.juniperresearch.com/viewpressrelease.php?pr=454 Kantar (2014) Smartphone OS market share [online], Available at: http://www.kantarworldpanel.com/global/smartphone-os-market-share/   Kuryklo, D. (2014) Mercedes-Benz’s autonomous driving features dominate the industry – and will for years [online], Available at: http://www.autonews.com/article/20140804/OEM06/308049979/mercedes- benzs-autonomous-driving-features-dominate-the-industry Lee, Y. (2007) Cognitive Load and the Guidance of Attention in Complex Dynamic Environments. Iowa: University of Iowa, UMI.     Levin, M. (2014) Designing Multi-Device Experiences. Cambridge: O’Reily     MacKenzie, A. (2013) Motor Trend Car of the Year: Tesla Model S [online], Available at: http://www.motortrend.com/oftheyear/car/1301_2013_motor_trend_car_of_ the_year_tesla_model_s/viewall.html?__federated=1 Mandel, T. (2013) ‘Golden Rules of User Experience Design.’ Internet User Experience (IUE) Conference, 10 April, Arizona. [online], Available at: http://www.slideshare.net/theomandel/golden-rules-of-user-experience-design- theo-mandel-updated
  • 33.   33 McEwan, A., and Cassimally, H. (2013) Designing the Internet of Things. Chichester: John Waley & Sons. Mintel (2009) Satellite Navigation Systems, UK, October 2009 [online], Available at: http://store.mintel.com/satellite-navigation-systems-uk-october- 2009?cookie_test=true MirrorLink (2014) What is MirrorLink? [online], Available at: http://mirrorlink.jvc.com/faq.html Moreville, P. (2004) User Experience Honeycomb [online], Available at: http://semanticstudios.com/user_experience_design/ Navdy (2014) The notifications you want from the apps you love [online], Available: https://www.navdy.com Nesselrath, R. (2013) ‘Towards a Cognitive Load Aware Multimodal Dialogue Framework for the Automotive Domain.’ Intelligent Environments (IE), 9th International Conference. pp. 266-269. IEEE. NHTSA (2012) ‘Visual-Manual NHTSA Driver Distraction Guidelines For In-Vehicle Electronic Devices.’ National Highway Traffic Safety Administration, Washington, DC.   Nielson, J. (2011) Report the rise of smartphones, apps and the mobile web [online], Available at: http://www.nielsen.com/us/en/insights/news/2011/report-the-rise-of- smartphones-apps-and-the-mobile-web.html Norman, D.A. (1988) The Design of Everyday Things. New York: Doubleday Nokia (2011) Nokia Car Mode drives fusion of cars with smart services [online], Available at: http://company.nokia.com/en/news/press-releases/2011/09/13/nokia-car- mode-drives-fusion-of-cars-with-smartphone-services   Ofcom (2014) Adults’ Media Use and Attitudes Report 2014 [online], Available at: http://stakeholders.ofcom.org.uk/market-data-research/other/research- publications/adults/adults-media-lit-14/ O’Callaghan, J. (2014) Is 'talking' to your car DANGEROUS? Study finds tech significantly distracts drivers - and Apple's Siri is the worst offender. [online], Available at: http://www.dailymail.co.uk/sciencetech/article-2783457/Is-talking-car- DANGEROUS-Study-finds-smart-tech-significantly-distracts-drivers-Apple-s-Siri- worst-offender.html O’Donnell, J. (2012) Disconnects in the distracted-driving blame game [online] Available at: http://usatoday30.usatoday.com/money/autos/story/2012-04-29/car- phones/54633246/1
  • 34.   34 Oviatt, S., Coulston, R. and Lunsford, R. (2004) ‘When do we interact multimodally?: cognitive load and multimodal communication patterns.’ 6th international conference on Multimodal interfaces, ser. ICMI New York: ACM, pp.129–136. Palermo (2013) Infotainment Systems: A Comparison [online], Available at: http://www.autotrader.com/research/article/best-cars/203387/infotainment- systems-a-comparison.jsp Parkinson, W. and Spilker, J.J. (1996) ‘Progress In Astronautics and Aeronautics.’ Global Positioning System: Theory and Applications, Volume 2. Washington, DC. QNX (2012) QNX CAR 2 all about infotainment system personalization [online], Available at: http://articles.sae.org/11353/ Rollins, M., and Sandberg, R. (2013) The Business of Android Apps Development: Making and Marketing Apps that Succeed on Google Play, Amazon Appstore and More. New York: Apress Rennecker, J. and Halgren, S. (2014) Designing Healthcare Technologies: Motivating Users by Decreasing Cognitive Load. User Experience Professional Association (UXPA) Conference, 23 July, London. [online], Available at: http://www.slideshare.net/UXPA/designing-healthcare-technologies-motivating- users-by-decreasing-cognitive-load-julie-rennecker-and-shannon- halgren?related=2 Steven, A. (2002) Design guidelines for safety of in-vehicle information systems. TRL Limited. Shuldiner, H. (1985) ‘Here now: computerized navigator for your car.’ Popular Science, June, pp. 64-67. Sadeh, E. (2002) Space Politics and Policy An Evolutionary Perspective New York: Kluwer Academic Publishers. Strayer, D.L., Turrill, J., Coleman, J., Oritz, E.V. and Cooper, J.M. (2014) Measuring cognitive distraction in the automobile II: Assessing in-vehicle voice based interactive technologies (October). AAA Foundation for Traffic Safety. Shneiderman, B. (1987) Designing the user interface: strategies for effective human computer interaction. Reading MA: Addison-Wesley, TelematicsWire (2014) Navdy launches dashboard Head-Up Display (HUD): Google Glass for your Car [online], Available at: http://telematicswire.net/navdy-launches-dashboard-head-up-display-hud- google-glass-for-your-car/ Thibaut, J. (2013) Study Forecasts Billion Dollar Market For In-Car Apps Within Five Years [online], Available at: http://translogic.aolautos.com/2013/05/24/study-forecasts-billion-dollar- market-for-in-car-apps-within-fiv/
  • 35.   35   Tengler, S. (2013) Tesla’s Groundbreaking UX: An interview with User Interface Manager Brennan Boblett [online], Available at: http://uxmag.com/articles/tesla’s-groundbreaking-ux-an-interview-with-user- interface-manager-brennan-boblett Tode, C. (2014) In-vehicle apps to proliferate thanks to Apple’s CarPlay: report [online], Available at: http://www.mobilemarketer.com/cms/news/research/17889.html Whitwam, R. (2014) How Google’s self-driving cars detect and avoid obstacles [online], Available at: http://www.extremetech.com/extreme/189486-how-googles-self-driving-cars- detect-and-avoid-obstacles Wittmann, M., Kiss, M., Gugg, P., Steffen, A., Fink, M., Pöppel, E. and Kamiya, H. (2006) ‘Effects of display position of a visual in-vehicle task on simulated driving.’ Applied Ergonomics, 37(2), 187-199. Woodyard, C. (2012) Automakers rush to offer apps in cars [online], Available at: http://usatoday30.usatoday.com/money/autos/story/2012-01-05/auto- apps/52392492/1