SlideShare une entreprise Scribd logo
1  sur  36
Télécharger pour lire hors ligne
 
 
 
 
 
 
 
 
 
 
 
A Drag Reduction System developed for the Formula SAE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Members 
 
 
 
Advisor 
 
 
 
 
 
 
 
 
 
George Youssef, Ph.D. 
Professor Mechanical Engineering 
 
 
 
 
Sponsors 
 
 
 
 
 
 
 
 
 
 
 
INDEX 
 
 
 
● INTRODUCTION AND BACKGROUND 
 
 
● DESIGNING CONSIDERATIONS 
 
 
● DRS SYSTEM DESIGN 
 
❖ AERODYNAMIC STUDY 
❖ ACTUATION TYPE 
❖ STRUCTURE DESIGN AND SIZING 
❖ ELECTRIC AND ELECTRONIC DEVICES 
 
● STEERING WHEEL DESIGN 
 
❖ CONCEPT DEFINITION 
❖ PROTOTYPE 
❖ FORCE ANALYSIS 
❖ FINAL DESIGN 
 
 
● CONCLUSIONS AND CONSIDERATIONS 
 
 
● REFERENCES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
● Introduction & background 
 
 
The aim of this paper is to describe the whole process and details of our DRS project. 
 
Our team is made up of three international students coming from Spain, Pablo (Product 
design engineering), Santiago Napal (Mechanical engineering) and Unai Echegaray 
(Mechanical engineering). We all share the same passion: The racing/motorsport world. 
 
The idea for our project came when we realized that there was an engineering team called 
“Aztec Racing”. After some prior research on the FSAE world and some conversations with 
team members we scheduled a meeting with the director. We made him some proposals to 
improve the current car and we finally decided that a Drag Reduction System (DRS) would 
be the most useful one. 
 
The importance of reducing the drag directly affects on the car's performance on 
acceleration and maximum speed. 
 
To briefly summarize why the DRS would be an important improvement, we have to analyze 
the aerodynamic impact when racing. On one hand, downforce is extremely important to 
keep the car stuck to the ground and avoid slippage, especially while turning. But on the 
other hand, it is not possible to increase downforce without increasing drag force, what 
reduces acceleration in straight line. In conclusion, the car needs different requirements 
depending on the circuit section. The DRS allows to vary the aerodynamic forces, 
maintaining downforce while turning and reducing drag while driving in straight line. 
 
Our final concept was to made a whole pack of Steering wheel+DRS considering the 
necessity of controlling the system from the steering wheel. Furthermore, the steering wheel 
they were using was not upgradable, so it didn’t allow to integrate any electronics. The aim 
of the steering wheel is, not only to incorporate the DRS's push button, but allow the 
introduction of new electronics in the future.  
 
The main specifications for the DRS system are that it has to be fast, light, cost effective, 
aerodynamic friendly and meet the FSAE requirements. 
 
For the steering wheel, the design has to be light, ergonomic, upgradable and also meet the 
FSAE requirements.  
 
 
 
 
 
 
 
 
 
● Designing Considerations 
 
In an effort to improve the aerodynamics of the car, we thought about several possibilities. In 
2013 the Aztec Racing implemented the rear wing. This improvement leaded to better 
results in circuit trials of the following years. However, this new device increased the drag 
force, leading to a worse result in the acceleration trial. 
 
Using the current Formula 1 knowledge, we realized the DRS system would not only 
improve the car's straight acceleration, but also vary the forces depending on the track 
shape. 
 
The first questions we thought about were: 
When is the spoiler going to change the position? 
Who or what is going to control the mechanism? 
What grade of automatization do we need? 
How professional teams do it? 
 
To answer the first question, we realize that the requirements of traction and drag are 
directly related to the track shape, so the position will change whenever the track changes. It 
will be activated (open position) in straight line and it will be deactivated (close position) 
before turning. 
 
The system can be controlled by the driver, it can be completely automatic or it can combine 
both systems. The main target about doing it automatic is avoiding distractions of the driver. 
However, the parameters to do it automatic are diffuse. That is why we thought combining 
manual control and sensors. When a corner is approaching, the driver is going to be focused 
on braking, downshifting and following the drawn, so it would be better if the system can 
deactivate itself. Taking advantage of the brake detection that the car currently uses we can 
use that signal to turn the system off, so the driver doesn’t have to care about pressing the 
button. Nevertheless, when the driver is driving in straight line, he only has to accelerate, so 
he can decide if he activates the system if it’s worth it. Furthermore, doing the activation 
automatic is complex. Not only acceleration can be taken as reference, also G forces to 
detect turning and steering wheel sensors must be measured.  
 
To solve this problems, we thought about the last question in the list. The formula 1 uses 
manual actuation because they find more reliable the precision of the driver rather than the 
accuracy of accelerometers and other sensors. 
 
The manual actuation needs, obviously, a push button to be pressed when desired. The best 
place to set the button is the steering wheel, so the driver doesn’t need to take the hands out 
of it. However, the current steering wheel is not upgradable. Luckily, Pablo, our Product 
Design engineer has the knowledge to design an ergonomic and upgradable shape for this 
device. This, with the knowledge of our two mechanical engineers enables the team to 
create a new and efficient steering wheel. 
 
 
● DRS SYSTEM DESIGN 
 
❖ Aerodynamic Study 
 
Going deeper into the technical side of the project, the first step was to determine the best 
position of the spoilers for the minimum drag. We concluded to fix the lower spoiler and 
make the mid and upper wing position variable. The reason why, is that a small variation on 
the angle of attack in the first foil doesn't really affect on drag, so it is not worthy to build a 
structure for it. What is more, we would be forced to use a bigger and heavier actuator for 
the extra power.  
 
We adopt 2D flow simulations taking advantage of faster calculations as we were facing a 
position problem with thousand of possible combinations.  
 
 
 
 
The testing provided this parameters: 
 
Drag:​ 1.13548lbf/in x 38in x 4.44 = 191.58 N 
Downforce:​ 4.8085lbf/in x 38in x 4.44=811.29 N 
 
 
Using Solidworks Flow simulation we realized they were some parameters that really 
determine the drag values: Rotation point of the wing and the angle of attack of the spoilers. 
After some testing, we realized that higher rotation points were having much better results 
due to the space in between was conducting the air smother.  
 
After various attempts and several combinations, we concluded that the best position was 
rotating 21.5​° ​the ​medium spoiler ​and 29​° ​the higher one. SolidWorks showed the next 
values: 
 
 
 
 
 
Drag​ 0.295522lbf/in x 38in x 4.44= 49.81 N 
Downforce​ 1.7079lbf/in X 38in x 4.44= 288.16 N 
Comparing this results with the ones tested on closed position, we can clearly bear out our 
first assumptions. The drag dramatically decreases and the ratio with the downforce stayed 
auspicious as the reduced amount was greater in the drag.  
Tested aerodynamic improvements: 
Reduced ​drag​ percentage = ​74.66 %  
Reduced ​downforce​ percentage = 64.49 % 
❖ Actuation type 
When we thought about moving objects under certain forces only pressing a button, we had 
to think what kind of actuation fits best our requirements. The main four actuation types are: 
electric, pneumatic, hydraulic and mechanic. The last two ones were discarded due to the 
excessive weight. In order to decide which actuation will be chosen we are going to compare 
the next features: Weight, actuation speed, cost and Formula SAE regulations. 
○ Cost:​ When we talk about cost, we need to consider not only all the devices, 
but also the manufacturing techniques. Electric actuators become expensive 
when we look for fast motion and light weight. However, pneumatic devices 
are cheaper. Nevertheless, the pneumatic actuation requires more devices, 
including an electro valve, an air compressed tank and braided hose. 
○ Weight:​ This feature is similar in both systems. the electric actuators are 
heavier than pneumatic ones, but summing all the pneumatic components the 
overall weight of the pneumatic version overcomes the electrical. 
○ Actuation Speed:​ This feature is controversial. Both systems can be 
extremely fast if you are willing to pay the price. While it is true that all 
pneumatic systems are fast using Medium­High speed, electric systems are 
normally slow. Electric actuators designed for racing are necessary to be fast 
enough.  
○ FSAE regulations:​ The regulations are not tight in electrical devices. 
However, it is hard to achieve all the pneumatic regulations, especially those 
related to the air compressed. Due to the places to set the tank and how the 
car is designed, the only available place was really close to the exhaust 
system. The high temperatures pose a risk. 
Considering all this, we determined that electric actuation fits best our requirements. The 
budget for the Aztec Racing is wider than other years, so they can afford the extra cost of 
the electric actuator and we can avoid the danger of tank explosions.  
 
Once it has been determined, we can go ahead and do the scheme. As explained in the 
designing considerations, we are going to have manual actuation, but we are also going to 
consider brake detection to deactivate the system. In order to inform the driver if the system 
is activated, the push button will have a LED that will be switched on when the DRS is 
activated. All this parameters will be controlled by a microcontroller. The team is already 
using the arduino family for the electronics, so we will use the same devices. Generally, the 
arduino will have two inputs (Push button and brake switch) and two outputs (LED and 
electric actuator). The code will be posted at the end, in the electronics section. 
❖ Structure design and sizing 
The Structure has the purpose of placing the upper and mid wing in the position of less drag 
that has been determined in the aerodynamic analysis. The first step was fixing the 
geometry. To do that we used Solidworks. 
 
 
 
 
 
Figure: Closed position. 
 
 
 
 
 
 
Figure: Open position. 
After having the geometry we could run it in a FEA program under the aerodynamic forces 
and determine the force necessary to move the wing. In other words, the force that the 
actuator needs provide. It also determines the axial force and bending moment that each rod 
has to resist. 
 
The program we used for this is called MEFI. It was developed in Spain and it allows to 
combine distributed forces and imposed movements. 
 
 
 
 
 
Figure: MEFI Forces. 
 
Figure: Bending Moment  Figure: Axial Forces. 
With this values and using material resistance theory, we can calculate the area necessary 
to resist the forces and avoid buckling. We always design for the worst scenario, that is why 
we take the highest axial force and bending moment per rod and we use that value to do the 
calculation by­hand. 
● MATERIAL: Aluminium 6061­T6.  
❖ Yield Stress: 241 MPa 
❖ Elastic Modulus: 70 GPa 
● ADHESIVE: 3M Composite Adhesive.   
❖ Overlap Shear Strength: 25.97 MPa 
● SAFETY FACTOR.  
❖ 1.25 
 
1) FEMALE END ROD 
.3R = 2 * r  
R    ) .62 0   m A = π * (  
2
− r 2
= 8 * 1 −6 2
 
  R    ) .67 0   m I z = 4
π
* ( 4
− r 4
= 8 * 1 −12 4
 
  80 MPa   σ x max = A
Nx
+ wz
Mz
= 4  
.8 mm, R .84 mm r = 0   = 1  
σ = π  E I2
* *
4 A L * *
2  
To avoid buckling we have new restrictions. Solving the formula we obtain that: 
.008 mm, R .31 mmr = 1   = 2  
However, to fit in the actuator bar, it will have to be oversized. With this calculations we know 
that we can choose the smaller end rod that fits in the main rod. 
2) ROD 2 (CONNECTION BETWEEN WINGS) 
 
 
 
h = 3 * b  
A = b * h  
   I z = 1
12 * b * h 3
 
  92.8 MPa   σ x max = A
Nx
+ wz
Mz
= 1  
.55 mm, h .65 mm b = 1   = 4  
σ = π  E I2
* *
4 A L * *
2  
To avoid buckling we have new restrictions. Solving the formula we obtain that: 
.33 mm, h 0 mmb = 3   = 1  
3) RODS 3 AND 4 (CONNECTION BETWEEN ACTUATOR AND WING) 
 
 
 
 
h = 5 * b  
A = b * h  
   I z = 1
12 * b * h 3
 
  92.8 MPa   σ x max = A
Nx
+ wz
Mz
= 1  
.37 mm, h 1.85 mmb = 2   = 1  
σ = π  E I2
* *
4 A L * *
2  
 
In this case, solving the buckling formula we obtain lower values than the ones calculated to 
avoid plastification. Buckling doesn’t restrict the area in this case. 
 
 
4) CALCULATION OF WEAK POINTS 
 
 
 
 
In the edge of all the rods, there is a hole in order to unlock the joint. This makes the 
structure weaker. Using again the previous formulas and considering that the area is 
reduced almost a 60% we obtain that rods 2, 3 and 4 have to have a wider area: 
ROD 2: .5 mm, h 1 mmb = 3   = 1  
ROD 3 AND 4: .5 mm, h 4 mm b = 3   = 1  
 
The next step is creating the 3D model of each device in Solidworks. Then we will be able to 
do the assembly, the motion study and the exploded view. 
 
 
 
 
 
 
 
 
    ​Figure: Assembly 
Figure Exploded view
Figure: Detailed view
System components. Technical drawings
1. M6 thin nuts x 10 units: Their function is blocking the rotation of the shafts fixing them
to the anchor plates´ rods. (no drawings, standard parts available)
2. Actuator support bracket: This part will receive compression force from the actuator.
The surface is glued to the lower spoiler´s surface using 3M special adhesives for
carbon fiber parts.
3. Actuator housing: The actuators cover to perfectly fit the cylinder and enabling the
rotation due to the incorporated drilled extension where is build.
4. Threaded shaft x 3 units: (no drawings, standard parts available)
5. Extended rod end
6. Klicktronic actuator: Electric actuator to supply an instant movement.
7. Connecting rods
8. Anchor plate (medium spoiler, named 3): Junction structure between the extended
end rod that enables to transform the linear movement into rotation of the wing.
9. Anchor plate (Higher spoiler, named 4): Junction structure between the rods that
enables to transform the linear movement into rotation of the higher wing.
10. Spacer: To block the axial displacement of the rods that are connecting medium and
high spoilers (no drawings, standard parts available).
❖ Electric and Electronic devices 
 
➔ Arduino Uno R3 
 
This is the microcontroller they currently use. The program to control the system is simple, 
so we can implement it with a longer one and avoid using a new one. This microcontroller 
also includes a Digital­Analog Converter, what can be use for other purposes such as taking 
information of the engine and develop a launch control system. The code is the following: 
void setup() 
{  
 pinMode(1, INPUT); 
 pinMode(2, INPUT); //Así se inicializa 
} 
void loop () //Igual que while(1) 
{ 
  enum{DRSon,DRSoff} DRSstate=DRSoff; 
switch (DRSstate) 
//PORTD usa pins 0­7.  
     { 
     case DRSoff: 
     PORTD = B11111010; 
      if ((digitalRead(1) == HIGH))      //if the brake is not pressed 
       { 
         if ((digitalRead(2) == LOW))  
         { 
          DRSstate=DRSon;  //if the pushbutton is pressed  
         } 
         } 
     break; 
     case  DRSon: 
      PORTD = B00000101; 
      if (((digitalRead(1)) == LOW)||((digitalRead(2)) == 0))  
      { 
      DRSstate=DRSoff;  //if pushbutton or brake are pressed 
      } 
     break; 
     } 
  } 
 
➔ Momentary Push Button 
 
 
 
The Button implemented in the steering wheel will be a Normally­open momentary 
pushbutton. This will send a pulse to the arduino. It will also include a LED light to let the 
driver know the state of the system, so it’s at the same time an input and an output of the 
system. 
 
➔ Brake Light Switch 
 
 
 
In order to detect brake we are going to use the pedal they already use to switch on the 
brake light when braking. In our case, the purpose will be sending a signal to the arduino to 
deactivate the system immediately.  
 
➔ Electric Actuator 
 
 
 
The actuator chosen is a Klicktronic device. The reasons are the high speed of actuation and 
the forces it can apply. This actuator was originally design for paddle shifters, and in fact, is 
the one selected by the paddle shifter team to use in the car for the following year. 
 
 
 
● STEERING WHEEL DESIGN 
 
❖ CONCEPT DEFINITION 
 
Designing a steering wheel for the Formula SAE’s car is the second part of this project. The 
idea was to design a new steering wheel that improves the capabilities of the car. Being able 
to activate the DRS system through a button and leaving the team with a blank sheet for 
further installation of electronics to control and monitor the car. 
 
In order to get satisfactory results, we started listing a set of specifications that we had to 
accomplish: The new steering wheel had to be light, ergonomic, with push button 
implemented and meet FSAE’s requirements (shape & attaching system). 
 
FSAE requirements: 
 
T6.5.4 The steering wheel must be attached to the column with a quick disconnect. The driver must 
be able to operate the quick disconnect while in the normal driving position with gloves on. 
 
T6.5.6 The steering wheel must have a continuous perimeter that is near circular or near oval, i.e. the 
outer perimeter profile can have some straight sections, but no concave sections. “H”, or cutout 
wheels are not allowed. 
 
T6.5.7 In any angular position, the top of the steering wheel must be no higher than the top­most 
surface of the Front Hoop. 
 
 
After considering the basic needs for a FSAE steering wheel, we made an investigation 
about the designs and types that are being used both in competition and other areas. What 
we found, is that there are mainly two types of steering wheels: ​Single­body composite 
material or Multi­part metallic structure. ​These two options have their advantages and 
disadvantages.  
 
The ​multi­part​ steering wheel is based on a metallic structure, using different components 
for the electronics as “add­ons”. This option is generally cheaper to produce because it can 
use any type of already built metallic framed steering wheel. The downside is that different 
add­ons have to be attached, so it ends up increasing weight. 
 
The ​single­body​ composite steering wheel on the other hand, is generally out of carbon 
fiber and more expensive to produce. But being able to design a specific shape, it is easier 
to incorporate all the electronics needed while remaining a very low weight. 
 
General prices and weight ranges with electronics included: 
Carbon Fiber (Hollow)  0.8­1.3kg  1500$ 
Aluminum frame with add­ons   1.6­2.3kg  1200$ 
 
Thank that we are doing this project with the ​Aztec Racing Team,​ we were able to focus 
more on weight rather than price, so we finally decided building the steering wheel out of a 
hollow­body carbon fiber material. 
 
For finding the the shape of the main body, we sketched different steering wheels 
representing our ideas until we found the right one that met all our needs. In this occasion 
focusing more in FSAE requirements and upgradeability. 
 
Ergonomics 
 
Designing an ergonomic grip for the steering wheel is a very important point to achieve. It is 
the main thing that connects the driver with the car, so it has to be as comfortable as 
possible.  
For designing the grip we tested different shapes using modeling clay. We tried varying ways 
to grab the steering wheel with our hands and finally the best shape was chosen. 
 
One thing that we are innovating with our steering wheel is getting rid of the middle 
connection point from the grip to the main body. This is usually meant for giving more 
rigidity, but it is an uncomfortable piece for the driver. With our design, we are able to not 
use this connection and still maintain rigidity. 
 
Prototype 
 
For this project, we made a prototype for testing ergonomics and shapes of the steering 
wheel. The prototype was made out of one piece of low density foam. The piece was first cut 
and then sanded in order to achieve the ergonomic shape previously formed by clay. Doing 
this prototyping technique, we were able to get a solid design which we used to move 
forward.  
 
 
After this first prototype, the next step was to recreate the surfaces and shapes in a 3D CAD 
modeling software. For this, we made use of programs like Solidworks and Rhinoceros. 
 
Material 
 
The material is the crucial part of the steering wheel, it is what makes our design possible. 
What we finally chose is a carbon fiber composite. Having the advantage of being sponsored 
by some carbon fiber companies as the 3M glue company, our final composite composition 
was predicted by using some of their materials. 
 
After some research, we defined the T300­300 carbon fibers and the 3501­6 epoxy resin as 
the best solution for our application. The desired mixture was compounded by 60 wt % 
carbon fiber and 40 wt % of epoxy resin.  
 
For the next step, the composite predicted properties, we used the Autodesk Simulation 
software that enables to get the values of any specific composite mixture. We set all the 
required properties we found from the independent materials and calculate the mixture 
values. 
 
Later on, this properties were implemented in the SolidWorks simulation software willing to 
create a personalized composite as exactly defined by Autodesk. Some previous setup was 
required, such as, defining the material as linear orthotropic.  
 
Property  Value  Unit 
Elastic modulus X  20249300  psi 
Elastic modulus Y  1283260  psi 
Elastic modulus Z  1283260  psi 
Poisson coefficient XY  0.2522  ­ 
Poisson coefficient YZ  0.2522  ­ 
Poisson coefficient XZ  0.3611  ­ 
Shear modulus XY  657430  psi 
Shear modulus YZ  657430  psi 
Shear modulus XZ  493493  psi 
Mass density  0.06  lb/inch 
Tensile strength X  307190  psi 
Tensile strength Y  8749  psi 
Compression strength X  189796  psi 
Compression strength Y  31701.3  psi 
Shear strength XY  6118  psi 
Elastic strength  230000  psi 
 
❖ STRENGTH ANALYSIS 
 
In order to determine the number of layers to be used, we are going to do a strength 
analysis. Front load is going to be 580N according to a NASA experiment that shows the 
maximun force that a person is able to apply.The torsion of 120N*m as a requisite of the 
FSAE specifications. to Stress will vary depending on the number of layers used. To ensure 
that the steering wheel resists unexpected impacts, we are going to use a safety factor of 2. 
In other words, we are going to check that any point is not resisting more than half of the 
elastic limit. 
 
A number of 4 layers has been necessary, trying different angles. The most optimized 
combination of angles is +45º,­45º,­45º,+45º. 
 
The mesh used is the following: 
 
 
 
 
 
 
 
 
 
 
 
 
 The stresses distribution is the following: 
 
As we can see, the maximum stress obtained is 9.732*10^7 Pa. The elastic limit (Yield 
Strength) is 2*10^8. Roughly 2 times the maximum stress, respecting in this case the safety 
factor. 
 
 
The maximum deformation is less than 1 mm. Assuming that this variation is acceptable, we 
can determine that all the requirements has been accomplished. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
❖ FINAL DESIGN 
 
After all the research, creating and testing, we finally were able to design a steering wheel 
that meets all our objectives. Achieving weight, ergonomics, and FSAE rules among others. 
 
These are the main specifications: 
 
­ Hollow­body design 
­ Carbon Fiber composite material 
­ 350g (65% less than actual) 
­ 2mm thickness 
­ Ergonomic 
­ Upgradeable 
­ Accomplishes FSAE rules 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
● Conclusions and considerations 
 
 
We can take several conclusions for this project. As engineers we have to know how to 
manage not only our time, but also people. We need a good methodology to adjust the 
deadlines, to meet the requirements and in conclusion, to succeed. 
  
While this may seem obvious, this project really highlighted this points. As the first project of 
this characteristics for all of us, we had to spend time deciding how to coordinate and 
manage all the work to be done. Our advisor, Dr. Youssef, helped a lot in this project. As 
students that we still are, we found ourselves stuck in several occasions. Luckily, the theory 
learned during the lectures and the meetings with Dr. Youssef made us able to accomplish 
the overall design of the project.  
 
To summarize, this project didn’t only help us to learn about designing and analyzing, but 
also to learn how to manage a project since the beginning. We have learned the importance 
of having reliable sources to find information, the necessity of research and the value of 
time.  
 
The passion for this project and the will of learning, were the key to succeed. All the 
members of the team worked a lot on different specific areas. Helping each other and doing 
extra efforts for the rest of the teammates has been also determinant.  
 
We would like to thank the “Aztec Racing Team” for letting us be part of this great 
experience, Dr.Youssef for showing us the right path to accomplish our goals and Dr.Kee 
Moon for giving us tools to solve our challenges. 
 
 
 
 
 
 
● References 
 
○ 2015 Formula SAE® Rules 
○ Links:
■ http://www.f1technical.net/forum/viewtopic.php?t=14061
■ https://www.youtube.com/watch?v=71rJ5OMOKTY
■ https://www.youtube.com/watch?v=rKAzE1pbf1M
■ Pneumatic DRS Testing - 14/1/2013 on Vimeo
■ http://www.monashmotorsport.com/wp-content/uploads/ANSYS-Iss114.p
df
■ http://www.f1technical.net/forum/viewtopic.php?f=14&t=22303 
 
 
 
 
 
 
 
 
 
 
 
A Drag Reduction System developed for the Formula SAE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Manufacturing
Members 
 
 
 
Advisor 
 
 
 
 
 
 
 
 
 
George Youssef, Ph.D. 
Professor Mechanical Engineering 
 
 
 
 
Sponsors 
 
 
 
 
 
 
 
 
 
 
 
MECHANICS
The main difficulty of the drs mechanics part was manufacturing a precise and lightweight
structure and parts to accomplish the desired obtain ratios that where previously calculated
and forecasted to end up with the optimum open position. We have gone through a different
difficulties throughout the manufacturing which lead us to make small refinements for the
manufacturing part.
About the structure, we went through a small problem in our manufacturing for the brackets.
At first, we calculated the required parameters considering our material thickness and
properties which result on: Bend Allowance 0.57” and Minimum Bend Radius 0.32”. Having our
bracket process fully defined, we did our CAD drawings and export them to dfg format to cut
them in the waterjet. After having our cutted part ready we started with the bending
process. Assisted with help from the machine shop we realized that the bending machine was
not able to produce our desired bending parameters due to the lack of a tool measure. As a
result, bend Radius too small and bending separation too narrow forcing the fracture of the
part.
Facing this early problem on the manufacturing, we did a quick redesign for welding so we
could cut each brackets in 3 different pieces and weld them using the gap and avoiding the
bending problems.
The cutting and tolerance involved on the assembly were successful which took as to the
welding process. We used standard tungsten EDM electrodes to unify the three parts and after
finishing that with sand the junctions to ensure the surface quality.
The next step, was the glued area testing. Our purpose was testing the properties of 3M
adhesive between two materials of different nature. Carbon fiber samples were
manufactured to simulate wings surface as well as the aluminum samples. Using the tensile
testing machine located in the machine shop we get an outstanding performance of more that
10 times the force required for our drs application.
Testing results:
Shear resistance: 2500 lbs,
Requirements: 230 lbs
For the shaft size, drill size is dependent in the standarized tables. Having ¼ inch shafts
already purchased the drill size is defined on the standarized tables. The shaft were threaded
using ¼ inch 20 corse thread type on both sides of the shaft, leaving the middle section
smooth surface to contact the bearing inside ring.
Sideway picture of the wing. Bearings placed on rotation points. Pressure + Glue combination
method was used to ensure the total fixture of them. We built blocking nuts to lock
disassembly.
Drilling the spoilers was quite challenging due to the geometry of the latter made impossible
to use a fixture for machining. Knowing that the only chance was going for the craft method.
We used a custom made support to keep the drill straight during the whole stroke.
Parts disassembly
•Double sealed bearings
•Nuts
•Welded brackets
•4 x shafts: ¼ inch 20 thread.Threaded-smooth-
threaded sections
•Connecting rods
•Plastic spacers
ELECTRONICS
The goal of implementing an electronic system controlled by Arduino comes for several
reasons. Firstly, the linear actuator has a DC motor inside that provides the power to create
movement. We want to inverse the voltage when we want to change the position of the rear
wing and only electric devices can’t accomplish that in a simple way. Besides, the system is
also controlled by the brake, so we want to manage both inputs correctly with a program. And
last but not least, the Arduino allows keeping improving the system. It could be made
completely automatic with more inputs such as speed and turning sensors.
We have used the software 123d circuits from Arduino to create a digital model and try
different configurations and testing. The schematic view is the following.
As we can see we are using an Arduino micro and a motor driver. Specifically, it is an h-bridge.
The DC motor represents the linear actuator and the pushbuttons represent the inputs from
the steering wheel and brake.
The LED allows the driver to know the current position of the drag reduction system. The
resistor previous to it just limits the current that goes through the LED, protecting it from
overloads.
About the motor driver, in this scheme the model is L293D. However when we tested the
system, the current provided by this device was too low to move the actuator fast enough.
That’s why we changed it for a more potent version called L298.
L293D L298
The code for the Arduino is the following:
Testing Process
In order to save as much money as possible we started testing with a small DC motor, so we
make sure the most expensive devices are protected until we make sure the system works.
Once we figured out that the program worked exactly as we wanted we went ahead and
connect the linear actuator. A more powerful battery was necessary as well to provide enough
current.
Finally, we put the breadboard into a waterproof project box and we change the wires for
those which specifically fit the dimensions of the car. In order to make the steering wheel
detachable we used professional contacts.
Besides, the pushbutton in the brakes used for testing was changed for a pressure switch. This
makes the braking process more reliable to deactivate the system as soon as the driver
brakes.
STEERING WHEEL
The steering wheel work for the manufacturing semester was challenging. Our main objective
was to develop the process for efficiently fabricate the carbon fiber steering wheel
accomplishing all of our design requirements, such as a 60% of weight reduction, increase the
ergonomics and upgradeability. There were several steps to follow in order to end up with a
well fabricated product.
During the winter break we were able to improve the design of the whole steering wheel. We
refined the shape and managed to improve the Carbon Fibers layout in Solidworks to 5 layers
(15, 75,0,75,15 degrees) achieving a safety factor of 2.68.
Mold Design and Manufacturing
The steering wheel requires a two-piece mold to be manufactured in order to achieve the
hollow body we are aiming for. To do so, it is needed to design a CAD model of each mold and
create different CNC machining toolpaths.
The first step is to generate the CAD files of the molds. They are based on cutting the
Steering Wheel’s CAD in half with a specific “tangent cut” throughout the whole surface. This
is done in order to have all the surfaces of each mold going from perpendicular to parallel in
the direction of “pulling out”. Next we can see two pictures representing the mold’s surface.
Red is the portion of the surface that needs to be cut considering the “tangent cut”.
Green: Front side mold; Grey: Back side mold; Red: Portion that needs specific cut
Once the CAD files are designed, the next step is to generate the CNC Machining Toolpaths.
For this we used the integrated CAM software for Solidworks called HSM Works. This software
allows you to generate different kinds of “passes" around the 3D file and apply parameters
like speed of the tool spinning & moving, dimensions of the drill, material to be drilled,
height of steps, etc. To give an example, a higher speed of the drill makes it easier and safer
to remove material. But on the other hand, it can lead to overheat the material and start
deforming, so there is always compromise between the speeds, time and material. For this
design and the smooth surface we needed, we decided doing two passes, a rough one with a
½ inch standard tip drill and a second and slower for the finish with a rounded tip ¼ inch.
The material we used for the molds is a High Density Foam called RenShape 5045, with a
density of 30 lbs/ft3. This type of Foam is widely used for machining molds for small scale
objects due to its good mechanical properties and easiness to machine and prepare. The
machining time for each mold was 3-4 hours.
Preparing the Mold’s Surface
Next step is to prepare the surface, covering all the pores of the material itself and little
holes that the machining process left. For this, we used West Systems resin resources:
Epoxy Resin (covering pores), Fast and Slow Hardeners (resin catalysers), Microspheres (Fine
glass bubbles to cover holes and scratches), plastic cups and scrapers. The mixture ratio of
the resin is 5 part resin to 1 part hardener. Microspheres are added to give consistency
without increasing weight for the holes.
After applying 3-4 layers of resin and all the pores and holes are covered, sanding is required.
Handsanding with 500 grit paper will remove all the extra resin while leaving a scratchy
surface for a primer to be applied. The polymer based primer is applied in order to build a
thin layer of non stick material. After that, wetsanding by applying water to the mold and
using first 800 grit paper followed by 1200 grit for a smooth finish.
The last step for the surface preparation is to apply a chemical release agent so that the
carbon fibers and resin that will lay on top of it won’t stick to the mold and will be easy to
take out.
Carbon Fiber Layout and Bonding
Once the molds are prepared and ready to use, the carbon fiber layout is followed. Trying to
accomplish our layers direction and place, we managed to lay down the 5 layers of carbon
fiber mixed with resin at a 60% carbon - 40% resin ratio. Next step is to apply a foam material
as a “breather" and put both molds inside a vacuum bag. Vacuum is applied at 30 inHg while
breather soaks the extra resin. The resin needs to cure for as long as 48 hours preferably at a
temperature of 200-250 Fahrenheit degrees for this type of resin.
After the resin is cured, some strength is needed to pull the carbon fiber out of the mold.
Then, excess is trimmed and front and back sides are ready to be bonded together.
Finally bonding both sides together was a mind teaser. The aim was to create a “lip" in
between both sides that mimics the inside surface of each, so that it can be glued and
secured perfectly. To do so, we laid a carbon fiber lip around the inside and built a bag on
the inside too. Then we put the second half of the steering wheel on top and applied vacuum
in between the bag and the whole carbon fiber steering wheel so that the bag expands and
pushes the lip against the two.
The steering wheel at this point is completely manufactured. Below is a comparison between
the old and heavy metal frame steering wheel and our new carbon fiber one. We achieved an
improvement of 50% in weight with only 0.6lb. It improves ergonomic by being also
upgradable.
At the end we were able to complete this project on time, with great results. We had to try
different times to completely achieve our goals and we learned a lot about how to design and
manufacture an engineering project. We are proud of our results and hope we can apply our
learning from this whole project in the future.

Contenu connexe

Tendances

Ram jet propulsive engine
Ram jet propulsive engineRam jet propulsive engine
Ram jet propulsive enginejaimin kemkar
 
Power steering seminar report pdf download
Power steering seminar report pdf downloadPower steering seminar report pdf download
Power steering seminar report pdf downloadkiran555555
 
FORMULA ONE CARS.pptx
FORMULA ONE CARS.pptxFORMULA ONE CARS.pptx
FORMULA ONE CARS.pptxnirdeshmucha1
 
Flying cars presentation ppt
Flying cars presentation pptFlying cars presentation ppt
Flying cars presentation pptSudip Sikder
 
AIRCRAFT PROPULSION SYSTEM seminar report
AIRCRAFT PROPULSION SYSTEM seminar reportAIRCRAFT PROPULSION SYSTEM seminar report
AIRCRAFT PROPULSION SYSTEM seminar reportDeepak Singh
 
Design and Analysis of Crankshaft for Internal Combustion Engine
Design and Analysis of Crankshaft for Internal Combustion EngineDesign and Analysis of Crankshaft for Internal Combustion Engine
Design and Analysis of Crankshaft for Internal Combustion Engineijtsrd
 
Basics of vehicle aerodynamics
Basics of vehicle aerodynamicsBasics of vehicle aerodynamics
Basics of vehicle aerodynamicsRohit Verma
 
Supercharger ppt
Supercharger pptSupercharger ppt
Supercharger pptfiyghar.com
 
Final Year Paper-Designing the 2016 RMIT Aero Package - Hashan Mendis
Final Year Paper-Designing the 2016 RMIT Aero Package - Hashan MendisFinal Year Paper-Designing the 2016 RMIT Aero Package - Hashan Mendis
Final Year Paper-Designing the 2016 RMIT Aero Package - Hashan MendisHashan Mendis
 
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLEDESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLEDelwin CK
 
4- AUTOMOTIVE VERTICAL DYNAMICS (damping, shock, vibration, pitch & bounce, f...
4- AUTOMOTIVE VERTICAL DYNAMICS (damping, shock, vibration, pitch & bounce, f...4- AUTOMOTIVE VERTICAL DYNAMICS (damping, shock, vibration, pitch & bounce, f...
4- AUTOMOTIVE VERTICAL DYNAMICS (damping, shock, vibration, pitch & bounce, f...Brian Wiegand
 
SOLID ROCKET PROPULSION PPT ( SPACE SOLID ROCKET ).pptx
SOLID ROCKET PROPULSION PPT ( SPACE SOLID ROCKET ).pptxSOLID ROCKET PROPULSION PPT ( SPACE SOLID ROCKET ).pptx
SOLID ROCKET PROPULSION PPT ( SPACE SOLID ROCKET ).pptxAmarnathGhosh8
 
I.C. Engines / Turbocharger and-supercharger
I.C. Engines / Turbocharger and-superchargerI.C. Engines / Turbocharger and-supercharger
I.C. Engines / Turbocharger and-superchargerS.Shanmuga Sundaram
 

Tendances (20)

Ram jet propulsive engine
Ram jet propulsive engineRam jet propulsive engine
Ram jet propulsive engine
 
pulsejet
pulsejetpulsejet
pulsejet
 
Power steering seminar report pdf download
Power steering seminar report pdf downloadPower steering seminar report pdf download
Power steering seminar report pdf download
 
FORMULA ONE CARS.pptx
FORMULA ONE CARS.pptxFORMULA ONE CARS.pptx
FORMULA ONE CARS.pptx
 
Flying cars presentation ppt
Flying cars presentation pptFlying cars presentation ppt
Flying cars presentation ppt
 
AIRCRAFT PROPULSION SYSTEM seminar report
AIRCRAFT PROPULSION SYSTEM seminar reportAIRCRAFT PROPULSION SYSTEM seminar report
AIRCRAFT PROPULSION SYSTEM seminar report
 
Design and Analysis of Crankshaft for Internal Combustion Engine
Design and Analysis of Crankshaft for Internal Combustion EngineDesign and Analysis of Crankshaft for Internal Combustion Engine
Design and Analysis of Crankshaft for Internal Combustion Engine
 
Basics of vehicle aerodynamics
Basics of vehicle aerodynamicsBasics of vehicle aerodynamics
Basics of vehicle aerodynamics
 
Supercharger ppt
Supercharger pptSupercharger ppt
Supercharger ppt
 
Scramjet
ScramjetScramjet
Scramjet
 
Automobile ppt
Automobile pptAutomobile ppt
Automobile ppt
 
Final Year Paper-Designing the 2016 RMIT Aero Package - Hashan Mendis
Final Year Paper-Designing the 2016 RMIT Aero Package - Hashan MendisFinal Year Paper-Designing the 2016 RMIT Aero Package - Hashan Mendis
Final Year Paper-Designing the 2016 RMIT Aero Package - Hashan Mendis
 
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLEDESIGN & FABRICATION OF FOUR WHEEL  STEERED MULTI- UTILITY VEHICLE
DESIGN & FABRICATION OF FOUR WHEEL STEERED MULTI- UTILITY VEHICLE
 
Wankel engine
Wankel engineWankel engine
Wankel engine
 
4- AUTOMOTIVE VERTICAL DYNAMICS (damping, shock, vibration, pitch & bounce, f...
4- AUTOMOTIVE VERTICAL DYNAMICS (damping, shock, vibration, pitch & bounce, f...4- AUTOMOTIVE VERTICAL DYNAMICS (damping, shock, vibration, pitch & bounce, f...
4- AUTOMOTIVE VERTICAL DYNAMICS (damping, shock, vibration, pitch & bounce, f...
 
SOLID ROCKET PROPULSION PPT ( SPACE SOLID ROCKET ).pptx
SOLID ROCKET PROPULSION PPT ( SPACE SOLID ROCKET ).pptxSOLID ROCKET PROPULSION PPT ( SPACE SOLID ROCKET ).pptx
SOLID ROCKET PROPULSION PPT ( SPACE SOLID ROCKET ).pptx
 
Introduction to leaf spring
Introduction to leaf springIntroduction to leaf spring
Introduction to leaf spring
 
Engine Thesis
Engine ThesisEngine Thesis
Engine Thesis
 
I.C. Engines / Turbocharger and-supercharger
I.C. Engines / Turbocharger and-superchargerI.C. Engines / Turbocharger and-supercharger
I.C. Engines / Turbocharger and-supercharger
 
Flying Cars
Flying CarsFlying Cars
Flying Cars
 

Similaire à DRS Final Report

AlecMuller Resume
AlecMuller ResumeAlecMuller Resume
AlecMuller ResumeAlec Muller
 
Ojex juicer
Ojex juicerOjex juicer
Ojex juicerlittleu
 
Feldman Land Surveyors - Professional Surveyor Magazine. 3D Laser Scanning a ...
Feldman Land Surveyors - Professional Surveyor Magazine. 3D Laser Scanning a ...Feldman Land Surveyors - Professional Surveyor Magazine. 3D Laser Scanning a ...
Feldman Land Surveyors - Professional Surveyor Magazine. 3D Laser Scanning a ...FaldmanSurveyors
 
Design And Manufacturing Of Motorsports Vehicle
Design And Manufacturing Of Motorsports VehicleDesign And Manufacturing Of Motorsports Vehicle
Design And Manufacturing Of Motorsports VehicleIJERA Editor
 
Mechanical Engineering Portfolio - Max Ferguson
Mechanical Engineering Portfolio - Max FergusonMechanical Engineering Portfolio - Max Ferguson
Mechanical Engineering Portfolio - Max FergusonMax Ferguson
 
Design and Analysis of Go-Kart Chasis According to fsae Constrains
Design and Analysis of Go-Kart  Chasis According to fsae ConstrainsDesign and Analysis of Go-Kart  Chasis According to fsae Constrains
Design and Analysis of Go-Kart Chasis According to fsae ConstrainsIRJET Journal
 
Modeling & Simulation of Shock-Absorber Test Rig
Modeling & Simulation of Shock-Absorber Test RigModeling & Simulation of Shock-Absorber Test Rig
Modeling & Simulation of Shock-Absorber Test RigAnkit Kumar Dixit
 
Design Portfolio - Rev 7
Design Portfolio - Rev 7Design Portfolio - Rev 7
Design Portfolio - Rev 7James Le
 
Recent trends in internal
Recent trends in internalRecent trends in internal
Recent trends in internalasd2000
 
IRJET- A Review on Design & Analysis of All Terrain Vehicle Chassis
IRJET-  	  A Review on Design & Analysis of All Terrain Vehicle ChassisIRJET-  	  A Review on Design & Analysis of All Terrain Vehicle Chassis
IRJET- A Review on Design & Analysis of All Terrain Vehicle ChassisIRJET Journal
 
Alex_Rowe_Portfolio
Alex_Rowe_PortfolioAlex_Rowe_Portfolio
Alex_Rowe_PortfolioAlex Rowe
 
ANALYSIS AND OPTIMIZATION OF AN ALL TERRAIN VEHICLE (ATV)
ANALYSIS AND OPTIMIZATION OF AN ALL TERRAIN  VEHICLE (ATV)ANALYSIS AND OPTIMIZATION OF AN ALL TERRAIN  VEHICLE (ATV)
ANALYSIS AND OPTIMIZATION OF AN ALL TERRAIN VEHICLE (ATV)vivatechijri
 
Final Report RRV Senior Design
Final Report RRV Senior DesignFinal Report RRV Senior Design
Final Report RRV Senior DesignKristopher Saladin
 
All terrain vehicle fabrication.pptx
All terrain vehicle fabrication.pptxAll terrain vehicle fabrication.pptx
All terrain vehicle fabrication.pptxJiteshSingh71
 

Similaire à DRS Final Report (20)

AlecMuller Resume
AlecMuller ResumeAlecMuller Resume
AlecMuller Resume
 
Design summary
Design summaryDesign summary
Design summary
 
JUG Tour November 2017
JUG Tour November 2017JUG Tour November 2017
JUG Tour November 2017
 
Cal Poly Overview
Cal Poly OverviewCal Poly Overview
Cal Poly Overview
 
Ojex juicer
Ojex juicerOjex juicer
Ojex juicer
 
Portfolio
PortfolioPortfolio
Portfolio
 
Feldman Land Surveyors - Professional Surveyor Magazine. 3D Laser Scanning a ...
Feldman Land Surveyors - Professional Surveyor Magazine. 3D Laser Scanning a ...Feldman Land Surveyors - Professional Surveyor Magazine. 3D Laser Scanning a ...
Feldman Land Surveyors - Professional Surveyor Magazine. 3D Laser Scanning a ...
 
Design And Manufacturing Of Motorsports Vehicle
Design And Manufacturing Of Motorsports VehicleDesign And Manufacturing Of Motorsports Vehicle
Design And Manufacturing Of Motorsports Vehicle
 
Mechanical Engineering Portfolio - Max Ferguson
Mechanical Engineering Portfolio - Max FergusonMechanical Engineering Portfolio - Max Ferguson
Mechanical Engineering Portfolio - Max Ferguson
 
Design and Analysis of Go-Kart Chasis According to fsae Constrains
Design and Analysis of Go-Kart  Chasis According to fsae ConstrainsDesign and Analysis of Go-Kart  Chasis According to fsae Constrains
Design and Analysis of Go-Kart Chasis According to fsae Constrains
 
Modeling & Simulation of Shock-Absorber Test Rig
Modeling & Simulation of Shock-Absorber Test RigModeling & Simulation of Shock-Absorber Test Rig
Modeling & Simulation of Shock-Absorber Test Rig
 
Design Portfolio - Rev 7
Design Portfolio - Rev 7Design Portfolio - Rev 7
Design Portfolio - Rev 7
 
Recent trends in internal
Recent trends in internalRecent trends in internal
Recent trends in internal
 
IRJET- A Review on Design & Analysis of All Terrain Vehicle Chassis
IRJET-  	  A Review on Design & Analysis of All Terrain Vehicle ChassisIRJET-  	  A Review on Design & Analysis of All Terrain Vehicle Chassis
IRJET- A Review on Design & Analysis of All Terrain Vehicle Chassis
 
My Resume
My ResumeMy Resume
My Resume
 
20120140506011
2012014050601120120140506011
20120140506011
 
Alex_Rowe_Portfolio
Alex_Rowe_PortfolioAlex_Rowe_Portfolio
Alex_Rowe_Portfolio
 
ANALYSIS AND OPTIMIZATION OF AN ALL TERRAIN VEHICLE (ATV)
ANALYSIS AND OPTIMIZATION OF AN ALL TERRAIN  VEHICLE (ATV)ANALYSIS AND OPTIMIZATION OF AN ALL TERRAIN  VEHICLE (ATV)
ANALYSIS AND OPTIMIZATION OF AN ALL TERRAIN VEHICLE (ATV)
 
Final Report RRV Senior Design
Final Report RRV Senior DesignFinal Report RRV Senior Design
Final Report RRV Senior Design
 
All terrain vehicle fabrication.pptx
All terrain vehicle fabrication.pptxAll terrain vehicle fabrication.pptx
All terrain vehicle fabrication.pptx
 

DRS Final Report