SlideShare une entreprise Scribd logo
1  sur  38
Télécharger pour lire hors ligne
Optimizing Parallel Reduction in CUDA
Mark Harris
NVIDIA Developer Technology
2
Parallel Reduction
Common and important data parallel primitive
Easy to implement in CUDA
Harder to get it right
Serves as a great optimization example
We’ll walk step by step through 7 different versions
Demonstrates several important optimization strategies
3
Parallel Reduction
Tree-based approach used within each thread block
Need to be able to use multiple thread blocks
To process very large arrays
To keep all multiprocessors on the GPU busy
Each thread block reduces a portion of the array
But how do we communicate partial results between
thread blocks?
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4
Problem: Global Synchronization
If we could synchronize across all thread blocks, could easily
reduce very large arrays, right?
Global sync after each block produces its result
Once all blocks reach sync, continue recursively
But CUDA has no global synchronization. Why?
Expensive to build in hardware for GPUs with high processor
count
Would force programmer to run fewer blocks (no more than #
multiprocessors * # resident blocks / multiprocessor) to avoid
deadlock, which may reduce overall efficiency
Solution: decompose into multiple kernels
Kernel launch serves as a global synchronization point
Kernel launch has negligible HW overhead, low SW overhead
5
Solution: Kernel Decomposition
Avoid global sync by decomposing computation
into multiple kernel invocations
In the case of reductions, code for all levels is the
same
Recursive kernel invocation
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
4 7 5 9
11 14
25
3 1 7 0 4 1 6 3
Level 0:
8 blocks
Level 1:
1 block
// Already tried this
6
What is Our Optimization Goal?
We should strive to reach GPU peak performance
Choose the right metric:
GFLOP/s: for compute-bound kernels
Bandwidth: for memory-bound kernels
Reductions have very low arithmetic intensity
1 flop per element loaded (bandwidth-optimal)
Therefore we should strive for peak bandwidth
Will use G80 GPU for this example
384-bit memory interface, 900 MHz DDR
384 * 1800 / 8 = 86.4 GB/s
7
Reduction #1: Interleaved Addressing
__global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();
// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
8
Parallel Reduction: Interleaved Addressing
10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2
Values (shared memory)
0 2 4 6 8 10 12 14
11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2
Values
0 4 8 12
18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2
Values
0 8
24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2
Values
0
41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2
Values
Thread
IDs
Step 1
Stride 1
Step 2
Stride 2
Step 3
Stride 4
Step 4
Stride 8
Thread
IDs
Thread
IDs
Thread
IDs
9
Reduction #1: Interleaved Addressing
__global__ void reduce1(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
Problem: highly divergent
warps are very inefficient, and
% operator is very slow
10
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Note: Block Size = 128 threads for all tests
Bandwidth
Time (222 ints)
11
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;
if (index < blockDim.x) {
sdata[index] += sdata[index + s];
}
__syncthreads();
}
Reduction #2: Interleaved Addressing
Just replace divergent branch in inner loop:
With strided index and non-divergent branch:
12
Parallel Reduction: Interleaved Addressing
10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2
Values (shared memory)
0 1 2 3 4 5 6 7
11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2
Values
0 1 2 3
18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2
Values
0 1
24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2
Values
0
41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2
Values
Thread
IDs
Step 1
Stride 1
Step 2
Stride 2
Step 3
Stride 4
Step 4
Stride 8
Thread
IDs
Thread
IDs
Thread
IDs
New Problem: Shared Memory Bank Conflicts
13
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
14
Parallel Reduction: Sequential Addressing
10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2
Values (shared memory)
0 1 2 3 4 5 6 7
8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2
Values
0 1 2 3
8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2
Values
0 1
21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2
Values
0
41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2
Values
Thread
IDs
Step 1
Stride 8
Step 2
Stride 4
Step 3
Stride 2
Step 4
Stride 1
Thread
IDs
Thread
IDs
Thread
IDs
Sequential addressing is conflict free
15
for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;
if (index < blockDim.x) {
sdata[index] += sdata[index + s];
}
__syncthreads();
}
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
Reduction #3: Sequential Addressing
Just replace strided indexing in inner loop:
With reversed loop and threadID-based indexing:
// Already using this
16
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Kernel 3:
sequential addressing
1.722 ms 9.741 GB/s 2.01x 4.68x
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
Insert text here
17
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
Idle Threads
Problem:
Half of the threads are idle on first loop iteration!
This is wasteful…
18
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
Reduction #4: First Add During Load
Halve the number of blocks, and replace single load:
With two loads and first add of the reduction:
19
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Kernel 3:
sequential addressing
1.722 ms 9.741 GB/s 2.01x 4.68x
Kernel 4:
first add during global load
0.965 ms 17.377 GB/s 1.78x 8.34x
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
20
Instruction Bottleneck
At 17 GB/s, we’re far from bandwidth bound
And we know reduction has low arithmetic intensity
Therefore a likely bottleneck is instruction overhead
Ancillary instructions that are not loads, stores, or
arithmetic for the core computation
In other words: address arithmetic and loop overhead
Strategy: unroll loops
21
Unrolling the Last Warp
As reduction proceeds, # “active” threads decreases
When s <= 32, we have only one warp left
Instructions are SIMD synchronous within a warp
That means when s <= 32:
We don’t need to __syncthreads()
We don’t need “if (tid < s)” because it doesn’t save any
work
Let’s unroll the last 6 iterations of the inner loop
__device__ void warpReduce(volatile int* sdata, int tid) {
sdata[tid] += sdata[tid + 32];
sdata[tid] += sdata[tid + 16];
sdata[tid] += sdata[tid + 8];
sdata[tid] += sdata[tid + 4];
sdata[tid] += sdata[tid + 2];
sdata[tid] += sdata[tid + 1];
}
// later…
for (unsigned int s=blockDim.x/2; s>32; s>>=1) {
if (tid < s)
sdata[tid] += sdata[tid + s];
__syncthreads();
}
if (tid < 32) warpReduce(sdata, tid);
22
Reduction #5: Unroll the Last Warp
Note: This saves useless work in all warps, not just the last one!
Without unrolling, all warps execute every iteration of the for loop and if statement
IMPORTANT:
For this to be correct,
we must use the
“volatile” keyword!
23
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Kernel 3:
sequential addressing
1.722 ms 9.741 GB/s 2.01x 4.68x
Kernel 4:
first add during global load
0.965 ms 17.377 GB/s 1.78x 8.34x
Kernel 5:
unroll last warp
0.536 ms 31.289 GB/s 1.8x 15.01x
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
24
Complete Unrolling
If we knew the number of iterations at compile time,
we could completely unroll the reduction
Luckily, the block size is limited by the GPU to 512 threads
Also, we are sticking to power-of-2 block sizes
So we can easily unroll for a fixed block size
But we need to be generic – how can we unroll for block
sizes that we don’t know at compile time?
Templates to the rescue!
CUDA supports C++ template parameters on device and
host functions
25
Unrolling with Templates
Specify block size as a function template parameter:
template <unsigned int blockSize>
__global__ void reduce5(int *g_idata, int *g_odata)
26
Reduction #6: Completely Unrolled
if (blockSize >= 512) {
if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
if (blockSize >= 256) {
if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) {
if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }
if (tid < 32) warpReduce<blockSize>(sdata, tid);
Note: all code in RED will be evaluated at compile time.
Results in a very efficient inner loop!
Template <unsigned int blockSize>
__device__ void warpReduce(volatile int* sdata, int tid) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
27
Invoking Template Kernels
Don’t we still need block size at compile time?
Nope, just a switch statement for 10 possible block sizes:
switch (threads)
{
case 512:
reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 256:
reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 128:
reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 64:
reduce5< 64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 32:
reduce5< 32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 16:
reduce5< 16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 8:
reduce5< 8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 4:
reduce5< 4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 2:
reduce5< 2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 1:
reduce5< 1><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
}
28
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Kernel 3:
sequential addressing
1.722 ms 9.741 GB/s 2.01x 4.68x
Kernel 4:
first add during global load
0.965 ms 17.377 GB/s 1.78x 8.34x
Kernel 5:
unroll last warp
0.536 ms 31.289 GB/s 1.8x 15.01x
Kernel 6:
completely unrolled
0.381 ms 43.996 GB/s 1.41x 21.16x
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
29
Parallel Reduction Complexity
Log(N) parallel steps, each step S does N/2S
independent ops
Step Complexity is O(log N)
For N=2D, performs S[1..D]2D-S = N-1 operations
Work Complexity is O(N) – It is work-efficient
i.e. does not perform more operations than a sequential
algorithm
With P threads physically in parallel (P processors),
time complexity is O(N/P + log N)
Compare to O(N) for sequential reduction
In a thread block, N=P, so O(log N)
30
What About Cost?
Cost of a parallel algorithm is processors time
complexity
Allocate threads instead of processors: O(N) threads
Time complexity is O(log N), so cost is O(N log N) : not
cost efficient!
Brent’s theorem suggests O(N/log N) threads
Each thread does O(log N) sequential work
Then all O(N/log N) threads cooperate for O(log N) steps
Cost = O((N/log N) * log N) = O(N)  cost efficient
Sometimes called algorithm cascading
Can lead to significant speedups in practice
31
Algorithm Cascading
Combine sequential and parallel reduction
Each thread loads and sums multiple elements into
shared memory
Tree-based reduction in shared memory
Brent’s theorem says each thread should sum
O(log n) elements
i.e. 1024 or 2048 elements per block vs. 256
In my experience, beneficial to push it even further
Possibly better latency hiding with more work per thread
More threads per block reduces levels in tree of recursive
kernel invocations
High kernel launch overhead in last levels with few blocks
On G80, best perf with 64-256 blocks of 128 threads
1024-4096 elements per thread
32
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
Reduction #7: Multiple Adds / Thread
Replace load and add of two elements:
With a while loop to add as many as necessary:
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;
while (i < n) {
sdata[tid] += g_idata[i] + g_idata[i+blockSize];
i += gridSize;
}
__syncthreads();
33
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
Reduction #7: Multiple Adds / Thread
Replace load and add of two elements:
With a while loop to add as many as necessary:
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;
while (i < n) {
sdata[tid] += g_idata[i] + g_idata[i+blockSize];
i += gridSize;
}
__syncthreads();
Note: gridSize loop stride
to maintain coalescing!
34
Performance for 4M element reduction
Kernel 1:
interleaved addressing
with divergent branching
8.054 ms 2.083 GB/s
Kernel 2:
interleaved addressing
with bank conflicts
3.456 ms 4.854 GB/s 2.33x 2.33x
Kernel 3:
sequential addressing
1.722 ms 9.741 GB/s 2.01x 4.68x
Kernel 4:
first add during global load
0.965 ms 17.377 GB/s 1.78x 8.34x
Kernel 5:
unroll last warp
0.536 ms 31.289 GB/s 1.8x 15.01x
Kernel 6:
completely unrolled
0.381 ms 43.996 GB/s 1.41x 21.16x
Kernel 7:
multiple elements per thread
0.268 ms 62.671 GB/s 1.42x 30.04x
Kernel 7 on 32M elements: 73 GB/s!
Step
Speedup
Bandwidth
Time (222 ints)
Cumulative
Speedup
35
template <unsigned int blockSize>
__device__ void warpReduce(volatile int *sdata, unsigned int tid) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
template <unsigned int blockSize>
__global__ void reduce6(int *g_idata, int *g_odata, unsigned int n) {
extern __shared__ int sdata[];
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + tid;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;
while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }
__syncthreads();
if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }
if (tid < 32) warpReduce(sdata, tid);
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
Final Optimized Kernel
// I guess for global memory, 2 loads in 1 loop good enough
// For shared memory, better load as mush as possible at once (near instruction bottleneck)
36
Performance Comparison
0.01
0.1
1
10
131072
262144
524288
1048576
2097152
4194304
8388608
16777216
33554432
# Elements
Time
(ms)
1: Interleaved Addressing:
Divergent Branches
2: Interleaved Addressing:
Bank Conflicts
3: Sequential Addressing
4: First add during global
load
5: Unroll last warp
6: Completely unroll
7: Multiple elements per
thread (max 64 blocks)
37
Types of optimization
Interesting observation:
Algorithmic optimizations
Changes to addressing, algorithm cascading
11.84x speedup, combined!
Code optimizations
Loop unrolling
2.54x speedup, combined
38
Conclusion
Understand CUDA performance characteristics
Memory coalescing
Divergent branching
Bank conflicts
Latency hiding
Use peak performance metrics to guide optimization
Understand parallel algorithm complexity theory
Know how to identify type of bottleneck
e.g. memory, core computation, or instruction overhead
Optimize your algorithm, then unroll loops
Use template parameters to generate optimal code
Questions: mharris@nvidia.com

Contenu connexe

Tendances

Microarchitecture
MicroarchitectureMicroarchitecture
Microarchitecture
meashi
 
Arm teaching material
Arm teaching materialArm teaching material
Arm teaching material
John Williams
 
Assembly language programming
Assembly language programmingAssembly language programming
Assembly language programming
himhk
 

Tendances (20)

15CS44 MP &MC Module 3
15CS44 MP &MC Module 315CS44 MP &MC Module 3
15CS44 MP &MC Module 3
 
Clang: More than just a C/C++ Compiler
Clang: More than just a C/C++ CompilerClang: More than just a C/C++ Compiler
Clang: More than just a C/C++ Compiler
 
Design of Microwave oven using 8051 micro controller
Design of Microwave oven using 8051 micro controllerDesign of Microwave oven using 8051 micro controller
Design of Microwave oven using 8051 micro controller
 
Lec12 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- P6, Netbur...
Lec12 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- P6, Netbur...Lec12 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- P6, Netbur...
Lec12 Computer Architecture by Hsien-Hsin Sean Lee Georgia Tech -- P6, Netbur...
 
Microarchitecture
MicroarchitectureMicroarchitecture
Microarchitecture
 
Architecture of 80386(www.munnuz.co.cc)
Architecture of 80386(www.munnuz.co.cc)Architecture of 80386(www.munnuz.co.cc)
Architecture of 80386(www.munnuz.co.cc)
 
History of-microprocessors
History of-microprocessorsHistory of-microprocessors
History of-microprocessors
 
ARM Introduction
ARM IntroductionARM Introduction
ARM Introduction
 
Tic toc game presentation
Tic toc game presentationTic toc game presentation
Tic toc game presentation
 
Computer instruction
Computer instructionComputer instruction
Computer instruction
 
Lecture 15 Game Analytics in the Age of Big Data
Lecture 15 Game Analytics in the Age of Big DataLecture 15 Game Analytics in the Age of Big Data
Lecture 15 Game Analytics in the Age of Big Data
 
Arm teaching material
Arm teaching materialArm teaching material
Arm teaching material
 
Memory Reference Instructions
Memory Reference InstructionsMemory Reference Instructions
Memory Reference Instructions
 
Soğutucu gazlar ve özellikleri
Soğutucu gazlar ve özellikleriSoğutucu gazlar ve özellikleri
Soğutucu gazlar ve özellikleri
 
Assembly language programming
Assembly language programmingAssembly language programming
Assembly language programming
 
Direct X
Direct XDirect X
Direct X
 
flag register of 8086
flag register of 8086flag register of 8086
flag register of 8086
 
Android Tools for Qualcomm Snapdragon Processors
Android Tools for Qualcomm Snapdragon Processors Android Tools for Qualcomm Snapdragon Processors
Android Tools for Qualcomm Snapdragon Processors
 
Computer architecture the pentium architecture
Computer architecture the pentium architectureComputer architecture the pentium architecture
Computer architecture the pentium architecture
 
Introduction to Game Development
Introduction to Game DevelopmentIntroduction to Game Development
Introduction to Game Development
 

Similaire à Optimizing Parallel Reduction in CUDA : NOTES

An Introduction to CUDA-OpenCL - University.pptx
An Introduction to CUDA-OpenCL - University.pptxAn Introduction to CUDA-OpenCL - University.pptx
An Introduction to CUDA-OpenCL - University.pptx
AnirudhGarg35
 
Graphics processing uni computer archiecture
Graphics processing uni computer archiectureGraphics processing uni computer archiecture
Graphics processing uni computer archiecture
Haris456
 
Fatkulin presentation
Fatkulin presentationFatkulin presentation
Fatkulin presentation
Enkitec
 
002 - Introduction to CUDA Programming_1.ppt
002 - Introduction to CUDA Programming_1.ppt002 - Introduction to CUDA Programming_1.ppt
002 - Introduction to CUDA Programming_1.ppt
ceyifo9332
 
Csw2016 wheeler barksdale-gruskovnjak-execute_mypacket
Csw2016 wheeler barksdale-gruskovnjak-execute_mypacketCsw2016 wheeler barksdale-gruskovnjak-execute_mypacket
Csw2016 wheeler barksdale-gruskovnjak-execute_mypacket
CanSecWest
 

Similaire à Optimizing Parallel Reduction in CUDA : NOTES (20)

Reduction
ReductionReduction
Reduction
 
GPU-Accelerated Parallel Computing
GPU-Accelerated Parallel ComputingGPU-Accelerated Parallel Computing
GPU-Accelerated Parallel Computing
 
Gpu perf-presentation
Gpu perf-presentationGpu perf-presentation
Gpu perf-presentation
 
GPGPU Computation
GPGPU ComputationGPGPU Computation
GPGPU Computation
 
Adaptive Linear Solvers and Eigensolvers
Adaptive Linear Solvers and EigensolversAdaptive Linear Solvers and Eigensolvers
Adaptive Linear Solvers and Eigensolvers
 
Exploring Parallel Merging In GPU Based Systems Using CUDA C.
Exploring Parallel Merging In GPU Based Systems Using CUDA C.Exploring Parallel Merging In GPU Based Systems Using CUDA C.
Exploring Parallel Merging In GPU Based Systems Using CUDA C.
 
An Introduction to CUDA-OpenCL - University.pptx
An Introduction to CUDA-OpenCL - University.pptxAn Introduction to CUDA-OpenCL - University.pptx
An Introduction to CUDA-OpenCL - University.pptx
 
Graphics processing uni computer archiecture
Graphics processing uni computer archiectureGraphics processing uni computer archiecture
Graphics processing uni computer archiecture
 
Accelerating HPC Applications on NVIDIA GPUs with OpenACC
Accelerating HPC Applications on NVIDIA GPUs with OpenACCAccelerating HPC Applications on NVIDIA GPUs with OpenACC
Accelerating HPC Applications on NVIDIA GPUs with OpenACC
 
Speedrunning the Open Street Map osm2pgsql Loader
Speedrunning the Open Street Map osm2pgsql LoaderSpeedrunning the Open Street Map osm2pgsql Loader
Speedrunning the Open Street Map osm2pgsql Loader
 
Fatkulin presentation
Fatkulin presentationFatkulin presentation
Fatkulin presentation
 
Programar para GPUs
Programar para GPUsProgramar para GPUs
Programar para GPUs
 
002 - Introduction to CUDA Programming_1.ppt
002 - Introduction to CUDA Programming_1.ppt002 - Introduction to CUDA Programming_1.ppt
002 - Introduction to CUDA Programming_1.ppt
 
CUDA and Caffe for deep learning
CUDA and Caffe for deep learningCUDA and Caffe for deep learning
CUDA and Caffe for deep learning
 
Defense_Presentation
Defense_PresentationDefense_Presentation
Defense_Presentation
 
Csw2016 wheeler barksdale-gruskovnjak-execute_mypacket
Csw2016 wheeler barksdale-gruskovnjak-execute_mypacketCsw2016 wheeler barksdale-gruskovnjak-execute_mypacket
Csw2016 wheeler barksdale-gruskovnjak-execute_mypacket
 
RAPIDS: ускоряем Pandas и scikit-learn на GPU Павел Клеменков, NVidia
RAPIDS: ускоряем Pandas и scikit-learn на GPU  Павел Клеменков, NVidiaRAPIDS: ускоряем Pandas и scikit-learn на GPU  Павел Клеменков, NVidia
RAPIDS: ускоряем Pandas и scikit-learn на GPU Павел Клеменков, NVidia
 
Js2517181724
Js2517181724Js2517181724
Js2517181724
 
Js2517181724
Js2517181724Js2517181724
Js2517181724
 
Lecture 04
Lecture 04Lecture 04
Lecture 04
 

Plus de Subhajit Sahu

DyGraph: A Dynamic Graph Generator and Benchmark Suite : NOTES
DyGraph: A Dynamic Graph Generator and Benchmark Suite : NOTESDyGraph: A Dynamic Graph Generator and Benchmark Suite : NOTES
DyGraph: A Dynamic Graph Generator and Benchmark Suite : NOTES
Subhajit Sahu
 
A Dynamic Algorithm for Local Community Detection in Graphs : NOTES
A Dynamic Algorithm for Local Community Detection in Graphs : NOTESA Dynamic Algorithm for Local Community Detection in Graphs : NOTES
A Dynamic Algorithm for Local Community Detection in Graphs : NOTES
Subhajit Sahu
 
Scalable Static and Dynamic Community Detection Using Grappolo : NOTES
Scalable Static and Dynamic Community Detection Using Grappolo : NOTESScalable Static and Dynamic Community Detection Using Grappolo : NOTES
Scalable Static and Dynamic Community Detection Using Grappolo : NOTES
Subhajit Sahu
 
Application Areas of Community Detection: A Review : NOTES
Application Areas of Community Detection: A Review : NOTESApplication Areas of Community Detection: A Review : NOTES
Application Areas of Community Detection: A Review : NOTES
Subhajit Sahu
 
Community Detection on the GPU : NOTES
Community Detection on the GPU : NOTESCommunity Detection on the GPU : NOTES
Community Detection on the GPU : NOTES
Subhajit Sahu
 
Dynamic Batch Parallel Algorithms for Updating Pagerank : SLIDES
Dynamic Batch Parallel Algorithms for Updating Pagerank : SLIDESDynamic Batch Parallel Algorithms for Updating Pagerank : SLIDES
Dynamic Batch Parallel Algorithms for Updating Pagerank : SLIDES
Subhajit Sahu
 

Plus de Subhajit Sahu (20)

DyGraph: A Dynamic Graph Generator and Benchmark Suite : NOTES
DyGraph: A Dynamic Graph Generator and Benchmark Suite : NOTESDyGraph: A Dynamic Graph Generator and Benchmark Suite : NOTES
DyGraph: A Dynamic Graph Generator and Benchmark Suite : NOTES
 
Shared memory Parallelism (NOTES)
Shared memory Parallelism (NOTES)Shared memory Parallelism (NOTES)
Shared memory Parallelism (NOTES)
 
A Dynamic Algorithm for Local Community Detection in Graphs : NOTES
A Dynamic Algorithm for Local Community Detection in Graphs : NOTESA Dynamic Algorithm for Local Community Detection in Graphs : NOTES
A Dynamic Algorithm for Local Community Detection in Graphs : NOTES
 
Scalable Static and Dynamic Community Detection Using Grappolo : NOTES
Scalable Static and Dynamic Community Detection Using Grappolo : NOTESScalable Static and Dynamic Community Detection Using Grappolo : NOTES
Scalable Static and Dynamic Community Detection Using Grappolo : NOTES
 
Application Areas of Community Detection: A Review : NOTES
Application Areas of Community Detection: A Review : NOTESApplication Areas of Community Detection: A Review : NOTES
Application Areas of Community Detection: A Review : NOTES
 
Community Detection on the GPU : NOTES
Community Detection on the GPU : NOTESCommunity Detection on the GPU : NOTES
Community Detection on the GPU : NOTES
 
Survey for extra-child-process package : NOTES
Survey for extra-child-process package : NOTESSurvey for extra-child-process package : NOTES
Survey for extra-child-process package : NOTES
 
Dynamic Batch Parallel Algorithms for Updating PageRank : POSTER
Dynamic Batch Parallel Algorithms for Updating PageRank : POSTERDynamic Batch Parallel Algorithms for Updating PageRank : POSTER
Dynamic Batch Parallel Algorithms for Updating PageRank : POSTER
 
Abstract for IPDPS 2022 PhD Forum on Dynamic Batch Parallel Algorithms for Up...
Abstract for IPDPS 2022 PhD Forum on Dynamic Batch Parallel Algorithms for Up...Abstract for IPDPS 2022 PhD Forum on Dynamic Batch Parallel Algorithms for Up...
Abstract for IPDPS 2022 PhD Forum on Dynamic Batch Parallel Algorithms for Up...
 
Fast Incremental Community Detection on Dynamic Graphs : NOTES
Fast Incremental Community Detection on Dynamic Graphs : NOTESFast Incremental Community Detection on Dynamic Graphs : NOTES
Fast Incremental Community Detection on Dynamic Graphs : NOTES
 
Can you fix farming by going back 8000 years : NOTES
Can you fix farming by going back 8000 years : NOTESCan you fix farming by going back 8000 years : NOTES
Can you fix farming by going back 8000 years : NOTES
 
HITS algorithm : NOTES
HITS algorithm : NOTESHITS algorithm : NOTES
HITS algorithm : NOTES
 
Basic Computer Architecture and the Case for GPUs : NOTES
Basic Computer Architecture and the Case for GPUs : NOTESBasic Computer Architecture and the Case for GPUs : NOTES
Basic Computer Architecture and the Case for GPUs : NOTES
 
Dynamic Batch Parallel Algorithms for Updating Pagerank : SLIDES
Dynamic Batch Parallel Algorithms for Updating Pagerank : SLIDESDynamic Batch Parallel Algorithms for Updating Pagerank : SLIDES
Dynamic Batch Parallel Algorithms for Updating Pagerank : SLIDES
 
Are Satellites Covered in Gold Foil : NOTES
Are Satellites Covered in Gold Foil : NOTESAre Satellites Covered in Gold Foil : NOTES
Are Satellites Covered in Gold Foil : NOTES
 
Taxation for Traders < Markets and Taxation : NOTES
Taxation for Traders < Markets and Taxation : NOTESTaxation for Traders < Markets and Taxation : NOTES
Taxation for Traders < Markets and Taxation : NOTES
 
A Generalization of the PageRank Algorithm : NOTES
A Generalization of the PageRank Algorithm : NOTESA Generalization of the PageRank Algorithm : NOTES
A Generalization of the PageRank Algorithm : NOTES
 
ApproxBioWear: Approximating Additions for Efficient Biomedical Wearable Comp...
ApproxBioWear: Approximating Additions for Efficient Biomedical Wearable Comp...ApproxBioWear: Approximating Additions for Efficient Biomedical Wearable Comp...
ApproxBioWear: Approximating Additions for Efficient Biomedical Wearable Comp...
 
Income Tax Calender 2021 (ITD) : NOTES
Income Tax Calender 2021 (ITD) : NOTESIncome Tax Calender 2021 (ITD) : NOTES
Income Tax Calender 2021 (ITD) : NOTES
 
Youngistaan Foundation: Annual Report 2020-21 : NOTES
Youngistaan Foundation: Annual Report 2020-21 : NOTESYoungistaan Foundation: Annual Report 2020-21 : NOTES
Youngistaan Foundation: Annual Report 2020-21 : NOTES
 

Dernier

(👉Ridhima)👉VIP Model Call Girls Mulund ( Mumbai) Call ON 9967824496 Starting ...
(👉Ridhima)👉VIP Model Call Girls Mulund ( Mumbai) Call ON 9967824496 Starting ...(👉Ridhima)👉VIP Model Call Girls Mulund ( Mumbai) Call ON 9967824496 Starting ...
(👉Ridhima)👉VIP Model Call Girls Mulund ( Mumbai) Call ON 9967824496 Starting ...
motiram463
 
Vip Mumbai Call Girls Andheri East Call On 9920725232 With Body to body massa...
Vip Mumbai Call Girls Andheri East Call On 9920725232 With Body to body massa...Vip Mumbai Call Girls Andheri East Call On 9920725232 With Body to body massa...
Vip Mumbai Call Girls Andheri East Call On 9920725232 With Body to body massa...
amitlee9823
 
CHEAP Call Girls in Ashok Nagar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Ashok Nagar  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Ashok Nagar  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Ashok Nagar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
VIP Call Girls Dharwad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Dharwad 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Dharwad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Dharwad 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Girls Chickpet ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Chickpet ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Chickpet ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Chickpet ☎ 7737669865☎ Book Your One night Stand (Bangalore)
amitlee9823
 
Escorts Service Arekere ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Arekere ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Arekere ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Arekere ☎ 7737669865☎ Book Your One night Stand (Bangalore)
amitlee9823
 
Vip Mumbai Call Girls Kalyan Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Kalyan Call On 9920725232 With Body to body massage wit...Vip Mumbai Call Girls Kalyan Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Kalyan Call On 9920725232 With Body to body massage wit...
amitlee9823
 
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
tufbav
 
Call Girls Banashankari Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Banashankari Just Call 👗 7737669865 👗 Top Class Call Girl Service ...Call Girls Banashankari Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Banashankari Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
amitlee9823
 

Dernier (20)

(👉Ridhima)👉VIP Model Call Girls Mulund ( Mumbai) Call ON 9967824496 Starting ...
(👉Ridhima)👉VIP Model Call Girls Mulund ( Mumbai) Call ON 9967824496 Starting ...(👉Ridhima)👉VIP Model Call Girls Mulund ( Mumbai) Call ON 9967824496 Starting ...
(👉Ridhima)👉VIP Model Call Girls Mulund ( Mumbai) Call ON 9967824496 Starting ...
 
Vip Mumbai Call Girls Andheri East Call On 9920725232 With Body to body massa...
Vip Mumbai Call Girls Andheri East Call On 9920725232 With Body to body massa...Vip Mumbai Call Girls Andheri East Call On 9920725232 With Body to body massa...
Vip Mumbai Call Girls Andheri East Call On 9920725232 With Body to body massa...
 
CHEAP Call Girls in Ashok Nagar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Ashok Nagar  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Ashok Nagar  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Ashok Nagar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Th...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Th...Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Th...
Pooja 9892124323, Call girls Services and Mumbai Escort Service Near Hotel Th...
 
VIP Call Girls Dharwad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Dharwad 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Dharwad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Dharwad 7001035870 Whatsapp Number, 24/07 Booking
 
Call Girls Chickpet ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Chickpet ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Chickpet ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Chickpet ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
Escorts Service Arekere ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Arekere ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Arekere ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Arekere ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
(=Towel) Dubai Call Girls O525547819 Call Girls In Dubai (Fav0r)
(=Towel) Dubai Call Girls O525547819 Call Girls In Dubai (Fav0r)(=Towel) Dubai Call Girls O525547819 Call Girls In Dubai (Fav0r)
(=Towel) Dubai Call Girls O525547819 Call Girls In Dubai (Fav0r)
 
VVIP Pune Call Girls Warje (7001035870) Pune Escorts Nearby with Complete Sat...
VVIP Pune Call Girls Warje (7001035870) Pune Escorts Nearby with Complete Sat...VVIP Pune Call Girls Warje (7001035870) Pune Escorts Nearby with Complete Sat...
VVIP Pune Call Girls Warje (7001035870) Pune Escorts Nearby with Complete Sat...
 
Vip Mumbai Call Girls Kalyan Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Kalyan Call On 9920725232 With Body to body massage wit...Vip Mumbai Call Girls Kalyan Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Kalyan Call On 9920725232 With Body to body massage wit...
 
SM-N975F esquematico completo - reparación.pdf
SM-N975F esquematico completo - reparación.pdfSM-N975F esquematico completo - reparación.pdf
SM-N975F esquematico completo - reparación.pdf
 
Call Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance Booking
 
(INDIRA) Call Girl Napur Call Now 8617697112 Napur Escorts 24x7
(INDIRA) Call Girl Napur Call Now 8617697112 Napur Escorts 24x7(INDIRA) Call Girl Napur Call Now 8617697112 Napur Escorts 24x7
(INDIRA) Call Girl Napur Call Now 8617697112 Napur Escorts 24x7
 
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
 
Call Girls Chikhali Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Chikhali Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Chikhali Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Chikhali Call Me 7737669865 Budget Friendly No Advance Booking
 
NO1 Verified Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi A...
NO1 Verified Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi A...NO1 Verified Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi A...
NO1 Verified Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi A...
 
Develop Keyboard Skill.pptx er power point
Develop Keyboard Skill.pptx er power pointDevelop Keyboard Skill.pptx er power point
Develop Keyboard Skill.pptx er power point
 
Top Rated Pune Call Girls Katraj ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...
Top Rated  Pune Call Girls Katraj ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...Top Rated  Pune Call Girls Katraj ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...
Top Rated Pune Call Girls Katraj ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...
 
Call Girls Banashankari Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Banashankari Just Call 👗 7737669865 👗 Top Class Call Girl Service ...Call Girls Banashankari Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Banashankari Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
 
Get Premium Pimple Saudagar Call Girls (8005736733) 24x7 Rate 15999 with A/c ...
Get Premium Pimple Saudagar Call Girls (8005736733) 24x7 Rate 15999 with A/c ...Get Premium Pimple Saudagar Call Girls (8005736733) 24x7 Rate 15999 with A/c ...
Get Premium Pimple Saudagar Call Girls (8005736733) 24x7 Rate 15999 with A/c ...
 

Optimizing Parallel Reduction in CUDA : NOTES

  • 1. Optimizing Parallel Reduction in CUDA Mark Harris NVIDIA Developer Technology
  • 2. 2 Parallel Reduction Common and important data parallel primitive Easy to implement in CUDA Harder to get it right Serves as a great optimization example We’ll walk step by step through 7 different versions Demonstrates several important optimization strategies
  • 3. 3 Parallel Reduction Tree-based approach used within each thread block Need to be able to use multiple thread blocks To process very large arrays To keep all multiprocessors on the GPU busy Each thread block reduces a portion of the array But how do we communicate partial results between thread blocks? 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3
  • 4. 4 Problem: Global Synchronization If we could synchronize across all thread blocks, could easily reduce very large arrays, right? Global sync after each block produces its result Once all blocks reach sync, continue recursively But CUDA has no global synchronization. Why? Expensive to build in hardware for GPUs with high processor count Would force programmer to run fewer blocks (no more than # multiprocessors * # resident blocks / multiprocessor) to avoid deadlock, which may reduce overall efficiency Solution: decompose into multiple kernels Kernel launch serves as a global synchronization point Kernel launch has negligible HW overhead, low SW overhead
  • 5. 5 Solution: Kernel Decomposition Avoid global sync by decomposing computation into multiple kernel invocations In the case of reductions, code for all levels is the same Recursive kernel invocation 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 4 7 5 9 11 14 25 3 1 7 0 4 1 6 3 Level 0: 8 blocks Level 1: 1 block // Already tried this
  • 6. 6 What is Our Optimization Goal? We should strive to reach GPU peak performance Choose the right metric: GFLOP/s: for compute-bound kernels Bandwidth: for memory-bound kernels Reductions have very low arithmetic intensity 1 flop per element loaded (bandwidth-optimal) Therefore we should strive for peak bandwidth Will use G80 GPU for this example 384-bit memory interface, 900 MHz DDR 384 * 1800 / 8 = 86.4 GB/s
  • 7. 7 Reduction #1: Interleaved Addressing __global__ void reduce0(int *g_idata, int *g_odata) { extern __shared__ int sdata[]; // each thread loads one element from global to shared mem unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; sdata[tid] = g_idata[i]; __syncthreads(); // do reduction in shared mem for(unsigned int s=1; s < blockDim.x; s *= 2) { if (tid % (2*s) == 0) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } // write result for this block to global mem if (tid == 0) g_odata[blockIdx.x] = sdata[0]; }
  • 8. 8 Parallel Reduction: Interleaved Addressing 10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 Values (shared memory) 0 2 4 6 8 10 12 14 11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2 Values 0 4 8 12 18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2 Values 0 8 24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 Values 0 41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 Values Thread IDs Step 1 Stride 1 Step 2 Stride 2 Step 3 Stride 4 Step 4 Stride 8 Thread IDs Thread IDs Thread IDs
  • 9. 9 Reduction #1: Interleaved Addressing __global__ void reduce1(int *g_idata, int *g_odata) { extern __shared__ int sdata[]; // each thread loads one element from global to shared mem unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; sdata[tid] = g_idata[i]; __syncthreads(); // do reduction in shared mem for (unsigned int s=1; s < blockDim.x; s *= 2) { if (tid % (2*s) == 0) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } // write result for this block to global mem if (tid == 0) g_odata[blockIdx.x] = sdata[0]; } Problem: highly divergent warps are very inefficient, and % operator is very slow
  • 10. 10 Performance for 4M element reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Note: Block Size = 128 threads for all tests Bandwidth Time (222 ints)
  • 11. 11 for (unsigned int s=1; s < blockDim.x; s *= 2) { if (tid % (2*s) == 0) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } for (unsigned int s=1; s < blockDim.x; s *= 2) { int index = 2 * s * tid; if (index < blockDim.x) { sdata[index] += sdata[index + s]; } __syncthreads(); } Reduction #2: Interleaved Addressing Just replace divergent branch in inner loop: With strided index and non-divergent branch:
  • 12. 12 Parallel Reduction: Interleaved Addressing 10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 Values (shared memory) 0 1 2 3 4 5 6 7 11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2 Values 0 1 2 3 18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2 Values 0 1 24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 Values 0 41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 Values Thread IDs Step 1 Stride 1 Step 2 Stride 2 Step 3 Stride 4 Step 4 Stride 8 Thread IDs Thread IDs Thread IDs New Problem: Shared Memory Bank Conflicts
  • 13. 13 Performance for 4M element reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Step Speedup Bandwidth Time (222 ints) Cumulative Speedup
  • 14. 14 Parallel Reduction: Sequential Addressing 10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 Values (shared memory) 0 1 2 3 4 5 6 7 8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2 Values 0 1 2 3 8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2 Values 0 1 21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2 Values 0 41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2 Values Thread IDs Step 1 Stride 8 Step 2 Stride 4 Step 3 Stride 2 Step 4 Stride 1 Thread IDs Thread IDs Thread IDs Sequential addressing is conflict free
  • 15. 15 for (unsigned int s=1; s < blockDim.x; s *= 2) { int index = 2 * s * tid; if (index < blockDim.x) { sdata[index] += sdata[index + s]; } __syncthreads(); } for (unsigned int s=blockDim.x/2; s>0; s>>=1) { if (tid < s) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } Reduction #3: Sequential Addressing Just replace strided indexing in inner loop: With reversed loop and threadID-based indexing: // Already using this
  • 16. 16 Performance for 4M element reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Kernel 3: sequential addressing 1.722 ms 9.741 GB/s 2.01x 4.68x Step Speedup Bandwidth Time (222 ints) Cumulative Speedup Insert text here
  • 17. 17 for (unsigned int s=blockDim.x/2; s>0; s>>=1) { if (tid < s) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } Idle Threads Problem: Half of the threads are idle on first loop iteration! This is wasteful…
  • 18. 18 // each thread loads one element from global to shared mem unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; sdata[tid] = g_idata[i]; __syncthreads(); // perform first level of reduction, // reading from global memory, writing to shared memory unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x; sdata[tid] = g_idata[i] + g_idata[i+blockDim.x]; __syncthreads(); Reduction #4: First Add During Load Halve the number of blocks, and replace single load: With two loads and first add of the reduction:
  • 19. 19 Performance for 4M element reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Kernel 3: sequential addressing 1.722 ms 9.741 GB/s 2.01x 4.68x Kernel 4: first add during global load 0.965 ms 17.377 GB/s 1.78x 8.34x Step Speedup Bandwidth Time (222 ints) Cumulative Speedup
  • 20. 20 Instruction Bottleneck At 17 GB/s, we’re far from bandwidth bound And we know reduction has low arithmetic intensity Therefore a likely bottleneck is instruction overhead Ancillary instructions that are not loads, stores, or arithmetic for the core computation In other words: address arithmetic and loop overhead Strategy: unroll loops
  • 21. 21 Unrolling the Last Warp As reduction proceeds, # “active” threads decreases When s <= 32, we have only one warp left Instructions are SIMD synchronous within a warp That means when s <= 32: We don’t need to __syncthreads() We don’t need “if (tid < s)” because it doesn’t save any work Let’s unroll the last 6 iterations of the inner loop
  • 22. __device__ void warpReduce(volatile int* sdata, int tid) { sdata[tid] += sdata[tid + 32]; sdata[tid] += sdata[tid + 16]; sdata[tid] += sdata[tid + 8]; sdata[tid] += sdata[tid + 4]; sdata[tid] += sdata[tid + 2]; sdata[tid] += sdata[tid + 1]; } // later… for (unsigned int s=blockDim.x/2; s>32; s>>=1) { if (tid < s) sdata[tid] += sdata[tid + s]; __syncthreads(); } if (tid < 32) warpReduce(sdata, tid); 22 Reduction #5: Unroll the Last Warp Note: This saves useless work in all warps, not just the last one! Without unrolling, all warps execute every iteration of the for loop and if statement IMPORTANT: For this to be correct, we must use the “volatile” keyword!
  • 23. 23 Performance for 4M element reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Kernel 3: sequential addressing 1.722 ms 9.741 GB/s 2.01x 4.68x Kernel 4: first add during global load 0.965 ms 17.377 GB/s 1.78x 8.34x Kernel 5: unroll last warp 0.536 ms 31.289 GB/s 1.8x 15.01x Step Speedup Bandwidth Time (222 ints) Cumulative Speedup
  • 24. 24 Complete Unrolling If we knew the number of iterations at compile time, we could completely unroll the reduction Luckily, the block size is limited by the GPU to 512 threads Also, we are sticking to power-of-2 block sizes So we can easily unroll for a fixed block size But we need to be generic – how can we unroll for block sizes that we don’t know at compile time? Templates to the rescue! CUDA supports C++ template parameters on device and host functions
  • 25. 25 Unrolling with Templates Specify block size as a function template parameter: template <unsigned int blockSize> __global__ void reduce5(int *g_idata, int *g_odata)
  • 26. 26 Reduction #6: Completely Unrolled if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); } if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); } if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); } if (tid < 32) warpReduce<blockSize>(sdata, tid); Note: all code in RED will be evaluated at compile time. Results in a very efficient inner loop! Template <unsigned int blockSize> __device__ void warpReduce(volatile int* sdata, int tid) { if (blockSize >= 64) sdata[tid] += sdata[tid + 32]; if (blockSize >= 32) sdata[tid] += sdata[tid + 16]; if (blockSize >= 16) sdata[tid] += sdata[tid + 8]; if (blockSize >= 8) sdata[tid] += sdata[tid + 4]; if (blockSize >= 4) sdata[tid] += sdata[tid + 2]; if (blockSize >= 2) sdata[tid] += sdata[tid + 1]; }
  • 27. 27 Invoking Template Kernels Don’t we still need block size at compile time? Nope, just a switch statement for 10 possible block sizes: switch (threads) { case 512: reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 256: reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 128: reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 64: reduce5< 64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 32: reduce5< 32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 16: reduce5< 16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 8: reduce5< 8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 4: reduce5< 4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 2: reduce5< 2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; case 1: reduce5< 1><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break; }
  • 28. 28 Performance for 4M element reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Kernel 3: sequential addressing 1.722 ms 9.741 GB/s 2.01x 4.68x Kernel 4: first add during global load 0.965 ms 17.377 GB/s 1.78x 8.34x Kernel 5: unroll last warp 0.536 ms 31.289 GB/s 1.8x 15.01x Kernel 6: completely unrolled 0.381 ms 43.996 GB/s 1.41x 21.16x Step Speedup Bandwidth Time (222 ints) Cumulative Speedup
  • 29. 29 Parallel Reduction Complexity Log(N) parallel steps, each step S does N/2S independent ops Step Complexity is O(log N) For N=2D, performs S[1..D]2D-S = N-1 operations Work Complexity is O(N) – It is work-efficient i.e. does not perform more operations than a sequential algorithm With P threads physically in parallel (P processors), time complexity is O(N/P + log N) Compare to O(N) for sequential reduction In a thread block, N=P, so O(log N)
  • 30. 30 What About Cost? Cost of a parallel algorithm is processors time complexity Allocate threads instead of processors: O(N) threads Time complexity is O(log N), so cost is O(N log N) : not cost efficient! Brent’s theorem suggests O(N/log N) threads Each thread does O(log N) sequential work Then all O(N/log N) threads cooperate for O(log N) steps Cost = O((N/log N) * log N) = O(N)  cost efficient Sometimes called algorithm cascading Can lead to significant speedups in practice
  • 31. 31 Algorithm Cascading Combine sequential and parallel reduction Each thread loads and sums multiple elements into shared memory Tree-based reduction in shared memory Brent’s theorem says each thread should sum O(log n) elements i.e. 1024 or 2048 elements per block vs. 256 In my experience, beneficial to push it even further Possibly better latency hiding with more work per thread More threads per block reduces levels in tree of recursive kernel invocations High kernel launch overhead in last levels with few blocks On G80, best perf with 64-256 blocks of 128 threads 1024-4096 elements per thread
  • 32. 32 unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x; sdata[tid] = g_idata[i] + g_idata[i+blockDim.x]; __syncthreads(); Reduction #7: Multiple Adds / Thread Replace load and add of two elements: With a while loop to add as many as necessary: unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x; unsigned int gridSize = blockSize*2*gridDim.x; sdata[tid] = 0; while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; } __syncthreads();
  • 33. 33 unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x; sdata[tid] = g_idata[i] + g_idata[i+blockDim.x]; __syncthreads(); Reduction #7: Multiple Adds / Thread Replace load and add of two elements: With a while loop to add as many as necessary: unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x; unsigned int gridSize = blockSize*2*gridDim.x; sdata[tid] = 0; while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; } __syncthreads(); Note: gridSize loop stride to maintain coalescing!
  • 34. 34 Performance for 4M element reduction Kernel 1: interleaved addressing with divergent branching 8.054 ms 2.083 GB/s Kernel 2: interleaved addressing with bank conflicts 3.456 ms 4.854 GB/s 2.33x 2.33x Kernel 3: sequential addressing 1.722 ms 9.741 GB/s 2.01x 4.68x Kernel 4: first add during global load 0.965 ms 17.377 GB/s 1.78x 8.34x Kernel 5: unroll last warp 0.536 ms 31.289 GB/s 1.8x 15.01x Kernel 6: completely unrolled 0.381 ms 43.996 GB/s 1.41x 21.16x Kernel 7: multiple elements per thread 0.268 ms 62.671 GB/s 1.42x 30.04x Kernel 7 on 32M elements: 73 GB/s! Step Speedup Bandwidth Time (222 ints) Cumulative Speedup
  • 35. 35 template <unsigned int blockSize> __device__ void warpReduce(volatile int *sdata, unsigned int tid) { if (blockSize >= 64) sdata[tid] += sdata[tid + 32]; if (blockSize >= 32) sdata[tid] += sdata[tid + 16]; if (blockSize >= 16) sdata[tid] += sdata[tid + 8]; if (blockSize >= 8) sdata[tid] += sdata[tid + 4]; if (blockSize >= 4) sdata[tid] += sdata[tid + 2]; if (blockSize >= 2) sdata[tid] += sdata[tid + 1]; } template <unsigned int blockSize> __global__ void reduce6(int *g_idata, int *g_odata, unsigned int n) { extern __shared__ int sdata[]; unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*(blockSize*2) + tid; unsigned int gridSize = blockSize*2*gridDim.x; sdata[tid] = 0; while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; } __syncthreads(); if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); } if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); } if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); } if (tid < 32) warpReduce(sdata, tid); if (tid == 0) g_odata[blockIdx.x] = sdata[0]; } Final Optimized Kernel // I guess for global memory, 2 loads in 1 loop good enough // For shared memory, better load as mush as possible at once (near instruction bottleneck)
  • 36. 36 Performance Comparison 0.01 0.1 1 10 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 # Elements Time (ms) 1: Interleaved Addressing: Divergent Branches 2: Interleaved Addressing: Bank Conflicts 3: Sequential Addressing 4: First add during global load 5: Unroll last warp 6: Completely unroll 7: Multiple elements per thread (max 64 blocks)
  • 37. 37 Types of optimization Interesting observation: Algorithmic optimizations Changes to addressing, algorithm cascading 11.84x speedup, combined! Code optimizations Loop unrolling 2.54x speedup, combined
  • 38. 38 Conclusion Understand CUDA performance characteristics Memory coalescing Divergent branching Bank conflicts Latency hiding Use peak performance metrics to guide optimization Understand parallel algorithm complexity theory Know how to identify type of bottleneck e.g. memory, core computation, or instruction overhead Optimize your algorithm, then unroll loops Use template parameters to generate optimal code Questions: mharris@nvidia.com