SlideShare une entreprise Scribd logo
1  sur  45
Télécharger pour lire hors ligne
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Powered by
MPInterfaces & materialsweb
Richard	G.	Hennig,	University	of	Florida
MPInterfaces	-	High	throughput	framework	for	2D	materials
sulfur
16
S32.065
selenium
34
Se78.96
tellurium
52
Te127.60
platinum
78
Pt
195.08
tungsten
74
W
183.84
molybdenum
42
Mo95.96
chromium
24
Cr51.996
tantalum
73
Ta
180.95
niobium
41
Nb92.906
vanadium
23
V50.942
hafnium
72
Hf
178.49
zirconium
40
Zr91.224
titanium
22
Ti47.867
silicon
14
Si28.086
carbon
6
C12.011
oxygen
8
O15.999
zinc
30
Zn65.38
cadmium
48
Cd112.41
mercury
80
Hg
200.59
beryllium
4
Be9.0122
magnesium
12
Mg24.305
calcium
20
Ca40.078
phosphorus
15
P30.974
arsenic
33
As74.922
antinomy
51
Sb121.76
nitrogen
7
N14.007
aluminum
13
Al26.982
gallium
31
Ga69.723
indium
49
In114.82
boron
5
B10.811
germanium
32
Ge72.64
tin
50
Sn118.710
lead
82
Pb
207.2
GASP	-	Gene?c	algorithm

and	machine	learning

for	structure	predic?ons	
(b) 2D Pb-O System(a) 2D Sn-O System
0.0 0.2 0.4 0.6 0.8 1.0
O fraction
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.2
(i)
(ii)
(iii)
Pb O
2D GA
Bulk
0.0 0.2 0.4 0.6 0.8 1.0
O fraction
1.5
1.0
0.5
0.0
Enthalpy(eV/atom)
(i)
(ii)
(iii)
Sn O
2D GA
Bulk
Open	source	available	at	h-ps://github.com/henniggroup
Data	available	at	h-p://materialsweb.org	
VASPSol	-	Ab	ini?o	methods	
for	solid/liquid	interfaces
Solvated Water in DMC
Method Dielectric energy Cavitation energy Solvation energy
DFT -19 mHa
DMC -20(1) mHa
Classical DFT* 4.90 mHa
Classical DFT+DMC -15(1) mHa
Expt5 -10 mHa
5. T. Truong and E. Stefanovich, Chem. Phys. Lett. 240. 253 (1995).* Classical DFT from Ravishankar Sundararaman
Pathways	Towards	a	Hierarchical	Discovery	of	Materials
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Powered by
MPInterfaces & materialsweb
Richard	G.	Hennig,	University	of	Florida
MPInterfaces	-	High	throughput	framework	for	2D	materials
sulfur
16
S32.065
selenium
34
Se78.96
tellurium
52
Te127.60
platinum
78
Pt
195.08
tungsten
74
W
183.84
molybdenum
42
Mo95.96
chromium
24
Cr51.996
tantalum
73
Ta
180.95
niobium
41
Nb92.906
vanadium
23
V50.942
hafnium
72
Hf
178.49
zirconium
40
Zr91.224
titanium
22
Ti47.867
silicon
14
Si28.086
carbon
6
C12.011
oxygen
8
O15.999
zinc
30
Zn65.38
cadmium
48
Cd112.41
mercury
80
Hg
200.59
beryllium
4
Be9.0122
magnesium
12
Mg24.305
calcium
20
Ca40.078
phosphorus
15
P30.974
arsenic
33
As74.922
antinomy
51
Sb121.76
nitrogen
7
N14.007
aluminum
13
Al26.982
gallium
31
Ga69.723
indium
49
In114.82
boron
5
B10.811
germanium
32
Ge72.64
tin
50
Sn118.710
lead
82
Pb
207.2
GASP	-	Gene?c	algorithm

and	machine	learning

for	structure	predic?ons	
(b) 2D Pb-O System(a) 2D Sn-O System
0.0 0.2 0.4 0.6 0.8 1.0
O fraction
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.2
(i)
(ii)
(iii)
Pb O
2D GA
Bulk
0.0 0.2 0.4 0.6 0.8 1.0
O fraction
1.5
1.0
0.5
0.0
Enthalpy(eV/atom)
(i)
(ii)
(iii)
Sn O
2D GA
Bulk
Open	source	available	at	h-ps://github.com/henniggroup
Data	available	at	h-p://materialsweb.org	
Search	for	materials	
• Materials	structure	and	microstructure	
• Thermodynamic	stability		
• Structure	searches	for	2D	materials	by

datamining,	chemical	subs?tu?on,

evolu?onary	algorithms,	machine	learning
Pathways	Towards	a	Hierarchical	Discovery	of	Materials
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Acknowledgment
• MPInterfaces	and	novel	2D	materials:	K.	Mathew,	A.	Singh,	M.	Ashton,	J.	Paul,	D.	Gluhovic,	H.	Zhuang,

J.	Gabriel,	M.	Blonsky,	M.	Johannes,	R.	Ramanathan,	R.	Duan,	Z.	Ziyu,	F.	Tavazza,	S.	SinnoQ,	D.	Stewart	
• GASP	gene?c	algorithm	and	machine	learning:	B.	Revard,	W.	Tipton,	A.	Yesupenko,	S.	Honrao,	S.	Xie,

A.	M.	Tan,	B.	Antonio	
• Financial	support	by	NSF,	DOE,	NIST	
• Computa?onal	resources:	HiPerGator@UF,	NSF	XSEDE,	and	Google	Cloud	PlaXorm
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Part	I:	Hierarchy	of	Materials	Structures
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Materials	Hierarchy	-	Structure	ClassificaXon
Acta	Cryst.	A48,	928	(1992)	
Long-range	order	present?	Measured	by	sharp	diffrac?on	peaks.
Yes
Crystal
No
Glassk =
nX
i=1
hia⇤
i
<latexit sha1_base64="iNkRgWQbNxgQAb2Yjad7nXc4efo=">AAACEnicbZBNS8MwHMZTX+d8q3r0EhyCXkYrgl4GA0E8TnAvsHYlzdItLElLkgqjFPwGXvwqXjwo4tWTN7+NWbeDbj4Q+PE8/5D8nzBhVGnH+baWlldW19ZLG+XNre2dXXtvv6XiVGLSxDGLZSdEijAqSFNTzUgnkQTxkJF2OLqa5O17IhWNxZ0eJ8TnaCBoRDHSxgrs08wLIzjKYQ16KuVBRmtu3hNwGFBYRKjnIaUDmgd2xak6heAiuDOogJkagf3l9WOcciI0Zkiprusk2s+Q1BQzkpe9VJEE4REakK5BgThRflaslMNj4/RhFEtzhIaF+/tGhrhSYx6aSY70UM1nE/O/rJvq6NLPqEhSTQSePhSlDOoYTvqBfSoJ1mxsAGFJzV8hHiKJsDYtlk0J7vzKi9A6q7pO1b09r9SvH6Z1lMAhOAInwAUXoA5uQAM0AQaP4Bm8gjfryXqx3q2P6eiSNavwAPyR9fkD7zGdbw==</latexit><latexit sha1_base64="iNkRgWQbNxgQAb2Yjad7nXc4efo=">AAACEnicbZBNS8MwHMZTX+d8q3r0EhyCXkYrgl4GA0E8TnAvsHYlzdItLElLkgqjFPwGXvwqXjwo4tWTN7+NWbeDbj4Q+PE8/5D8nzBhVGnH+baWlldW19ZLG+XNre2dXXtvv6XiVGLSxDGLZSdEijAqSFNTzUgnkQTxkJF2OLqa5O17IhWNxZ0eJ8TnaCBoRDHSxgrs08wLIzjKYQ16KuVBRmtu3hNwGFBYRKjnIaUDmgd2xak6heAiuDOogJkagf3l9WOcciI0Zkiprusk2s+Q1BQzkpe9VJEE4REakK5BgThRflaslMNj4/RhFEtzhIaF+/tGhrhSYx6aSY70UM1nE/O/rJvq6NLPqEhSTQSePhSlDOoYTvqBfSoJ1mxsAGFJzV8hHiKJsDYtlk0J7vzKi9A6q7pO1b09r9SvH6Z1lMAhOAInwAUXoA5uQAM0AQaP4Bm8gjfryXqx3q2P6eiSNavwAPyR9fkD7zGdbw==</latexit><latexit sha1_base64="iNkRgWQbNxgQAb2Yjad7nXc4efo=">AAACEnicbZBNS8MwHMZTX+d8q3r0EhyCXkYrgl4GA0E8TnAvsHYlzdItLElLkgqjFPwGXvwqXjwo4tWTN7+NWbeDbj4Q+PE8/5D8nzBhVGnH+baWlldW19ZLG+XNre2dXXtvv6XiVGLSxDGLZSdEijAqSFNTzUgnkQTxkJF2OLqa5O17IhWNxZ0eJ8TnaCBoRDHSxgrs08wLIzjKYQ16KuVBRmtu3hNwGFBYRKjnIaUDmgd2xak6heAiuDOogJkagf3l9WOcciI0Zkiprusk2s+Q1BQzkpe9VJEE4REakK5BgThRflaslMNj4/RhFEtzhIaF+/tGhrhSYx6aSY70UM1nE/O/rJvq6NLPqEhSTQSePhSlDOoYTvqBfSoJ1mxsAGFJzV8hHiKJsDYtlk0J7vzKi9A6q7pO1b09r9SvH6Z1lMAhOAInwAUXoA5uQAM0AQaP4Bm8gjfryXqx3q2P6eiSNavwAPyR9fkD7zGdbw==</latexit><latexit sha1_base64="iNkRgWQbNxgQAb2Yjad7nXc4efo=">AAACEnicbZBNS8MwHMZTX+d8q3r0EhyCXkYrgl4GA0E8TnAvsHYlzdItLElLkgqjFPwGXvwqXjwo4tWTN7+NWbeDbj4Q+PE8/5D8nzBhVGnH+baWlldW19ZLG+XNre2dXXtvv6XiVGLSxDGLZSdEijAqSFNTzUgnkQTxkJF2OLqa5O17IhWNxZ0eJ8TnaCBoRDHSxgrs08wLIzjKYQ16KuVBRmtu3hNwGFBYRKjnIaUDmgd2xak6heAiuDOogJkagf3l9WOcciI0Zkiprusk2s+Q1BQzkpe9VJEE4REakK5BgThRflaslMNj4/RhFEtzhIaF+/tGhrhSYx6aSY70UM1nE/O/rJvq6NLPqEhSTQSePhSlDOoYTvqBfSoJ1mxsAGFJzV8hHiKJsDYtlk0J7vzKi9A6q7pO1b09r9SvH6Z1lMAhOAInwAUXoA5uQAM0AQaP4Bm8gjfryXqx3q2P6eiSNavwAPyR9fkD7zGdbw==</latexit>
n=d
Periodic	crystal
n>d
Aperiodic	crystal
Forbidden

rota?ons
Yes
Quasicrystal
No
Incommensurate	crystal
• Lack	of	transla?onal	symmetry	complicates	methods	
• Concepts	of	unit	cell(s),	?lings,	laece	sites	
• Complica?on	due	to	par?al	occupancy	of	laece	sites
Structures	lacking	periodicity	require	new	computaXonal	methods.
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Materials	Hierarchy	-	Defects	by	Dimensionality
3D	-	Volume	defects	
Precipitates,	voids,	inclusions
0D	-	Point	defects	
present	in	thermodynamic	equilibrium
1D	-	Line	defects	
present	in	thermodynamic	equilibrium
Disloca?ons
Disclina?ons
2D	-	Area	defects	
Stacking	faults,	twin,	grain,

and	interface	boundaries,	surfaces
High-throughput	methods	for	1D	to	3D	defects	needed
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Materials	Hierarchy	-	Microstructure
Acta	Cryst.	A48,	928	(1992)	
We thus define microstructure as all the existing defects

in a material, which are not in thermodynamic equilibrium
(according to type, number, distribution, size, and shape).
Peter Haasen, Physical Metallurgy
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
• Combina?on	of	crystal/amorphous	structure,	point	defects,	and	microstructure	
• Microstructure	is	processing	dependent	
• Modelling	of	processing	requires

dimensionality	reducXons

	Opportunity	for	machine	learning	
• Issue	is	lack	of	good	data	and

objecXve	funcXons	
• Overcome	by	merging	Physics	and	AI?	
• Incorporate	knowledge	of	possible	phases

and	defects	requires	mul?scale	approaches	
• Opportunity	to	develop	and	use

defect	databases
Materials	Hierarchy	-	Microstructure
Acta	Cryst.	A48,	928	(1992)	
How	to	prodict	microstructures	from	phases,	defects,	and	processing?
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Part	II:	Materials	Energy	Landscapes
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Mixed	representaXon	of	materials	structure	space	(real	space	representaXon)	
Dimensionality	of	materials	structure	space	
• Determined	by	number	of	atoms:	3Natom	+	3	for	crystals,	3Natom	for	molecules	and	clusters	
Complexity	of	materials	structure	space	
• Exponen?al	increases	with	number	of	atoms	and	number	of	species	
• Reduced	by	space	and	point	group	symmetries
Materials	Structure	Space
Integer	variables:	
• Number	of	atoms	
• Atomic	species
Real	variables:	
• Atom	posi?ons	
• Laece	parameters	(for	crystalline	structures)
Energy	landscape	space	has	conXnues	and	integer	variables
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
ComputaXonal	structure	predicXon	based	on	opXmizaXon	
• Stable	structure	at	(p,	T)	 	Lowest	Gibbs	free	energy,	G(p,	T)	=	E(V,	S)	–	TS	+	pV	
• Gibbs	free	energy	of	a	structure	is	an	integral	over	the	basin	of	the	local	minimum	
- Expensive	to	calculate	
- Difficult	to	explore

due	to	discon?nui?es	
- Can	contain	minima	not	present

in	the	energy	landscape	
• No	similar	objec?ve	func?on	exists

for	microstructure,	which	is

processing	path	dependent
Minimum	Gibbs	Free	Energy	Principle
Structure
Energy
G
E
Free	energy	landscape	space	is	disconXnuous	and	difficult	to	search
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
ComputaXonal	structure	predicXon	based	on	energy	minimizaXon	
• Combined	op?miza?on	over	real	and	integer	variables	
• For	mul?-component	materials,	we	need	to	consider

stability	against	compe?ng	phases	
➡	Concept	of	convex	hull
Minimum	Energy	Principle
00.2 0.4 0.6 0.81
Zr Fraction, XZr
-0.20
-0.15
-0.10
-0.05
0.00
FormationEnergy
E0
ZrCu
• Density-func?onal	theory	offers	balance	of	speed	and	accuracy	
• Pseudopoten?als	and	plane-wave	basis	(VASP)
InterpolaXve	
(Semi-)empirical	methods
ExtrapolaXve	and	predicXve	
First-principles	or	ab-ini7o	methods
Structure	for	mulX-component	materials	requires	knowledge	of	compeXng	phases
Energy	methods
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Bell–Evans–Polanyi	principle	
• Highly	exothermic	chemical	reac?ons	have	low	ac?va?on	energies	
• Low-energy	basins	are	expected	to	occur

near	other	low-energy	basins	
• These	regions	are	referred	to	as	‘funnels’
General	Features	of	the	Energy	Landscape
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Probability	distribuXon	of	energies	of	local	minima	
• Basins	with	lower-energy	minima	have	larger	hyper-volumes	
• Related	to	similar	elas?c	constants	and	

vibra?onal	frequencies	for	different	structures	
• Power	law	probability	distribu?on	of	these

hyper-volumes	
• Order	in	the	arrangement	of	basins

of	different	sizes	
• Smaller	basins	filling	gaps

between	larger	ones
General	Features	of	the	Energy	Landscape
For each system, we ran two sets of simulations. First,
constant-temperature molecular dynamics was performed
and by regularly minimizing configurations generated along
the trajectory we obtained pmin͑E,T͒ and hence ⍀min͑E͒ ͑and
a Gaussian fit to it͒. We chose temperatures well above the
glass transition where equilibrium sampling of the liquid is
easy to obtain. Second, Metropolis Monte Carlo simulations
were performed on the transformed landscape, from which
pmin
trans
͑E,T͒ and hence A͑E͒ was obtained. As a check of the
sampling, pmin
trans
͑E,T͒ distributions were collected at several
temperatures. The resulting area distributions were in good
agreement, confirming the reliability of the approach.
In Fig. 3͑a͒, A͑E͒ is depicted for these three systems. In
agreement with our expectation that the deeper, more con-
nected minima should have larger basins of attraction, the
basin areas decrease very rapidly with increasing energy in
an approximately exponential manner. The probability distri-
butions for the hyperareas of the basins of attraction are il-
lustrated in Fig. 3͑b͒. It is apparent that the distributions
10
10
10
1
-1 -0.99 -0.98 -0.97 -0.96 -0.95 -0.94 -0.93
A/Amax
Emin−E /
BLJ
Dz−10
−5
−15
(a)
Si
(b)
BRIEF REPORTS PHYSICAL REVIEW E 75, 037101 ͑2007͒
Binary	Lennard-Jones
Amorphous	silicon
Dzugutov	liquids
Massen	&	Doye,	Phys.	Rev.	E	75,	037101	(2007)Searching	for	the	larger	basins	reduces	effecXve	dimensionality.
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
CorrelaXon	between	energy	and	symmetry	
• Low	(and	high)	energy	minima	tend	to	correspond	to	symmetrical	structures	
• High	symmetry	of	low-energy	minima	supported	by	the	ubiquity	of	crystals	
Example:	55-atom	Lennard-Jones	clusters	(D.	Wales	’98)	
																	Lowest	energy																Two	highest	energy
Symmetry	and	Structural	MoXfs
The	Rule	of	Parsimony:	“The	Number	of	essen7ally	different	kinds	
of	cons7tuents	in	a	crystal	tends	to	be	small.”	(Linus	Pauling	1929)
( )D.J. WalesrChemical Physics Letters 285 1998 330–336 335
Symmetry	further	reduces	problem	dimensionality.
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Frequency	of	Space	Groups
Space	Group Pnma P21/c Fm-3m Fd-3m
Frequency 7.4% 7.2% 5.6% 5.1%
Examples Fe3C,	CaTiO3 ZrO2 Cu C,	Cu2Mg
Inorganic	systems	show	different	space	group	frequencies	
• 67%	of	about	100,000	compounds	occur	in	only	24	space	groups
For	crystals	of	small	organic	molecules	
• 75%	of	about	30,000	compounds	occur	in	only	five	space	groups	
• 29	space	groups	only	have	one	entry	and	35	space	groups	none	at	all
Space	Group P21/c P-11 P212121 P21 C2/c
Frequency 36% 14% 12% 7% 7%
Some	space	groups	are	much	more	common	than	others	in	crystals
• Note:	bcc	is	not	among	one	of	the	top	24	space	groups
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Specific	Features	of	Energy	Landscapes
Chemical	consideraXons	
• Know	a	great	deal	about	the	chemistry	of	the	systems	we	study	
• Know	which	atomic	types	prefer	to	bond	to	one	another	
• Approximate	bond	lengths	
• Likely	coordina?on	numbers	of	the	atoms	
ResulXng	empirical	rules	
• Hume-Rothery	rules	
• Laves	rules	for	intermetallics	
• Pauling	rules	for	ionic	materials	
• Peefor	structure	maps

...
How	can	we	uXlize	this	informaXon	to	accelerate	structure	searches?
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Crystal	Structure	PredicXon	Methods
Limited	success	of	convenXonal	opXmizaXon	methods	
• Guess	of	structures	based	on	symmetry	and	chemistry	(trial-and-error)	
• Simulated	annealing	(molecular	dynamics,	cooling	from	high	temperature)	
Advances	in	opXmizaXon	methods:	
• Accelerated	molecular	dynamics,	Voter	et	al.	’97	
• Basin	hopping,	Wales	et	al.	
• Minima	hopping,	search	for	neighboring	minima,	Goedecker	’04	
• Metadynamics,	Parinello	et	al.	’02	
• Random	search,	randomly	sampling	phase	space,	Pickard	&	Needs	’06	
• EvoluXonary	algorithms

Genera?on	of	structures,	Bush	et	al.	’95,	Woodley	et	al.	’99,	Oganov	’06	
• ParXcle	Swarm	OpXmizaXon,	Ma	et	al.	’10	
• Datamining	of	structure	databases,	Ceder	et	al.
Configuration coordinate
3N dimensional
Energy
Molecular dynamics
Configuration coordinate
3N dimensional
Energy
Relaxation of random configurations
Mutation
Heredity
Extension	of	methods	to	defects	complicated	by	increased	complexity.
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Part	III:	Materials	Informa?cs	for	2D	Materials
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
H.	L.	Zhuang	and	RGH,	JOM	66,	366	(2014)	
Structure
ProperXes
Processing Performance
Materials
Selection
Structure
Properties
Processing
Data Mining
Structural Stability
Dynamic Stability
Optotelectronics
Substrates
Layered bulk materials
Formation Energy
Phonon Spectrum
Bandgap, Offsets,
Absorption, Excitons
Adsorption,
Strain, Doping
Genetic Algorithm
New Compositions
and Structures
Performance
Chemical Stability Pourbaix Diagrams
Electronic Devices
Energy Applications
I-V Characteristic
Carrier Mobility
Light conversion,
Catalytic Activity
Magnetism
Chemical Substitutions
Electrochemistry
Etching, Solutions
Domains, Critical T
Materials	InformaXcs	of	2D	Materials
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Structure	and	Stability	of	2D	Materials
• ClassificaXon	of	2D	materials	
• Criteria	for	stability	ΔEf	<	200	meV/atom	
• Methods	for	2D	materials	discovery	
‣ Datamining	for	exfolia?on	
‣ Evolu?onary	algorithm	searches	
‣ Chemical	subs?tu?ons	and	etching	
• Characteriza?on	of	2D	materials	
‣ Pourbaix	diagrams	
‣ Photocatalysis	
‣ 2D	half-metals	
‣ Spin-orbit	and	2D	magne?sm	
‣ Substrate	control	of	phase	stability
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
ClassificaXon	of	2D	Materials
C (Graphene) P (Phosphorene) 2H-MoS2
1T-MoS2
Litharge SnO Ti2
CO2
(MXene)
a) Crystalline 2D Materials c) Amorphous 2D SiO2
b) Quasicrystalline 2D
BaTiO3
DefiniXon:	A	2D	material	is	a	material	with	finite	thickness	in	one	dimension	
and	an	essenXally	infinite	extent	in	the	other	two	dimensions.
•Classifica?on	into	crystalline	and	amorphous	materials	(long-range	order)	
•2D	crystals	include	periodic	and	aperiodic	crystals	based	on	point	group	
•Aperiodic	2D	crystals	include	incommensurate	crystals	and	quasicrystals
Review	article:	Paul,	Hennig,	et	al.	J.	Phys.:	Cond.	Matter	2017	
Cockayne,	Mihalkovič,	Henley,	Phys.	Rev.	B	93,	020101(R)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Thermodynamic	Stability	of	2D	Materials
FormaXon	energy	
• Comparison	of	VASP	PAW	using	vdW-DF	optB88	
with	QMC	and	RPA	shows	accuracy	of	ΔEf	of

30	meV/atom1
Gf = G2D min
phases
G3D
approximated by Ef = E2D min
phases
E3D
2D	materials	are	metastable
• Energy	can	always	be	lowered	by	van

der	Waals	interac?ons	for	mul?-layers
StabilizaXon	by	substrates
• Substrates	used	to	nucleate	and	grow	2D	materials
• Stabiliza?on	through	physi-	and	chemisorp?on
ΔEf	<	200	meV/atom

for	free-standing

2D	materials
min	over	single	or	mixture	of	phases
1	T.	Björkman	et	al.,	Phys.	Rev.	Le-.	108,	235502	(2012).
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Structure	and	Stability	of	2D	Materials
• Classifica?on	of	2D	materials	
• Criteria	for	stability	ΔEf	<	200	meV/atom	
• Methods	for	2D	materials	discovery	
‣ Datamining	for	exfoliaXon	
‣ Chemical	subs?tu?ons	and	etching	
‣ Evolu?onary	algorithm	searches	
• Characteriza?on	of	2D	materials	
‣ Pourbaix	diagrams	
‣ Photocatalysis	
‣ 2D	half-metals	
‣ Spin-orbit	and	2D	magne?sm	
‣ Substrate	control	of	phase	stability
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Datamining	to	Discover	2D	Materials
from mpinterfaces.utils import
get_structure_type
layered = []
for s in structures:
if get_structure_type(s) ==
“layered”:
layered.append(s)
Ashton,	Paul,	Sinno-	&	Hennig.	Phys.	Rev.	Le-.	118,	106101	(2017)
h-ps://arxiv.org/abs/1610.07673	(2016)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Datamining	to	Discover	2D	Materials
from mpinterfaces.utils import
get_structure_type
layered = []
for s in structures:
if get_structure_type(s) ==
“layered”:
layered.append(s)
Hennig et al., arXiv:1610.07673 (10/2016)
Marzari et al., arXiv:1611.05234 (11/2017)
Cheon, Reed, et al., Nano Lett. (2/2017)
Ashton,	Paul,	Sinno-	&	Hennig.	Phys.	Rev.	Le-.	118,	106101	(2017)
h-ps://arxiv.org/abs/1610.07673	(2016)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
1	Björkman,	et	al.	Phys.	Rev.	Lett.	2012	
2	Lebègue,	et	al.	Phys.	Rev.	X	2013
Searching	for	Layered	Compounds
The	ideal	case Search	for	materials	with:
You’ll	find	about	100	layered	materials	in	the	ICSD1,2
•low	packing	fractions	
•gaps	along	c-axis
Reality
Gaps	along	other	axes High	packing	fractionsNo	planar	gaps	at	all Gaps	along	multiple	axis
a) Co2
NiO6
(mp-765906) b) V2
O5
(mp-25643)
c) Ge2
Te5
As2
(mp-14791) d) Li-WCl6
(mp-570512)
c
b
c
a
a) Co2
NiO6
(mp-765906) b) V2
O5
(mp-25643)
c) Ge2
Te5
As2
(mp-14791) d) Li-WCl6
(mp-570512)
c
b
c
b
c
b
c
a
a) Co2
NiO6
(mp-765906) b) V2
O5
(mp-25643)
c) Ge2
Te5
As2
(mp-14791) d) Li-WCl6
(mp-570512)
c
b
c
a
Co2NiO6	
mp-765906
V2O5	
mp-25643
a) Co2
NiO6
(mp-765906) b) V2
O5
(mp-25643)
c) Ge2
Te5
As2
(mp-14791) d) Li-WCl6
(mp-570512)
c
b
c
b
c
b
c
a
Ge2Te5As2	
mp-14791
Li-WCl6	
mp-570512
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
The	Topology	Scaling	Algorithm
Cluster	of	9	atoms
1×1×1	cellCo2NiO6	
mp-765906
2×2×2	cell
Cluster	of	36	atoms
N2	scaling	 	Layered	Material
Ashton,	Paul,	Sinnott	&	Hennig.	Phys.	Rev.	Lett.	118,	106101	(2017)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Layered	Materials	in	MaterialsProject
Layered	materials:	1,560	(2%)All	materials:	about	65,000
quinary (1.2%)unary (0.6%)
binary
ternary
quaternary
40.8%
10.1%
47.3%
quinary
other (1.2%)unary (0.7%)
binary
ternary
quaternary16.4%
7.8%
23.4%
50.5%
b) Compositional complexity of
layered materials (this work)
c) Compositional complexity of all
materials (Materials Project database)
ABC2
AB3
AB
ABC
AB2
Other
4.9%
7.8%
5.9%
11.8%
19.6%
50.0%
(a) Stoichiometries of 2D materials
)
y quinary
other (1.2%)unary (0.7%)
binary
ternary
quaternary16.4%
7.8%
23.4%
50.5%
c) Compositional complexity of all
materials (Materials Project database)
826/1560	have	unique	monolayers	and	are	nearly	stable	with	Ehull	<	50	meV/atom.	
IdenXfied	625	2D	materials	with	energy	below	150	meV/atom	
Binary	and	ternary	compounds	more	likely	to	be	layered.
Exfoliation	energy
Ashton,	Paul,	Sinnott	&	Hennig.	Phys.	Rev.	Lett.	118,	106101	(2017)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Online	Database:	hQps://materialsweb.org
Use	the	topology-scaling	algorithm	
on	your	own	structures
Browse	2D	materials
00765
Ashton,	Paul,	Sinnott	&	Hennig.	Phys.	Rev.	Lett.	118,	106101	(2017)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Online	Database:	hQps://materialsweb.org
Structural,	electronic	and	thermodynamic	
data	available	for	all	materials
Unique	crystal	structures	for	each	2D	material	
stoichiometry	in	the	DB
Ashton,	Paul,	Sinnott	&	Hennig.	Phys.	Rev.	Lett.	118,	106101	(2017)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Structure	Prototypes
mp-21405)
mp-27440)
p-2798)
mp-938)
p-2231)
Figure 6
b) P (mp-157)
a) C (mp-48)
d) Sb (mp-104)
e) Bi (mp-23152)
c) As (mp-158)
a) GaSe (mp-568263) b) GaS (mp-9889)
d) AuSe (mp-2793) e) BN (mp-604884)
m) CuI (mp-570136)
c) InSe (mp-21405)
g) AuBr (mp-505366)
j) CuBr (mp-22917) l) ZrCl (mp-27440)
o) SiP (mp-2798)
f) GeTe (mp-938)
n) TlF (mp-720)
h) SnSe (mp-8936)
k) CuTe (mp-20826)
i) SnS (mp-2231)
Figure 4 Figure 6
b) P (mp-157)
a) C (mp-48)
d) Sb (mp-104)
e) Bi (mp-23152)
c) As (mp-158)
Binary	A-B	2D	Materials
Elementary	2D	Materials
…
Ashton,	Paul,	Sinnott	&	Hennig.	Phys.	Rev.	Lett.	2017
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Using	Crystal	Structure	Templates
Ashton,	Paul,	Sinnott	&	Hennig.	Phys.	Rev.	Lett.	2017	
Unique	AB	crystal	structures Genetic	algorithms
Element	substitution
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Structure	and	Stability	of	2D	Materials
• Classifica?on	of	2D	materials	
• Criteria	for	stability	ΔEf	<	200	meV/atom	
• Methods	for	2D	materials	discovery	
‣ Datamining	for	exfolia?on	
‣ EvoluXonary	algorithm	searches	
‣ Chemical	subs?tu?ons	and	etching	
• Characteriza?on	of	2D	materials	
‣ Pourbaix	diagrams	
‣ Photocatalysis	
‣ 2D	half-metals	
‣ Spin-orbit	and	2D	magne?sm	
‣ Substrate	control	of	phase	stability
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
GeneXc	Algorithm	Search	for	2D	Materials
ModificaXon	for

0D,	1D,	2D	structure	search
h-ps://github.com/henniggroup/gasp-python	
W.	W.	Tipton,	RGH,	J.	Phys.:	Cond.	Ma-er	25,	495401	(2013)	
B.	C.	Revard,	W.	W.	Tipton,	A.	Yesypenko,	R.	G.	Hennig,	PRB	93,	054117	(2016)
Surface
Solvent or Vacuum
⇒+
Solvent or Vacuum
Begin
Create Pool from
Initial Population
No Yes
Create Initial
Population
Done!
Create Offspring
Organism
Pre-Evaluation
Development
Structure Relaxation and Energy
Evaluation with External Code
Post-Evaluation
Development
Convergence
Achieved?
Add Offspring
to Pool
Grand	canonical	geneXc	algorithm

Variable	number	of	atoms	and	composiXon
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
GeneXc	Algorithm	–	2D	Tin	and	Lead	Oxides
h-ps://github.com/henniggroup/gasp	
W.	W.	Tipton,	RGH,	J.	Phys.:	Cond.	Ma-er	25,	495401	(2013)	
B.	C.	Revard,	W.	W.	Tipton,	RGH,	Topics	in	Current	Chemistry	(2014)	
B.	C.	Revard,	W.	W.	Tipton,	A.	Yesypenko,	R.	G.	Hennig,	PRB	93,	054117	(2016)
(i) HB hexagonal
(ii) Litharge
(iii) 1T
ConfirmaXon	of	our	previous	predicXon	of	litharge	structure	for	2D	SnO	and	PbO	
New	predicXon	of	1T	structure	for	2D	SnO2	and	PbO2
0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
O fraction
− 1 .5
− 1 .0
− 0 .5
0 .0
Enthalpy(eV/atom)
(i)
(ii)
(iii)
Sn O
2 D GA
Bulk
0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
O fraction
− 1 .2
− 1 .0
− 0 .8
− 0 .6
− 0 .4
− 0 .2
0 .0
0 .2
(i)
(ii)
(iii)
Pb O
2 D GA
Bulk
2D	Sn-O	Phases 2D	Pb-O	Phases
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
GeneXc	Algorithm	–	2D	Tin	and	Lead	Oxides
h-ps://github.com/henniggroup/gasp	
W.	W.	Tipton,	RGH,	J.	Phys.:	Cond.	Ma-er	25,	495401	(2013)	
B.	C.	Revard,	W.	W.	Tipton,	RGH,	Topics	in	Current	Chemistry	(2014)	
B.	C.	Revard,	W.	W.	Tipton,	A.	Yesypenko,	R.	G.	Hennig,	PRB	93,	054117	(2016)
2D	Sn-O	Phases 2D	Pb-O	Phases
The	2D	SnO2	and	PbO2	1T	phases	are	stable	in	water	for	ionic	concentraXons	of	10–6!
SnO2
(2D)
HSnO2
-
SnO3
2-
SnOH+
Sn2+
SnO(OH)+
+1
-1
0
E(V)
0 2 4 6 8 10 12 14
pH
-2
Pb2+
PbOH+
PbO2
(2D)
HPbO2
-
+2
+1
-1
0
E(V)
0 2 4 6 8 10 12 14
pH
-2
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Part	IV:	Machine	Learning	of	Energy	Landscapes
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Structure	representaXon	(features)	should	ideally	fulfill	three	criteria	
(i) Invariance	with	respect	to	choice	of	unit	cell	and	crystal	symmetry	
(ii) Uniqueness,	so	no	two	different	crystal	structures	have	the	same	vector	representa?on	
(iii)ConXnuity,	such	that	the	energy	difference	between	two	crystal	structures	with	vector	
representa?ons	x1	and	x2	goes	to	zero	in	the	limit	||	x1	−	x2	||→	0
Machine	Learning	Surrogate	Models
Machine	Learning	Regression	
• Takes	a	vector	x	∈	Rn	as	input	and	return	a	scalar	y	
• Must	first	construct	a	vector-based	data	representa?on	of	the	crystal	structure	that	
encodes	relevant	physical	informa?on,	i.e.	chemical	iden?ty	and	posi?on	of	the	atoms
S.	Honrao,	RGH	at	al.,	submi-ed	(2018)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
ParXal	Radial	DistribuXon	FuncXons
gAB(r) =
1
NA
NAX
i=1
1X
j=1
1
rn
exp
"
r dAB
ij
2
2 2
g
#
⇥(dc dAB
ij )
• Captures	primary	distance	dependence	of	bonds	
• Criteria:	
+ Invariance	
+ ConXnuity	
- Uniqueness	
• Cannot	dis?nguish	between	homometric	structures,

i.e.	structures	of	iden?cal	atoms	that	exhibit

the	same	set	of	interatomic	distances
Li4Ge
representation of a given structure as input to quickly evaluates
the structure’s energy.
Motivation
Calculating the energies of crystal structures involves
performing arduous quantum-mechanical calulcations. For
calculating energies of larger sets of crystals, this computational
time can take an hour up to a month.
Machine learning techniques enable us to calculate the energies
of a smaller set of structures, and develop a surrogate model
describing the relationship between structure and energy. This
model can then be used to quickly compute the energy of other
candiate structures. The goal is to reduce the amount of time
required to perform energy calculations.
Support Vector Regression Energy Model
Support Vectors
Non-support Vectors
Fit
Machine Learning
: Distance between and atoms
: Number of atoms
: Gaussian Width
Atoms in 2-D Space Generation of
: Atoms of Type
: Atoms of Type
Crystal Structures Represented As:
: Bin Size
80
100
120
140
Pair Correlation: Li4Ge
(Li,Ge)
(Ge,Ge)
(Li,Li)
Examples:
S.	Honrao,	RGH	at	al.,	submi-ed	(2018)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
ParXal	Radial	DistribuXon	FuncXons
Ge-Ge
Li-Ge
Li-Li
Distance (Å)
0 5 10 15 20
gAB
(r)
0.5
0.4
0.3
0.2
0.1
0.0
gAB(r) =
1
NA
NAX
i=1
1X
j=1
1
rn
exp
"
r dAB
ij
2
2 2
g
#
⇥(dc dAB
ij )
• Captures	primary	distance	dependence	of	bonds	
• Criteria:	
+ Invariance	
+ ConXnuity	
- Uniqueness	
• Cannot	dis?nguish	between	homometric	structures,

i.e.	structures	of	iden?cal	atoms	that	exhibit

the	same	set	of	interatomic	distances
Li4Ge
S.	Honrao,	RGH	at	al.,	submi-ed	(2018)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
candiate structures. The goal is to reduce the amoun
required to perform energy calculations.
Contact Info
Support Vector Regression Energy Model
Optimization
Support Vectors
Non-support Vectors
Fit
Machine Learning
Machine	Learning
Machine-learning	models	
• Use	kernel-ridge	regression	(KRR),	ε-support	vector	regression	(SVR),	and	neural	networks	
Input	data	preprocessing			
• Feature	scaling	of	components	of	input	vector	xi	=	giAB(r)	in	training	set

to	obtain	zero	mean	and	unit	standard	devia?on	
• Standardizing	each	set	of	components	avoids	the	norm	from

being	biased	towards	vector	components	with	higher	variance	
• 30%	of	data	for	fieng,	70%	for	tes?ng
x0
ij =
xij µi
i
S.	Honrao,	RGH	at	al.,	submi-ed	(2018)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
0.4 0.3 0.2 0.1 0.0 0.1 0.2
DFT Energy [eV/atom]
0.4
0.3
0.2
0.1
0.0
0.1
0.2
PredictedEnergy[eV/atom]
(a) Unrelaxed formation energies
Machine	Learning	Methods
Algorithm MAE RMS R2
KRR 12.7 20.4 0.98
SVR 13.6 20.8 0.98
NN 12.8 20.2 0.98
• Similar	predic?on	error	for

different	machine-learning	techniques		
• NN	most	demanding	
• SVR	is	computa?onally	most	efficient

and	provides	best	tradeoff

between	complexity	and	predic?on	error
SVR	
Error	on

tes?ng	data
S.	Honrao,	RGH	at	al.,	submi-ed	(2018)
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
Powered by
MPInterfaces & materialsweb
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
0.4 0.3 0.2 0.1 0.0 0.1 0.2
DFT Energy [eV/atom]
0.4
0.3
0.2
0.1
0.0
0.1
0.2
PredictedEnergy[eV/atom]
(b) Relaxed formation energies
Learning	of	Basin	of	AQracXons	from	Unrelaxed	Structures
• Predic?on	of	the	relaxed	energies	(minima)	from	unrelaxed	structures
SVR	
Error	on

tes?ng	data
Algorithm MAE RMS R2
KRR 12.7 20.4 0.98
SVR 13.6 20.8 0.98
NN 12.8 20.2 0.98
KRR-min 11.8 20.3 0.98
SVR-min 13.4 20.9 0.98
• Similar	accuracy	for	minima	predic?on	
• Useful	for	screening	of	GA	structures	to	avoid

costly	DFT	relaxa?ons
S.	Honrao,	RGH	at	al.,	submi-ed	(2018)ML	learning	of	minima	has	similar	accuracy	as	learning	of	energy	landscape
rhennig@ufl.edu	
h-p://hennig.mse.ufl.edu
AI	for	Materials	Science	
August	7-8,	2018	•	Gaithersburg,	MD
Powered by
MPInterfaces & materialsweb
Richard	G.	Hennig,	University	of	Florida
MPInterfaces	-	High	throughput	framework	for	2D	materials
sulfur
16
S32.065
selenium
34
Se78.96
tellurium
52
Te127.60
platinum
78
Pt
195.08
tungsten
74
W
183.84
molybdenum
42
Mo95.96
chromium
24
Cr51.996
tantalum
73
Ta
180.95
niobium
41
Nb92.906
vanadium
23
V50.942
hafnium
72
Hf
178.49
zirconium
40
Zr91.224
titanium
22
Ti47.867
silicon
14
Si28.086
carbon
6
C12.011
oxygen
8
O15.999
zinc
30
Zn65.38
cadmium
48
Cd112.41
mercury
80
Hg
200.59
beryllium
4
Be9.0122
magnesium
12
Mg24.305
calcium
20
Ca40.078
phosphorus
15
P30.974
arsenic
33
As74.922
antinomy
51
Sb121.76
nitrogen
7
N14.007
aluminum
13
Al26.982
gallium
31
Ga69.723
indium
49
In114.82
boron
5
B10.811
germanium
32
Ge72.64
tin
50
Sn118.710
lead
82
Pb
207.2
GASP	-	Gene?c	algorithm

and	machine	learning

for	structure	predic?ons	
(b) 2D Pb-O System(a) 2D Sn-O System
0.0 0.2 0.4 0.6 0.8 1.0
O fraction
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.2
(i)
(ii)
(iii)
Pb O
2D GA
Bulk
0.0 0.2 0.4 0.6 0.8 1.0
O fraction
1.5
1.0
0.5
0.0
Enthalpy(eV/atom)
(i)
(ii)
(iii)
Sn O
2D GA
Bulk
Open	source	available	at	h-ps://github.com/henniggroup
Data	available	at	h-p://materialsweb.org	
Pathways	Towards	a	Hierarchical	Discovery	of	Materials
Search	for	materials	
• Materials	structure	and	microstructure	
• Need	for	new	methods	for	aperiodic

structures,	non-equilibrium	defects	and

processing	
• Possible	role	of	ML	for	dimensionality

reduc?on,	cannot	violate	physics/thermodynamics

Contenu connexe

Plus de aimsnist

Failing Fastest: What an Effective HTE and ML Workflow Enables for Functional...
Failing Fastest: What an Effective HTE and ML Workflow Enables for Functional...Failing Fastest: What an Effective HTE and ML Workflow Enables for Functional...
Failing Fastest: What an Effective HTE and ML Workflow Enables for Functional...aimsnist
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...aimsnist
 
Coupling AI with HiTp experiments to Discover Metallic Glasses Faster
Coupling AI with HiTp experiments to Discover Metallic Glasses FasterCoupling AI with HiTp experiments to Discover Metallic Glasses Faster
Coupling AI with HiTp experiments to Discover Metallic Glasses Fasteraimsnist
 
“Materials Informatics and Big Data: Realization of 4th Paradigm of Science i...
“Materials Informatics and Big Data: Realization of 4th Paradigm of Science i...“Materials Informatics and Big Data: Realization of 4th Paradigm of Science i...
“Materials Informatics and Big Data: Realization of 4th Paradigm of Science i...aimsnist
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applicationsaimsnist
 
Autonomous experimental phase diagram acquisition
Autonomous experimental phase diagram acquisitionAutonomous experimental phase diagram acquisition
Autonomous experimental phase diagram acquisitionaimsnist
 
Classical force fields as physics-based neural networks
Classical force fields as physics-based neural networksClassical force fields as physics-based neural networks
Classical force fields as physics-based neural networksaimsnist
 
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum DataAutomated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Dataaimsnist
 
Polymer Genome: An Informatics Platform for Polymer Dielectrics Discovery and...
Polymer Genome: An Informatics Platform for Polymer Dielectrics Discovery and...Polymer Genome: An Informatics Platform for Polymer Dielectrics Discovery and...
Polymer Genome: An Informatics Platform for Polymer Dielectrics Discovery and...aimsnist
 
Materials Data in Action
Materials Data in ActionMaterials Data in Action
Materials Data in Actionaimsnist
 
2D/3D Materials screening and genetic algorithm with ML model
2D/3D Materials screening and genetic algorithm with ML model2D/3D Materials screening and genetic algorithm with ML model
2D/3D Materials screening and genetic algorithm with ML modelaimsnist
 
Combinatorial Experimentation and Machine Learning for Materials Discovery
Combinatorial Experimentation and Machine Learning for Materials DiscoveryCombinatorial Experimentation and Machine Learning for Materials Discovery
Combinatorial Experimentation and Machine Learning for Materials Discoveryaimsnist
 
Progress in Natural Language Processing of Materials Science Text
Progress in Natural Language Processing of Materials Science TextProgress in Natural Language Processing of Materials Science Text
Progress in Natural Language Processing of Materials Science Textaimsnist
 
Applications of Machine Learning for Materials Discovery at NREL
Applications of Machine Learning for Materials Discovery at NRELApplications of Machine Learning for Materials Discovery at NREL
Applications of Machine Learning for Materials Discovery at NRELaimsnist
 

Plus de aimsnist (14)

Failing Fastest: What an Effective HTE and ML Workflow Enables for Functional...
Failing Fastest: What an Effective HTE and ML Workflow Enables for Functional...Failing Fastest: What an Effective HTE and ML Workflow Enables for Functional...
Failing Fastest: What an Effective HTE and ML Workflow Enables for Functional...
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
 
Coupling AI with HiTp experiments to Discover Metallic Glasses Faster
Coupling AI with HiTp experiments to Discover Metallic Glasses FasterCoupling AI with HiTp experiments to Discover Metallic Glasses Faster
Coupling AI with HiTp experiments to Discover Metallic Glasses Faster
 
“Materials Informatics and Big Data: Realization of 4th Paradigm of Science i...
“Materials Informatics and Big Data: Realization of 4th Paradigm of Science i...“Materials Informatics and Big Data: Realization of 4th Paradigm of Science i...
“Materials Informatics and Big Data: Realization of 4th Paradigm of Science i...
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
 
Autonomous experimental phase diagram acquisition
Autonomous experimental phase diagram acquisitionAutonomous experimental phase diagram acquisition
Autonomous experimental phase diagram acquisition
 
Classical force fields as physics-based neural networks
Classical force fields as physics-based neural networksClassical force fields as physics-based neural networks
Classical force fields as physics-based neural networks
 
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum DataAutomated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
 
Polymer Genome: An Informatics Platform for Polymer Dielectrics Discovery and...
Polymer Genome: An Informatics Platform for Polymer Dielectrics Discovery and...Polymer Genome: An Informatics Platform for Polymer Dielectrics Discovery and...
Polymer Genome: An Informatics Platform for Polymer Dielectrics Discovery and...
 
Materials Data in Action
Materials Data in ActionMaterials Data in Action
Materials Data in Action
 
2D/3D Materials screening and genetic algorithm with ML model
2D/3D Materials screening and genetic algorithm with ML model2D/3D Materials screening and genetic algorithm with ML model
2D/3D Materials screening and genetic algorithm with ML model
 
Combinatorial Experimentation and Machine Learning for Materials Discovery
Combinatorial Experimentation and Machine Learning for Materials DiscoveryCombinatorial Experimentation and Machine Learning for Materials Discovery
Combinatorial Experimentation and Machine Learning for Materials Discovery
 
Progress in Natural Language Processing of Materials Science Text
Progress in Natural Language Processing of Materials Science TextProgress in Natural Language Processing of Materials Science Text
Progress in Natural Language Processing of Materials Science Text
 
Applications of Machine Learning for Materials Discovery at NREL
Applications of Machine Learning for Materials Discovery at NRELApplications of Machine Learning for Materials Discovery at NREL
Applications of Machine Learning for Materials Discovery at NREL
 

Dernier

Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - GuideGOPINATHS437943
 
Crushers to screens in aggregate production
Crushers to screens in aggregate productionCrushers to screens in aggregate production
Crushers to screens in aggregate productionChinnuNinan
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
BSNL Internship Training presentation.pptx
BSNL Internship Training presentation.pptxBSNL Internship Training presentation.pptx
BSNL Internship Training presentation.pptxNiranjanYadav41
 
Autonomous emergency braking system (aeb) ppt.ppt
Autonomous emergency braking system (aeb) ppt.pptAutonomous emergency braking system (aeb) ppt.ppt
Autonomous emergency braking system (aeb) ppt.pptbibisarnayak0
 
DM Pillar Training Manual.ppt will be useful in deploying TPM in project
DM Pillar Training Manual.ppt will be useful in deploying TPM in projectDM Pillar Training Manual.ppt will be useful in deploying TPM in project
DM Pillar Training Manual.ppt will be useful in deploying TPM in projectssuserb6619e
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptNarmatha D
 
Configuration of IoT devices - Systems managament
Configuration of IoT devices - Systems managamentConfiguration of IoT devices - Systems managament
Configuration of IoT devices - Systems managamentBharaniDharan195623
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfChristianCDAM
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingBootNeck1
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 

Dernier (20)

Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - Guide
 
Crushers to screens in aggregate production
Crushers to screens in aggregate productionCrushers to screens in aggregate production
Crushers to screens in aggregate production
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
BSNL Internship Training presentation.pptx
BSNL Internship Training presentation.pptxBSNL Internship Training presentation.pptx
BSNL Internship Training presentation.pptx
 
Autonomous emergency braking system (aeb) ppt.ppt
Autonomous emergency braking system (aeb) ppt.pptAutonomous emergency braking system (aeb) ppt.ppt
Autonomous emergency braking system (aeb) ppt.ppt
 
DM Pillar Training Manual.ppt will be useful in deploying TPM in project
DM Pillar Training Manual.ppt will be useful in deploying TPM in projectDM Pillar Training Manual.ppt will be useful in deploying TPM in project
DM Pillar Training Manual.ppt will be useful in deploying TPM in project
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.ppt
 
Configuration of IoT devices - Systems managament
Configuration of IoT devices - Systems managamentConfiguration of IoT devices - Systems managament
Configuration of IoT devices - Systems managament
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdf
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event Scheduling
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 

Pathways Towards a Hierarchical Discovery of Materials

  • 1. rhennig@ufl.edu h-p://hennig.mse.ufl.edu AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Powered by MPInterfaces & materialsweb Richard G. Hennig, University of Florida MPInterfaces - High throughput framework for 2D materials sulfur 16 S32.065 selenium 34 Se78.96 tellurium 52 Te127.60 platinum 78 Pt 195.08 tungsten 74 W 183.84 molybdenum 42 Mo95.96 chromium 24 Cr51.996 tantalum 73 Ta 180.95 niobium 41 Nb92.906 vanadium 23 V50.942 hafnium 72 Hf 178.49 zirconium 40 Zr91.224 titanium 22 Ti47.867 silicon 14 Si28.086 carbon 6 C12.011 oxygen 8 O15.999 zinc 30 Zn65.38 cadmium 48 Cd112.41 mercury 80 Hg 200.59 beryllium 4 Be9.0122 magnesium 12 Mg24.305 calcium 20 Ca40.078 phosphorus 15 P30.974 arsenic 33 As74.922 antinomy 51 Sb121.76 nitrogen 7 N14.007 aluminum 13 Al26.982 gallium 31 Ga69.723 indium 49 In114.82 boron 5 B10.811 germanium 32 Ge72.64 tin 50 Sn118.710 lead 82 Pb 207.2 GASP - Gene?c algorithm
 and machine learning
 for structure predic?ons (b) 2D Pb-O System(a) 2D Sn-O System 0.0 0.2 0.4 0.6 0.8 1.0 O fraction 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 (i) (ii) (iii) Pb O 2D GA Bulk 0.0 0.2 0.4 0.6 0.8 1.0 O fraction 1.5 1.0 0.5 0.0 Enthalpy(eV/atom) (i) (ii) (iii) Sn O 2D GA Bulk Open source available at h-ps://github.com/henniggroup Data available at h-p://materialsweb.org VASPSol - Ab ini?o methods for solid/liquid interfaces Solvated Water in DMC Method Dielectric energy Cavitation energy Solvation energy DFT -19 mHa DMC -20(1) mHa Classical DFT* 4.90 mHa Classical DFT+DMC -15(1) mHa Expt5 -10 mHa 5. T. Truong and E. Stefanovich, Chem. Phys. Lett. 240. 253 (1995).* Classical DFT from Ravishankar Sundararaman Pathways Towards a Hierarchical Discovery of Materials
  • 2. rhennig@ufl.edu h-p://hennig.mse.ufl.edu AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Powered by MPInterfaces & materialsweb Richard G. Hennig, University of Florida MPInterfaces - High throughput framework for 2D materials sulfur 16 S32.065 selenium 34 Se78.96 tellurium 52 Te127.60 platinum 78 Pt 195.08 tungsten 74 W 183.84 molybdenum 42 Mo95.96 chromium 24 Cr51.996 tantalum 73 Ta 180.95 niobium 41 Nb92.906 vanadium 23 V50.942 hafnium 72 Hf 178.49 zirconium 40 Zr91.224 titanium 22 Ti47.867 silicon 14 Si28.086 carbon 6 C12.011 oxygen 8 O15.999 zinc 30 Zn65.38 cadmium 48 Cd112.41 mercury 80 Hg 200.59 beryllium 4 Be9.0122 magnesium 12 Mg24.305 calcium 20 Ca40.078 phosphorus 15 P30.974 arsenic 33 As74.922 antinomy 51 Sb121.76 nitrogen 7 N14.007 aluminum 13 Al26.982 gallium 31 Ga69.723 indium 49 In114.82 boron 5 B10.811 germanium 32 Ge72.64 tin 50 Sn118.710 lead 82 Pb 207.2 GASP - Gene?c algorithm
 and machine learning
 for structure predic?ons (b) 2D Pb-O System(a) 2D Sn-O System 0.0 0.2 0.4 0.6 0.8 1.0 O fraction 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 (i) (ii) (iii) Pb O 2D GA Bulk 0.0 0.2 0.4 0.6 0.8 1.0 O fraction 1.5 1.0 0.5 0.0 Enthalpy(eV/atom) (i) (ii) (iii) Sn O 2D GA Bulk Open source available at h-ps://github.com/henniggroup Data available at h-p://materialsweb.org Search for materials • Materials structure and microstructure • Thermodynamic stability • Structure searches for 2D materials by
 datamining, chemical subs?tu?on,
 evolu?onary algorithms, machine learning Pathways Towards a Hierarchical Discovery of Materials
  • 3. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Acknowledgment • MPInterfaces and novel 2D materials: K. Mathew, A. Singh, M. Ashton, J. Paul, D. Gluhovic, H. Zhuang,
 J. Gabriel, M. Blonsky, M. Johannes, R. Ramanathan, R. Duan, Z. Ziyu, F. Tavazza, S. SinnoQ, D. Stewart • GASP gene?c algorithm and machine learning: B. Revard, W. Tipton, A. Yesupenko, S. Honrao, S. Xie,
 A. M. Tan, B. Antonio • Financial support by NSF, DOE, NIST • Computa?onal resources: HiPerGator@UF, NSF XSEDE, and Google Cloud PlaXorm
  • 4. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Part I: Hierarchy of Materials Structures
  • 5. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Materials Hierarchy - Structure ClassificaXon Acta Cryst. A48, 928 (1992) Long-range order present? Measured by sharp diffrac?on peaks. Yes Crystal No Glassk = nX i=1 hia⇤ i <latexit sha1_base64="iNkRgWQbNxgQAb2Yjad7nXc4efo=">AAACEnicbZBNS8MwHMZTX+d8q3r0EhyCXkYrgl4GA0E8TnAvsHYlzdItLElLkgqjFPwGXvwqXjwo4tWTN7+NWbeDbj4Q+PE8/5D8nzBhVGnH+baWlldW19ZLG+XNre2dXXtvv6XiVGLSxDGLZSdEijAqSFNTzUgnkQTxkJF2OLqa5O17IhWNxZ0eJ8TnaCBoRDHSxgrs08wLIzjKYQ16KuVBRmtu3hNwGFBYRKjnIaUDmgd2xak6heAiuDOogJkagf3l9WOcciI0Zkiprusk2s+Q1BQzkpe9VJEE4REakK5BgThRflaslMNj4/RhFEtzhIaF+/tGhrhSYx6aSY70UM1nE/O/rJvq6NLPqEhSTQSePhSlDOoYTvqBfSoJ1mxsAGFJzV8hHiKJsDYtlk0J7vzKi9A6q7pO1b09r9SvH6Z1lMAhOAInwAUXoA5uQAM0AQaP4Bm8gjfryXqx3q2P6eiSNavwAPyR9fkD7zGdbw==</latexit><latexit sha1_base64="iNkRgWQbNxgQAb2Yjad7nXc4efo=">AAACEnicbZBNS8MwHMZTX+d8q3r0EhyCXkYrgl4GA0E8TnAvsHYlzdItLElLkgqjFPwGXvwqXjwo4tWTN7+NWbeDbj4Q+PE8/5D8nzBhVGnH+baWlldW19ZLG+XNre2dXXtvv6XiVGLSxDGLZSdEijAqSFNTzUgnkQTxkJF2OLqa5O17IhWNxZ0eJ8TnaCBoRDHSxgrs08wLIzjKYQ16KuVBRmtu3hNwGFBYRKjnIaUDmgd2xak6heAiuDOogJkagf3l9WOcciI0Zkiprusk2s+Q1BQzkpe9VJEE4REakK5BgThRflaslMNj4/RhFEtzhIaF+/tGhrhSYx6aSY70UM1nE/O/rJvq6NLPqEhSTQSePhSlDOoYTvqBfSoJ1mxsAGFJzV8hHiKJsDYtlk0J7vzKi9A6q7pO1b09r9SvH6Z1lMAhOAInwAUXoA5uQAM0AQaP4Bm8gjfryXqx3q2P6eiSNavwAPyR9fkD7zGdbw==</latexit><latexit sha1_base64="iNkRgWQbNxgQAb2Yjad7nXc4efo=">AAACEnicbZBNS8MwHMZTX+d8q3r0EhyCXkYrgl4GA0E8TnAvsHYlzdItLElLkgqjFPwGXvwqXjwo4tWTN7+NWbeDbj4Q+PE8/5D8nzBhVGnH+baWlldW19ZLG+XNre2dXXtvv6XiVGLSxDGLZSdEijAqSFNTzUgnkQTxkJF2OLqa5O17IhWNxZ0eJ8TnaCBoRDHSxgrs08wLIzjKYQ16KuVBRmtu3hNwGFBYRKjnIaUDmgd2xak6heAiuDOogJkagf3l9WOcciI0Zkiprusk2s+Q1BQzkpe9VJEE4REakK5BgThRflaslMNj4/RhFEtzhIaF+/tGhrhSYx6aSY70UM1nE/O/rJvq6NLPqEhSTQSePhSlDOoYTvqBfSoJ1mxsAGFJzV8hHiKJsDYtlk0J7vzKi9A6q7pO1b09r9SvH6Z1lMAhOAInwAUXoA5uQAM0AQaP4Bm8gjfryXqx3q2P6eiSNavwAPyR9fkD7zGdbw==</latexit><latexit sha1_base64="iNkRgWQbNxgQAb2Yjad7nXc4efo=">AAACEnicbZBNS8MwHMZTX+d8q3r0EhyCXkYrgl4GA0E8TnAvsHYlzdItLElLkgqjFPwGXvwqXjwo4tWTN7+NWbeDbj4Q+PE8/5D8nzBhVGnH+baWlldW19ZLG+XNre2dXXtvv6XiVGLSxDGLZSdEijAqSFNTzUgnkQTxkJF2OLqa5O17IhWNxZ0eJ8TnaCBoRDHSxgrs08wLIzjKYQ16KuVBRmtu3hNwGFBYRKjnIaUDmgd2xak6heAiuDOogJkagf3l9WOcciI0Zkiprusk2s+Q1BQzkpe9VJEE4REakK5BgThRflaslMNj4/RhFEtzhIaF+/tGhrhSYx6aSY70UM1nE/O/rJvq6NLPqEhSTQSePhSlDOoYTvqBfSoJ1mxsAGFJzV8hHiKJsDYtlk0J7vzKi9A6q7pO1b09r9SvH6Z1lMAhOAInwAUXoA5uQAM0AQaP4Bm8gjfryXqx3q2P6eiSNavwAPyR9fkD7zGdbw==</latexit> n=d Periodic crystal n>d Aperiodic crystal Forbidden
 rota?ons Yes Quasicrystal No Incommensurate crystal • Lack of transla?onal symmetry complicates methods • Concepts of unit cell(s), ?lings, laece sites • Complica?on due to par?al occupancy of laece sites Structures lacking periodicity require new computaXonal methods.
  • 6. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Materials Hierarchy - Defects by Dimensionality 3D - Volume defects Precipitates, voids, inclusions 0D - Point defects present in thermodynamic equilibrium 1D - Line defects present in thermodynamic equilibrium Disloca?ons Disclina?ons 2D - Area defects Stacking faults, twin, grain,
 and interface boundaries, surfaces High-throughput methods for 1D to 3D defects needed
  • 7. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Materials Hierarchy - Microstructure Acta Cryst. A48, 928 (1992) We thus define microstructure as all the existing defects
 in a material, which are not in thermodynamic equilibrium (according to type, number, distribution, size, and shape). Peter Haasen, Physical Metallurgy
  • 8. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD • Combina?on of crystal/amorphous structure, point defects, and microstructure • Microstructure is processing dependent • Modelling of processing requires
 dimensionality reducXons
 Opportunity for machine learning • Issue is lack of good data and
 objecXve funcXons • Overcome by merging Physics and AI? • Incorporate knowledge of possible phases
 and defects requires mul?scale approaches • Opportunity to develop and use
 defect databases Materials Hierarchy - Microstructure Acta Cryst. A48, 928 (1992) How to prodict microstructures from phases, defects, and processing?
  • 9. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Part II: Materials Energy Landscapes
  • 10. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Mixed representaXon of materials structure space (real space representaXon) Dimensionality of materials structure space • Determined by number of atoms: 3Natom + 3 for crystals, 3Natom for molecules and clusters Complexity of materials structure space • Exponen?al increases with number of atoms and number of species • Reduced by space and point group symmetries Materials Structure Space Integer variables: • Number of atoms • Atomic species Real variables: • Atom posi?ons • Laece parameters (for crystalline structures) Energy landscape space has conXnues and integer variables
  • 11. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD ComputaXonal structure predicXon based on opXmizaXon • Stable structure at (p, T) Lowest Gibbs free energy, G(p, T) = E(V, S) – TS + pV • Gibbs free energy of a structure is an integral over the basin of the local minimum - Expensive to calculate - Difficult to explore
 due to discon?nui?es - Can contain minima not present
 in the energy landscape • No similar objec?ve func?on exists
 for microstructure, which is
 processing path dependent Minimum Gibbs Free Energy Principle Structure Energy G E Free energy landscape space is disconXnuous and difficult to search
  • 12. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD ComputaXonal structure predicXon based on energy minimizaXon • Combined op?miza?on over real and integer variables • For mul?-component materials, we need to consider
 stability against compe?ng phases ➡ Concept of convex hull Minimum Energy Principle 00.2 0.4 0.6 0.81 Zr Fraction, XZr -0.20 -0.15 -0.10 -0.05 0.00 FormationEnergy E0 ZrCu • Density-func?onal theory offers balance of speed and accuracy • Pseudopoten?als and plane-wave basis (VASP) InterpolaXve (Semi-)empirical methods ExtrapolaXve and predicXve First-principles or ab-ini7o methods Structure for mulX-component materials requires knowledge of compeXng phases Energy methods
  • 13. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Bell–Evans–Polanyi principle • Highly exothermic chemical reac?ons have low ac?va?on energies • Low-energy basins are expected to occur
 near other low-energy basins • These regions are referred to as ‘funnels’ General Features of the Energy Landscape
  • 14. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Probability distribuXon of energies of local minima • Basins with lower-energy minima have larger hyper-volumes • Related to similar elas?c constants and 
 vibra?onal frequencies for different structures • Power law probability distribu?on of these
 hyper-volumes • Order in the arrangement of basins
 of different sizes • Smaller basins filling gaps
 between larger ones General Features of the Energy Landscape For each system, we ran two sets of simulations. First, constant-temperature molecular dynamics was performed and by regularly minimizing configurations generated along the trajectory we obtained pmin͑E,T͒ and hence ⍀min͑E͒ ͑and a Gaussian fit to it͒. We chose temperatures well above the glass transition where equilibrium sampling of the liquid is easy to obtain. Second, Metropolis Monte Carlo simulations were performed on the transformed landscape, from which pmin trans ͑E,T͒ and hence A͑E͒ was obtained. As a check of the sampling, pmin trans ͑E,T͒ distributions were collected at several temperatures. The resulting area distributions were in good agreement, confirming the reliability of the approach. In Fig. 3͑a͒, A͑E͒ is depicted for these three systems. In agreement with our expectation that the deeper, more con- nected minima should have larger basins of attraction, the basin areas decrease very rapidly with increasing energy in an approximately exponential manner. The probability distri- butions for the hyperareas of the basins of attraction are il- lustrated in Fig. 3͑b͒. It is apparent that the distributions 10 10 10 1 -1 -0.99 -0.98 -0.97 -0.96 -0.95 -0.94 -0.93 A/Amax Emin−E / BLJ Dz−10 −5 −15 (a) Si (b) BRIEF REPORTS PHYSICAL REVIEW E 75, 037101 ͑2007͒ Binary Lennard-Jones Amorphous silicon Dzugutov liquids Massen & Doye, Phys. Rev. E 75, 037101 (2007)Searching for the larger basins reduces effecXve dimensionality.
  • 15. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD CorrelaXon between energy and symmetry • Low (and high) energy minima tend to correspond to symmetrical structures • High symmetry of low-energy minima supported by the ubiquity of crystals Example: 55-atom Lennard-Jones clusters (D. Wales ’98) Lowest energy Two highest energy Symmetry and Structural MoXfs The Rule of Parsimony: “The Number of essen7ally different kinds of cons7tuents in a crystal tends to be small.” (Linus Pauling 1929) ( )D.J. WalesrChemical Physics Letters 285 1998 330–336 335 Symmetry further reduces problem dimensionality.
  • 16. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Frequency of Space Groups Space Group Pnma P21/c Fm-3m Fd-3m Frequency 7.4% 7.2% 5.6% 5.1% Examples Fe3C, CaTiO3 ZrO2 Cu C, Cu2Mg Inorganic systems show different space group frequencies • 67% of about 100,000 compounds occur in only 24 space groups For crystals of small organic molecules • 75% of about 30,000 compounds occur in only five space groups • 29 space groups only have one entry and 35 space groups none at all Space Group P21/c P-11 P212121 P21 C2/c Frequency 36% 14% 12% 7% 7% Some space groups are much more common than others in crystals • Note: bcc is not among one of the top 24 space groups
  • 17. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Specific Features of Energy Landscapes Chemical consideraXons • Know a great deal about the chemistry of the systems we study • Know which atomic types prefer to bond to one another • Approximate bond lengths • Likely coordina?on numbers of the atoms ResulXng empirical rules • Hume-Rothery rules • Laves rules for intermetallics • Pauling rules for ionic materials • Peefor structure maps
 ... How can we uXlize this informaXon to accelerate structure searches?
  • 18. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Crystal Structure PredicXon Methods Limited success of convenXonal opXmizaXon methods • Guess of structures based on symmetry and chemistry (trial-and-error) • Simulated annealing (molecular dynamics, cooling from high temperature) Advances in opXmizaXon methods: • Accelerated molecular dynamics, Voter et al. ’97 • Basin hopping, Wales et al. • Minima hopping, search for neighboring minima, Goedecker ’04 • Metadynamics, Parinello et al. ’02 • Random search, randomly sampling phase space, Pickard & Needs ’06 • EvoluXonary algorithms
 Genera?on of structures, Bush et al. ’95, Woodley et al. ’99, Oganov ’06 • ParXcle Swarm OpXmizaXon, Ma et al. ’10 • Datamining of structure databases, Ceder et al. Configuration coordinate 3N dimensional Energy Molecular dynamics Configuration coordinate 3N dimensional Energy Relaxation of random configurations Mutation Heredity Extension of methods to defects complicated by increased complexity.
  • 19. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Part III: Materials Informa?cs for 2D Materials
  • 20. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD H. L. Zhuang and RGH, JOM 66, 366 (2014) Structure ProperXes Processing Performance Materials Selection Structure Properties Processing Data Mining Structural Stability Dynamic Stability Optotelectronics Substrates Layered bulk materials Formation Energy Phonon Spectrum Bandgap, Offsets, Absorption, Excitons Adsorption, Strain, Doping Genetic Algorithm New Compositions and Structures Performance Chemical Stability Pourbaix Diagrams Electronic Devices Energy Applications I-V Characteristic Carrier Mobility Light conversion, Catalytic Activity Magnetism Chemical Substitutions Electrochemistry Etching, Solutions Domains, Critical T Materials InformaXcs of 2D Materials
  • 21. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Structure and Stability of 2D Materials • ClassificaXon of 2D materials • Criteria for stability ΔEf < 200 meV/atom • Methods for 2D materials discovery ‣ Datamining for exfolia?on ‣ Evolu?onary algorithm searches ‣ Chemical subs?tu?ons and etching • Characteriza?on of 2D materials ‣ Pourbaix diagrams ‣ Photocatalysis ‣ 2D half-metals ‣ Spin-orbit and 2D magne?sm ‣ Substrate control of phase stability
  • 22. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD ClassificaXon of 2D Materials C (Graphene) P (Phosphorene) 2H-MoS2 1T-MoS2 Litharge SnO Ti2 CO2 (MXene) a) Crystalline 2D Materials c) Amorphous 2D SiO2 b) Quasicrystalline 2D BaTiO3 DefiniXon: A 2D material is a material with finite thickness in one dimension and an essenXally infinite extent in the other two dimensions. •Classifica?on into crystalline and amorphous materials (long-range order) •2D crystals include periodic and aperiodic crystals based on point group •Aperiodic 2D crystals include incommensurate crystals and quasicrystals Review article: Paul, Hennig, et al. J. Phys.: Cond. Matter 2017 Cockayne, Mihalkovič, Henley, Phys. Rev. B 93, 020101(R)
  • 23. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Thermodynamic Stability of 2D Materials FormaXon energy • Comparison of VASP PAW using vdW-DF optB88 with QMC and RPA shows accuracy of ΔEf of
 30 meV/atom1 Gf = G2D min phases G3D approximated by Ef = E2D min phases E3D 2D materials are metastable • Energy can always be lowered by van
 der Waals interac?ons for mul?-layers StabilizaXon by substrates • Substrates used to nucleate and grow 2D materials • Stabiliza?on through physi- and chemisorp?on ΔEf < 200 meV/atom
 for free-standing
 2D materials min over single or mixture of phases 1 T. Björkman et al., Phys. Rev. Le-. 108, 235502 (2012).
  • 24. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Structure and Stability of 2D Materials • Classifica?on of 2D materials • Criteria for stability ΔEf < 200 meV/atom • Methods for 2D materials discovery ‣ Datamining for exfoliaXon ‣ Chemical subs?tu?ons and etching ‣ Evolu?onary algorithm searches • Characteriza?on of 2D materials ‣ Pourbaix diagrams ‣ Photocatalysis ‣ 2D half-metals ‣ Spin-orbit and 2D magne?sm ‣ Substrate control of phase stability
  • 25. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Datamining to Discover 2D Materials from mpinterfaces.utils import get_structure_type layered = [] for s in structures: if get_structure_type(s) == “layered”: layered.append(s) Ashton, Paul, Sinno- & Hennig. Phys. Rev. Le-. 118, 106101 (2017) h-ps://arxiv.org/abs/1610.07673 (2016)
  • 26. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Datamining to Discover 2D Materials from mpinterfaces.utils import get_structure_type layered = [] for s in structures: if get_structure_type(s) == “layered”: layered.append(s) Hennig et al., arXiv:1610.07673 (10/2016) Marzari et al., arXiv:1611.05234 (11/2017) Cheon, Reed, et al., Nano Lett. (2/2017) Ashton, Paul, Sinno- & Hennig. Phys. Rev. Le-. 118, 106101 (2017) h-ps://arxiv.org/abs/1610.07673 (2016)
  • 27. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD 1 Björkman, et al. Phys. Rev. Lett. 2012 2 Lebègue, et al. Phys. Rev. X 2013 Searching for Layered Compounds The ideal case Search for materials with: You’ll find about 100 layered materials in the ICSD1,2 •low packing fractions •gaps along c-axis Reality Gaps along other axes High packing fractionsNo planar gaps at all Gaps along multiple axis a) Co2 NiO6 (mp-765906) b) V2 O5 (mp-25643) c) Ge2 Te5 As2 (mp-14791) d) Li-WCl6 (mp-570512) c b c a a) Co2 NiO6 (mp-765906) b) V2 O5 (mp-25643) c) Ge2 Te5 As2 (mp-14791) d) Li-WCl6 (mp-570512) c b c b c b c a a) Co2 NiO6 (mp-765906) b) V2 O5 (mp-25643) c) Ge2 Te5 As2 (mp-14791) d) Li-WCl6 (mp-570512) c b c a Co2NiO6 mp-765906 V2O5 mp-25643 a) Co2 NiO6 (mp-765906) b) V2 O5 (mp-25643) c) Ge2 Te5 As2 (mp-14791) d) Li-WCl6 (mp-570512) c b c b c b c a Ge2Te5As2 mp-14791 Li-WCl6 mp-570512
  • 28. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD The Topology Scaling Algorithm Cluster of 9 atoms 1×1×1 cellCo2NiO6 mp-765906 2×2×2 cell Cluster of 36 atoms N2 scaling Layered Material Ashton, Paul, Sinnott & Hennig. Phys. Rev. Lett. 118, 106101 (2017)
  • 29. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Layered Materials in MaterialsProject Layered materials: 1,560 (2%)All materials: about 65,000 quinary (1.2%)unary (0.6%) binary ternary quaternary 40.8% 10.1% 47.3% quinary other (1.2%)unary (0.7%) binary ternary quaternary16.4% 7.8% 23.4% 50.5% b) Compositional complexity of layered materials (this work) c) Compositional complexity of all materials (Materials Project database) ABC2 AB3 AB ABC AB2 Other 4.9% 7.8% 5.9% 11.8% 19.6% 50.0% (a) Stoichiometries of 2D materials ) y quinary other (1.2%)unary (0.7%) binary ternary quaternary16.4% 7.8% 23.4% 50.5% c) Compositional complexity of all materials (Materials Project database) 826/1560 have unique monolayers and are nearly stable with Ehull < 50 meV/atom. IdenXfied 625 2D materials with energy below 150 meV/atom Binary and ternary compounds more likely to be layered. Exfoliation energy Ashton, Paul, Sinnott & Hennig. Phys. Rev. Lett. 118, 106101 (2017)
  • 30. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Online Database: hQps://materialsweb.org Use the topology-scaling algorithm on your own structures Browse 2D materials 00765 Ashton, Paul, Sinnott & Hennig. Phys. Rev. Lett. 118, 106101 (2017)
  • 31. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Online Database: hQps://materialsweb.org Structural, electronic and thermodynamic data available for all materials Unique crystal structures for each 2D material stoichiometry in the DB Ashton, Paul, Sinnott & Hennig. Phys. Rev. Lett. 118, 106101 (2017)
  • 32. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Structure Prototypes mp-21405) mp-27440) p-2798) mp-938) p-2231) Figure 6 b) P (mp-157) a) C (mp-48) d) Sb (mp-104) e) Bi (mp-23152) c) As (mp-158) a) GaSe (mp-568263) b) GaS (mp-9889) d) AuSe (mp-2793) e) BN (mp-604884) m) CuI (mp-570136) c) InSe (mp-21405) g) AuBr (mp-505366) j) CuBr (mp-22917) l) ZrCl (mp-27440) o) SiP (mp-2798) f) GeTe (mp-938) n) TlF (mp-720) h) SnSe (mp-8936) k) CuTe (mp-20826) i) SnS (mp-2231) Figure 4 Figure 6 b) P (mp-157) a) C (mp-48) d) Sb (mp-104) e) Bi (mp-23152) c) As (mp-158) Binary A-B 2D Materials Elementary 2D Materials … Ashton, Paul, Sinnott & Hennig. Phys. Rev. Lett. 2017
  • 33. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Using Crystal Structure Templates Ashton, Paul, Sinnott & Hennig. Phys. Rev. Lett. 2017 Unique AB crystal structures Genetic algorithms Element substitution
  • 34. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Structure and Stability of 2D Materials • Classifica?on of 2D materials • Criteria for stability ΔEf < 200 meV/atom • Methods for 2D materials discovery ‣ Datamining for exfolia?on ‣ EvoluXonary algorithm searches ‣ Chemical subs?tu?ons and etching • Characteriza?on of 2D materials ‣ Pourbaix diagrams ‣ Photocatalysis ‣ 2D half-metals ‣ Spin-orbit and 2D magne?sm ‣ Substrate control of phase stability
  • 35. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD GeneXc Algorithm Search for 2D Materials ModificaXon for
 0D, 1D, 2D structure search h-ps://github.com/henniggroup/gasp-python W. W. Tipton, RGH, J. Phys.: Cond. Ma-er 25, 495401 (2013) B. C. Revard, W. W. Tipton, A. Yesypenko, R. G. Hennig, PRB 93, 054117 (2016) Surface Solvent or Vacuum ⇒+ Solvent or Vacuum Begin Create Pool from Initial Population No Yes Create Initial Population Done! Create Offspring Organism Pre-Evaluation Development Structure Relaxation and Energy Evaluation with External Code Post-Evaluation Development Convergence Achieved? Add Offspring to Pool Grand canonical geneXc algorithm
 Variable number of atoms and composiXon
  • 36. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD GeneXc Algorithm – 2D Tin and Lead Oxides h-ps://github.com/henniggroup/gasp W. W. Tipton, RGH, J. Phys.: Cond. Ma-er 25, 495401 (2013) B. C. Revard, W. W. Tipton, RGH, Topics in Current Chemistry (2014) B. C. Revard, W. W. Tipton, A. Yesypenko, R. G. Hennig, PRB 93, 054117 (2016) (i) HB hexagonal (ii) Litharge (iii) 1T ConfirmaXon of our previous predicXon of litharge structure for 2D SnO and PbO New predicXon of 1T structure for 2D SnO2 and PbO2 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 O fraction − 1 .5 − 1 .0 − 0 .5 0 .0 Enthalpy(eV/atom) (i) (ii) (iii) Sn O 2 D GA Bulk 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 O fraction − 1 .2 − 1 .0 − 0 .8 − 0 .6 − 0 .4 − 0 .2 0 .0 0 .2 (i) (ii) (iii) Pb O 2 D GA Bulk 2D Sn-O Phases 2D Pb-O Phases
  • 37. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD GeneXc Algorithm – 2D Tin and Lead Oxides h-ps://github.com/henniggroup/gasp W. W. Tipton, RGH, J. Phys.: Cond. Ma-er 25, 495401 (2013) B. C. Revard, W. W. Tipton, RGH, Topics in Current Chemistry (2014) B. C. Revard, W. W. Tipton, A. Yesypenko, R. G. Hennig, PRB 93, 054117 (2016) 2D Sn-O Phases 2D Pb-O Phases The 2D SnO2 and PbO2 1T phases are stable in water for ionic concentraXons of 10–6! SnO2 (2D) HSnO2 - SnO3 2- SnOH+ Sn2+ SnO(OH)+ +1 -1 0 E(V) 0 2 4 6 8 10 12 14 pH -2 Pb2+ PbOH+ PbO2 (2D) HPbO2 - +2 +1 -1 0 E(V) 0 2 4 6 8 10 12 14 pH -2
  • 38. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Part IV: Machine Learning of Energy Landscapes
  • 39. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Structure representaXon (features) should ideally fulfill three criteria (i) Invariance with respect to choice of unit cell and crystal symmetry (ii) Uniqueness, so no two different crystal structures have the same vector representa?on (iii)ConXnuity, such that the energy difference between two crystal structures with vector representa?ons x1 and x2 goes to zero in the limit || x1 − x2 ||→ 0 Machine Learning Surrogate Models Machine Learning Regression • Takes a vector x ∈ Rn as input and return a scalar y • Must first construct a vector-based data representa?on of the crystal structure that encodes relevant physical informa?on, i.e. chemical iden?ty and posi?on of the atoms S. Honrao, RGH at al., submi-ed (2018)
  • 40. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD ParXal Radial DistribuXon FuncXons gAB(r) = 1 NA NAX i=1 1X j=1 1 rn exp " r dAB ij 2 2 2 g # ⇥(dc dAB ij ) • Captures primary distance dependence of bonds • Criteria: + Invariance + ConXnuity - Uniqueness • Cannot dis?nguish between homometric structures,
 i.e. structures of iden?cal atoms that exhibit
 the same set of interatomic distances Li4Ge representation of a given structure as input to quickly evaluates the structure’s energy. Motivation Calculating the energies of crystal structures involves performing arduous quantum-mechanical calulcations. For calculating energies of larger sets of crystals, this computational time can take an hour up to a month. Machine learning techniques enable us to calculate the energies of a smaller set of structures, and develop a surrogate model describing the relationship between structure and energy. This model can then be used to quickly compute the energy of other candiate structures. The goal is to reduce the amount of time required to perform energy calculations. Support Vector Regression Energy Model Support Vectors Non-support Vectors Fit Machine Learning : Distance between and atoms : Number of atoms : Gaussian Width Atoms in 2-D Space Generation of : Atoms of Type : Atoms of Type Crystal Structures Represented As: : Bin Size 80 100 120 140 Pair Correlation: Li4Ge (Li,Ge) (Ge,Ge) (Li,Li) Examples: S. Honrao, RGH at al., submi-ed (2018)
  • 41. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD ParXal Radial DistribuXon FuncXons Ge-Ge Li-Ge Li-Li Distance (Å) 0 5 10 15 20 gAB (r) 0.5 0.4 0.3 0.2 0.1 0.0 gAB(r) = 1 NA NAX i=1 1X j=1 1 rn exp " r dAB ij 2 2 2 g # ⇥(dc dAB ij ) • Captures primary distance dependence of bonds • Criteria: + Invariance + ConXnuity - Uniqueness • Cannot dis?nguish between homometric structures,
 i.e. structures of iden?cal atoms that exhibit
 the same set of interatomic distances Li4Ge S. Honrao, RGH at al., submi-ed (2018)
  • 42. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD candiate structures. The goal is to reduce the amoun required to perform energy calculations. Contact Info Support Vector Regression Energy Model Optimization Support Vectors Non-support Vectors Fit Machine Learning Machine Learning Machine-learning models • Use kernel-ridge regression (KRR), ε-support vector regression (SVR), and neural networks Input data preprocessing • Feature scaling of components of input vector xi = giAB(r) in training set
 to obtain zero mean and unit standard devia?on • Standardizing each set of components avoids the norm from
 being biased towards vector components with higher variance • 30% of data for fieng, 70% for tes?ng x0 ij = xij µi i S. Honrao, RGH at al., submi-ed (2018)
  • 43. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD 0.4 0.3 0.2 0.1 0.0 0.1 0.2 DFT Energy [eV/atom] 0.4 0.3 0.2 0.1 0.0 0.1 0.2 PredictedEnergy[eV/atom] (a) Unrelaxed formation energies Machine Learning Methods Algorithm MAE RMS R2 KRR 12.7 20.4 0.98 SVR 13.6 20.8 0.98 NN 12.8 20.2 0.98 • Similar predic?on error for
 different machine-learning techniques • NN most demanding • SVR is computa?onally most efficient
 and provides best tradeoff
 between complexity and predic?on error SVR Error on
 tes?ng data S. Honrao, RGH at al., submi-ed (2018)
  • 44. rhennig@ufl.edu h-p://hennig.mse.ufl.edu Powered by MPInterfaces & materialsweb AI for Materials Science August 7-8, 2018 • Gaithersburg, MD 0.4 0.3 0.2 0.1 0.0 0.1 0.2 DFT Energy [eV/atom] 0.4 0.3 0.2 0.1 0.0 0.1 0.2 PredictedEnergy[eV/atom] (b) Relaxed formation energies Learning of Basin of AQracXons from Unrelaxed Structures • Predic?on of the relaxed energies (minima) from unrelaxed structures SVR Error on
 tes?ng data Algorithm MAE RMS R2 KRR 12.7 20.4 0.98 SVR 13.6 20.8 0.98 NN 12.8 20.2 0.98 KRR-min 11.8 20.3 0.98 SVR-min 13.4 20.9 0.98 • Similar accuracy for minima predic?on • Useful for screening of GA structures to avoid
 costly DFT relaxa?ons S. Honrao, RGH at al., submi-ed (2018)ML learning of minima has similar accuracy as learning of energy landscape
  • 45. rhennig@ufl.edu h-p://hennig.mse.ufl.edu AI for Materials Science August 7-8, 2018 • Gaithersburg, MD Powered by MPInterfaces & materialsweb Richard G. Hennig, University of Florida MPInterfaces - High throughput framework for 2D materials sulfur 16 S32.065 selenium 34 Se78.96 tellurium 52 Te127.60 platinum 78 Pt 195.08 tungsten 74 W 183.84 molybdenum 42 Mo95.96 chromium 24 Cr51.996 tantalum 73 Ta 180.95 niobium 41 Nb92.906 vanadium 23 V50.942 hafnium 72 Hf 178.49 zirconium 40 Zr91.224 titanium 22 Ti47.867 silicon 14 Si28.086 carbon 6 C12.011 oxygen 8 O15.999 zinc 30 Zn65.38 cadmium 48 Cd112.41 mercury 80 Hg 200.59 beryllium 4 Be9.0122 magnesium 12 Mg24.305 calcium 20 Ca40.078 phosphorus 15 P30.974 arsenic 33 As74.922 antinomy 51 Sb121.76 nitrogen 7 N14.007 aluminum 13 Al26.982 gallium 31 Ga69.723 indium 49 In114.82 boron 5 B10.811 germanium 32 Ge72.64 tin 50 Sn118.710 lead 82 Pb 207.2 GASP - Gene?c algorithm
 and machine learning
 for structure predic?ons (b) 2D Pb-O System(a) 2D Sn-O System 0.0 0.2 0.4 0.6 0.8 1.0 O fraction 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 (i) (ii) (iii) Pb O 2D GA Bulk 0.0 0.2 0.4 0.6 0.8 1.0 O fraction 1.5 1.0 0.5 0.0 Enthalpy(eV/atom) (i) (ii) (iii) Sn O 2D GA Bulk Open source available at h-ps://github.com/henniggroup Data available at h-p://materialsweb.org Pathways Towards a Hierarchical Discovery of Materials Search for materials • Materials structure and microstructure • Need for new methods for aperiodic
 structures, non-equilibrium defects and
 processing • Possible role of ML for dimensionality
 reduc?on, cannot violate physics/thermodynamics