SlideShare une entreprise Scribd logo
1  sur  67
Télécharger pour lire hors ligne
Routing 2014
Geoff Huston
APNIC
Looking through the
Routing Lens
Looking through the Routing
Lens
There	
  are	
  very	
  few	
  ways	
  to	
  assemble	
  a	
  single	
  
view	
  of	
  the	
  en4re	
  Internet	
  
	
  
The	
  lens	
  of	
  rou4ng	
  is	
  one	
  of	
  the	
  ways	
  in	
  which	
  
informa4on	
  rela4ng	
  to	
  the	
  en4re	
  reachable	
  
Internet	
  is	
  bought	
  together	
  
	
  
Even	
  so,	
  its	
  not	
  a	
  perfect	
  lens…	
  
There is no Routing God!
There	
  is	
  no	
  single	
  objec4ve	
  “out	
  of	
  the	
  system”	
  view	
  of	
  
the	
  Internet’s	
  Rou4ng	
  environment.	
  	
  
BGP	
  distributes	
  a	
  rou4ng	
  view	
  that	
  is	
  modified	
  as	
  it	
  is	
  
distributed,	
  so	
  every	
  eBGP	
  speaker	
  will	
  see	
  a	
  slightly	
  
different	
  set	
  of	
  prefixes,	
  and	
  each	
  view	
  is	
  rela4ve	
  to	
  a	
  
given	
  loca4on	
  
So	
  the	
  picture	
  I	
  will	
  be	
  pain4ng	
  here	
  is	
  one	
  that	
  is	
  drawn	
  
from	
  the	
  perspec4ve	
  of	
  AS131072.	
  	
  This	
  is	
  a	
  stub	
  AS	
  at	
  
the	
  edge	
  of	
  the	
  Internet.	
  	
  
You	
  may	
  or	
  may	
  not	
  have	
  a	
  similar	
  view	
  from	
  your	
  
network.	
  
	
  
1994: Introduction of CIDR
2001: The Great Internet Boom and Bust
2005: Broadband to the Masses
2009: The GFC hits the Internet
2011: Address Exhaustion
20 Years of Routing the Internet
This is a view pulled together from each of
the routing peers of Route Views
1994: Introduction of CIDR
2001: The Great Internet Boom and Bust
2005: Broadband to the Masses
2009: The GFC hits the Internet
2011: Address Exhaustion
20 Years of Routing the Internet
This is a view pulled together from each of
the routing peers of Route Views
2014, as seen at Route
Views
2014, as seen at Route
Views The last quarter
of 2014 saw
routing system
growth drop off
Routing Indicators for IPv4
Routing prefixes – growing by
some 45,000 prefixes per year
AS Numbers– growing by some
3,000 prefixes per year
Routing Indicators for IPv4
More Specifics are still taking up
one half of the routing table
But the average size of a
routing advertisement is getting
smaller
Routing Indicators for IPv4
Address Exhaustion is now
visible in the extent of
advertised address space
The “shape” of inter-AS
interconnection appears to be
steady, as the Average AS Path
length has been held steady
through the year
What happened in 2014 in
V4?
•  From	
  the	
  look	
  of	
  the	
  growth	
  plots,	
  its	
  business	
  as	
  
usual,	
  despite	
  the	
  increasing	
  pressure	
  on	
  IPv4	
  address	
  
availability	
  
•  You	
  may	
  have	
  no4ced	
  that	
  the	
  number	
  of	
  IPv4	
  routes	
  
cross	
  across	
  the	
  threshold	
  value	
  of	
  512,000	
  routes	
  in	
  
the	
  last	
  quarter	
  of	
  2014	
  
–  And	
  for	
  some	
  routers	
  this	
  would’ve	
  caused	
  a	
  hiccup	
  or	
  two	
  
•  You	
  can	
  also	
  see	
  that	
  the	
  pace	
  of	
  growth	
  of	
  the	
  rou4ng	
  
table	
  is	
  dropping	
  off	
  towards	
  the	
  end	
  of	
  the	
  year	
  
–  IPv4	
  address	
  exhaus4on	
  is	
  probably	
  to	
  blame	
  here!	
  
How can the IPv4 network
continue to grow when we
are running out of IPv4
addresses?
We	
  are	
  now	
  recycling	
  old	
  addresses	
  back	
  into	
  
the	
  rou4ng	
  system	
  
Some	
  of	
  these	
  addresses	
  are	
  transferred	
  in	
  ways	
  
that	
  are	
  recorded	
  in	
  the	
  registry	
  system,	
  while	
  
others	
  are	
  being	
  “leased”	
  without	
  any	
  clear	
  
registra4on	
  entry	
  that	
  describes	
  the	
  lessee	
  
IPv4 Address Reuse
IPv4 Address Reuse
50% of new addresses in
2014 were more than 1
year old
20% of new addresses in
2010 were more than 1
year old
18% of new addresses in
2014 were more than 20
years old
It appears that this
collection of “old”
addresses includes space
that has been leased
rather than transferred
IPv4 in 2014 – Growth is
Slowing
•  Overall	
  IPv4	
  Internet	
  growth	
  in	
  terms	
  of	
  BGP	
  is	
  at	
  a	
  rate	
  of	
  
some	
  ~9%-­‐10%	
  p.a.	
  
•  Address	
  span	
  growing	
  far	
  more	
  slowly	
  than	
  the	
  table	
  size	
  
(although	
  the	
  LACNIC	
  runout	
  in	
  May	
  ’14	
  caused	
  a	
  visible	
  
blip	
  in	
  the	
  address	
  consump4on	
  rate)	
  
•  The	
  rate	
  of	
  growth	
  of	
  the	
  IPv4	
  Internet	
  is	
  slowing	
  down,	
  
due	
  to:	
  
–  Address	
  shortages	
  
–  Masking	
  by	
  NAT	
  deployments	
  
–  Satura4on	
  of	
  cri4cal	
  market	
  sectors	
  
–  Transi4on	
  uncertainty	
  
The Route Views view of
IPv6
World IPv6 Day
IANA IPv4 Exhaustion
2014 for IPv6, as seen at
Route Views
Routing Indicators for IPv6
Routing prefixes – growing by
some 6,000 prefixes per year
AS Numbers– growing by some
1,600 prefixes per year (which is
half the V4 growth)
Routing Indicators for IPv6
More Specifics now take up one
third of the routing table
The average size of a routing
advertisement is getting smaller
Routing Indicators for IPv6
Address consumption is happening
at a constant rate, and not
growing year by year
The “shape” of inter-AS
interconnection appears to be
steady, as the Average AS Path
length has been held steady
through the year
IPv6 in 2014
•  Overall	
  IPv6	
  Internet	
  growth	
  in	
  terms	
  of	
  BGP	
  is	
  
20%	
  -­‐	
  40	
  %	
  p.a.	
  
– 2012	
  growth	
  rate	
  was	
  ~	
  90%.	
  
	
  
	
  
If	
  these	
  rela4ve	
  growth	
  rates	
  persist	
  then	
  the	
  IPv6	
  network	
  
would	
  span	
  the	
  same	
  network	
  domain	
  as	
  IPv4	
  in	
  ~16	
  years	
  4me	
  	
  
What to expect
BGP Size Projections
For	
  the	
  Internet	
  this	
  is	
  a	
  4me	
  of	
  extreme	
  
uncertainty	
  
•  Registry	
  IPv4	
  address	
  run	
  out	
  
•  Uncertainty	
  over	
  the	
  impacts	
  of	
  any	
  afer-­‐market	
  in	
  
IPv4	
  on	
  the	
  rou4ng	
  table	
  
•  Uncertainty	
  over	
  IPv6	
  takeup	
  leads	
  to	
  a	
  mixed	
  response	
  
to	
  IPv6	
  so	
  far,	
  and	
  no	
  clear	
  indicator	
  of	
  trigger	
  points	
  
for	
  change	
  
all	
  of	
  which	
  which	
  make	
  this	
  year’s	
  projec4on	
  even	
  
more	
  specula4ve	
  than	
  normal!	
  
V4 - Daily Growth Rates
V4 - Daily Growth Rates
V4 - Relative Daily Growth Rates
V4 - Relative Daily Growth Rates
Growth	
  in	
  the	
  V4	
  network	
  appears	
  to	
  be	
  
constant	
  at	
  a	
  long	
  term	
  average	
  of	
  120	
  
addi4onal	
  routes	
  per	
  day,	
  or	
  some	
  
45,000	
  addi4onal	
  routes	
  per	
  year	
  
	
  
Given	
  that	
  the	
  V4	
  address	
  supply	
  has	
  run	
  
out	
  this	
  implies	
  further	
  reduc4ons	
  in	
  
address	
  size	
  in	
  routes,	
  which	
  in	
  turn	
  
implies	
  ever	
  greater	
  reliance	
  on	
  NATs	
  
	
  
Its	
  hard	
  to	
  see	
  how	
  and	
  why	
  this	
  
situa4on	
  will	
  persist	
  at	
  its	
  current	
  levels	
  
over	
  the	
  coming	
  5	
  year	
  horizon	
  
IPv4 BGP Table Size predictions
Jan	
  2013 	
  	
  	
  	
  	
  441,000	
  entries	
  
	
  	
  	
  	
  	
  	
  	
  2014 	
  	
  	
  	
  	
  488,000	
  	
  
	
  	
  	
  	
  	
  	
  	
  2015 	
  	
  	
  	
  	
  530,000	
   	
  	
  
	
  	
  	
  	
  	
  	
  	
  2016 	
  	
  	
  	
  	
  580,000	
  
	
  	
  	
  	
  	
  	
  	
  2017 	
  	
  	
  	
  	
  620,000	
  
	
  	
  	
  	
  	
  	
  	
  2018 	
  	
  	
  	
  	
  670,000	
  
	
  	
  	
  	
  	
  	
  	
  2019 	
  	
  	
  	
  	
  710,000	
  
	
  	
  	
  	
  	
  	
  	
  2020 	
  	
  	
  	
  	
  760,000	
  
	
  
These	
  numbers	
  are	
  dubious	
  due	
  to	
  uncertain;es	
  introduced	
  by	
  IPv4	
  address	
  
exhaus;on	
  pressures.	
  	
  
IPv6 Table Size
V6 - Daily Growth Rates
V6 - Daily Growth Rates
V6 - Relative Growth Rates
V6 - Relative Growth RatesGrowth	
  in	
  the	
  V6	
  network	
  appears	
  to	
  be	
  
increasing,	
  but	
  in	
  rela4ve	
  terms	
  this	
  is	
  slowing	
  
down.	
  
	
  
Early	
  adopters,	
  who	
  have	
  tended	
  to	
  be	
  the	
  V4	
  
transit	
  providers,	
  have	
  already	
  received	
  IPv6	
  
alloca4on	
  and	
  are	
  rou4ng	
  them.	
  The	
  trailing	
  
edge	
  of	
  IPv6	
  adop4on	
  are	
  generally	
  composed	
  of	
  
stub	
  edge	
  networks	
  in	
  IPv4.	
  These	
  networks	
  
appear	
  not	
  to	
  have	
  made	
  any	
  visible	
  moves	
  in	
  
IPv6	
  as	
  yet.	
  
	
  
If	
  we	
  see	
  a	
  change	
  in	
  this	
  picture	
  the	
  growth	
  
trend	
  will	
  likely	
  be	
  exponen4al.	
  But	
  its	
  not	
  clear	
  
when	
  such	
  a	
  4pping	
  point	
  will	
  occur	
  
IPv6 BGP Table Size
predictions
Jan	
  2013	
   	
   	
   	
   	
  	
  	
  11,600	
  entries	
  
	
  	
  	
  2014 	
   	
   	
   	
  	
  	
  16,200	
  	
  
	
  	
  	
  2015 	
   	
   	
   	
  	
  	
  21,000	
  	
  
	
  	
  	
  2016 	
   	
   	
  	
  	
   	
  	
  	
  30,000	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  25,000	
  
	
  	
  	
  2017 	
   	
   	
   	
  	
  	
  42,000	
   	
   	
   	
   	
  29,000	
  
	
  	
  	
  2018 	
   	
   	
   	
  	
  	
  58,000	
  	
   	
   	
   	
   	
  34,000	
  
	
  	
  	
  	
  	
  	
  	
  2019 	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  82,000	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  38,000	
  
	
  	
  	
  2019 	
   	
   	
  	
  	
  	
  	
  	
  	
  113,000	
   	
   	
   	
   	
  43,000	
  
	
  
	
  	
  
Exponen4al	
  Model	
   Linear	
  Model	
  
Range of potential outcomes
BGP Table Growth
•  Nothing	
  in	
  these	
  figures	
  suggests	
  that	
  there	
  is	
  cause	
  
for	
  urgent	
  alarm	
  -­‐-­‐	
  at	
  present	
  
•  The	
  overall	
  eBGP	
  growth	
  rates	
  for	
  IPv4	
  are	
  holding	
  at	
  a	
  
modest	
  level,	
  and	
  the	
  IPv6	
  table,	
  although	
  it	
  is	
  growing	
  
at	
  a	
  faster	
  rela4ve	
  rate,	
  	
  is	
  s4ll	
  small	
  in	
  size	
  in	
  absolute	
  
terms	
  
•  As	
  long	
  as	
  we	
  are	
  prepared	
  to	
  live	
  within	
  the	
  technical	
  
constraints	
  of	
  the	
  current	
  rou4ng	
  paradigm,	
  the	
  
Internet’s	
  use	
  of	
  BGP	
  will	
  con4nue	
  to	
  be	
  viable	
  for	
  
some	
  4me	
  yet	
  
•  Nothing	
  is	
  mel4ng	
  in	
  terms	
  of	
  the	
  size	
  of	
  the	
  rou4ng	
  
table	
  as	
  yet	
  
	
  
BGP Updates
•  What	
  about	
  the	
  level	
  of	
  updates	
  in	
  BGP?	
  
•  Let’s	
  look	
  at	
  the	
  update	
  load	
  from	
  a	
  single	
  
eBGP	
  feed	
  in	
  a	
  DFZ	
  context	
  
	
  
Announcements and
Withdrawals
Convergence Performance
IPv4 Average AS Path
Length
Data	
  from	
  Route	
  Views	
  
Updates in IPv4 BGP
Nothing	
  in	
  these	
  figures	
  is	
  cause	
  for	
  any	
  great	
  level	
  of	
  concern	
  …	
  
–  The	
  number	
  of	
  updates	
  per	
  instability	
  event	
  has	
  been	
  constant,	
  which	
  
for	
  a	
  distance	
  vector	
  rou4ng	
  protocol	
  is	
  weird,	
  and	
  completely	
  
unan4cipated.	
  Distance	
  Vector	
  rou4ng	
  protocols	
  should	
  get	
  noisier	
  as	
  
the	
  popula4on	
  of	
  protocol	
  speakers	
  increases,	
  and	
  the	
  increase	
  should	
  
be	
  mul4plica4ve.	
  
–  But	
  this	
  is	
  not	
  happening	
  in	
  the	
  Internet	
  
–  Which	
  is	
  good,	
  but	
  why	
  is	
  this	
  not	
  happening?	
  
Likely	
  contributors	
  to	
  this	
  +ve	
  outcome	
  are	
  the	
  damping	
  effect	
  of	
  
widespread	
  use	
  of	
  the	
  MRAI	
  interval,	
  and	
  the	
  topology	
  factor,	
  as	
  seen	
  in	
  
the	
  rela4vely	
  constant	
  AS	
  Path	
  length	
  over	
  this	
  interval	
  
	
  	
  
V6 Announcements and Withdrawals
V6 Convergence Performance
Data	
  from	
  Route	
  Views	
  
V6 Average AS Path Length
Updates in IPv6 BGP
IPv6	
  updates	
  look	
  a	
  lot	
  like	
  IPv4	
  updates.	
  
Which	
  should	
  not	
  come	
  as	
  a	
  surprise	
  
	
  
It’s	
  the	
  same	
  rou4ng	
  protocol,	
  and	
  the	
  same	
  underlying	
  inter-­‐AS	
  topology,	
  and	
  
the	
  observa4on	
  is	
  that	
  the	
  convergence	
  4mes	
  and	
  instability	
  rate	
  appear	
  to	
  be	
  
unrelated	
  to	
  the	
  popula4on	
  of	
  the	
  rou4ng	
  space.	
  	
  
	
  
So	
  we	
  see	
  similar	
  protocol	
  convergence	
  metrics	
  in	
  a	
  network	
  that	
  is	
  1/20	
  of	
  
the	
  size	
  of	
  the	
  IPv4	
  network	
  
	
  
It	
  tends	
  to	
  underline	
  the	
  importance	
  of	
  dense	
  connec4vity	
  and	
  extensive	
  use	
  
of	
  local	
  exchanges	
  to	
  minimize	
  AS	
  path	
  lengths	
  as	
  a	
  means	
  of	
  containing	
  
scaling	
  of	
  the	
  rou4ng	
  protocol	
  
Problem? Not a Problem?
There	
  is	
  nothing	
  is	
  this	
  data	
  to	
  suggest	
  that	
  we	
  will	
  need	
  a	
  
new	
  inter-­‐domain	
  rou4ng	
  protocol	
  in	
  the	
  next	
  5	
  years	
  	
  
	
  
Or	
  even	
  in	
  the	
  next	
  10	
  to	
  15	
  years	
  
	
  
But	
  this	
  is	
  not	
  the	
  only	
  scaling	
  aspect	
  of	
  the	
  Internet	
  
	
  
Remember	
  that	
  BGP	
  is	
  a	
  Best	
  Path	
  selec4on	
  protocol.	
  i.e.	
  a	
  
single	
  path	
  selec4on	
  protocol.	
  
	
  
And	
  that	
  might	
  contribute	
  to	
  the	
  next	
  scaling	
  issue…	
  
	
  
Inside a router
Line Interface Card
Switch Fabric Card
Management Card
Thanks	
  to	
  Greg	
  Hankins	
  
Inside a line card
CPU
PHY
Network
Packet
Manager
DRAM TCAM *DRAM
M
e
d
i
a
B
a
c
k
p
l
a
n
e
FIB Lookup Bank
Packet Buffer
Thanks	
  to	
  Greg	
  Hankins	
  
Inside a line card
CPU
PHY
Network
Packet
Manager
DRAM TCAM *DRAM
M
e
d
i
a
B
a
c
k
p
l
a
n
e
FIB Lookup Bank
Packet Buffer
Thanks	
  to	
  Greg	
  Hankins	
  
FIB Lookup Memory
The	
  interface	
  card’s	
  network	
  processor	
  passes	
  
the	
  packet’s	
  des4na4on	
  address	
  to	
  the	
  FIB	
  
module.	
  
	
  
The	
  FIB	
  module	
  returns	
  with	
  an	
  outbound	
  
interface	
  index	
  
FIB Lookup
This	
  can	
  be	
  achieved	
  by:	
  
	
  
–  Loading	
  the	
  en4re	
  rou4ng	
  table	
  into	
  a	
  Ternary	
  
Content	
  Addressable	
  Memory	
  bank	
  (TCAM)	
  
or	
  
–  Using	
  an	
  ASIC	
  implementa4on	
  of	
  a	
  TRIE	
  
representa4on	
  of	
  the	
  rou4ng	
  table	
  with	
  DRAM	
  
memory	
  to	
  hold	
  the	
  rou4ng	
  table	
  
	
  
Either	
  way,	
  this	
  needs	
  fast	
  memory	
  
 
	
  
TCAM Memory
Address
Outbound Interface identifier
192.0.2.1	
  
I/F	
  3/1	
  
192.0.0.0/16	
  	
  	
  	
  	
  	
  	
  	
  	
  11000000	
  00000000	
  	
  xxxxxxxx	
  	
  	
  xxxxxxxx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3/0	
  
	
  	
  	
  	
  	
  	
  	
  
192.0.2.0/24	
  	
  	
  	
  	
  	
  	
  	
  	
  11000000	
  00000000	
  00000010	
  xxxxxxxx	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3/1	
  
11000000	
  00000000	
  	
  00000010	
  00000001	
  
Longest Match
The	
  en4re	
  FIB	
  is	
  loaded	
  into	
  TCAM.	
  Every	
  des4na4on	
  address	
  is	
  
passed	
  through	
  the	
  TCAM,	
  and	
  within	
  one	
  TCAM	
  cycle	
  the	
  TCAM	
  
returns	
  the	
  interface	
  index	
  of	
  the	
  longest	
  match.	
  Each	
  TCAM	
  bank	
  
needs	
  to	
  be	
  large	
  enough	
  to	
  hold	
  the	
  en4re	
  FIB.	
  TTCAM	
  cycle	
  4me	
  
needs	
  to	
  be	
  fast	
  enough	
  to	
  support	
  the	
  max	
  packet	
  rate	
  of	
  the	
  line	
  
card.	
  
TCAM width depends on the chip set in
use. One popular TCAM config is 72
bits wide. IPv4 addresses consume a
single 72 bit slot, IPv6 consumes two
72 bit slots. If instead you use TCAM
with a slot width of 32 bits then IPv6
entries consume 4 times the
equivalent slot count of IPv4 entries.
TRIE Lookup
Address
Outbound Interface identifier
192.0.2.1	
  
I/F	
  3/1	
  
11000000	
  00000000	
  	
  00000010	
  00000001	
  
1/0	
  
1/0	
  
1/0	
  
1/0	
  
1/0	
  
x/0000	
  
?
?
?
?
?
…	
  
?
The	
  en4re	
  FIB	
  is	
  converted	
  into	
  a	
  serial	
  decision	
  tree.	
  The	
  size	
  of	
  
decision	
  tree	
  depends	
  on	
  the	
  distribu4on	
  of	
  prefix	
  values	
  in	
  the	
  
FIB.	
  The	
  performance	
  of	
  the	
  TRIE	
  depends	
  on	
  the	
  algorithm	
  used	
  
in	
  the	
  ASIC	
  and	
  the	
  number	
  of	
  serial	
  decisions	
  used	
  to	
  reach	
  a	
  
decision	
  
ASIC
DRAM
Memory Tradeoffs
TCAM
Lower
Higher
Higher
Higher
Larger
80Mbit
ASIC +
RLDRAM 3
Higher
Lower
Lower
Lower
Smaller
1Gbit
Thanks	
  to	
  Greg	
  Hankins	
  
Access Speed
$ per bit
Power
Density
Physical Size
Capacity
Memory Tradeoffs
TCAMs	
  are	
  higher	
  cost,	
  but	
  operate	
  with	
  a	
  fixed	
  
search	
  latency	
  and	
  a	
  fixed	
  add/delete	
  4me.	
  TCAMs	
  
scale	
  linearly	
  with	
  the	
  size	
  of	
  the	
  FIB	
  
	
  
ASICs	
  implement	
  a	
  TRIE	
  in	
  memory.	
  The	
  cost	
  is	
  
lower,	
  but	
  the	
  search	
  and	
  add/delete	
  4mes	
  are	
  
variable.	
  The	
  performance	
  of	
  the	
  lookup	
  depends	
  
on	
  the	
  chosen	
  algorithm.	
  The	
  memory	
  efficiency	
  of	
  
the	
  TRIE	
  depends	
  on	
  the	
  prefix	
  distribu4on	
  and	
  the	
  
par4cular	
  algorithm	
  used	
  to	
  manage	
  the	
  data	
  
structure	
  
	
  
Size
What	
  memory	
  size	
  do	
  we	
  need	
  for	
  10	
  years	
  of	
  FIB	
  growth	
  from	
  
today?	
  
TCAM
V4: 2M entries (1Gt)
plus
V6: 1M entries (2Gt)
2014 2019 2024
512K
25K 125K
1M768K
512KV6 FIB
V4 FIB
Trie
V4: 100Mbit memory (500Mt)
plus
V6: 200Mbit memory (1Gt)
“The	
  Impact	
  of	
  Address	
  Alloca4on	
  and	
  Rou4ng	
  on	
  the	
  Structure	
  and	
  	
  
Implementa4on	
  of	
  Rou4ng	
  Tables”,	
  Narayn,	
  Govindan	
  &	
  Varghese,	
  SIGCOMM	
  ‘03	
  
Scaling the FIB
BGP	
  table	
  growth	
  is	
  slow	
  enough	
  that	
  we	
  can	
  con4nue	
  to	
  
use	
  simple	
  FIB	
  lookup	
  in	
  linecards	
  without	
  straining	
  the	
  
state	
  of	
  the	
  art	
  in	
  memory	
  capacity	
  
	
  
However,	
  if	
  it	
  all	
  turns	
  horrible,	
  there	
  are	
  alterna4ves	
  to	
  
using	
  a	
  complete	
  FIB	
  in	
  memory,	
  which	
  are	
  at	
  the	
  
moment	
  variously	
  robust	
  and	
  variously	
  viable:	
  
FIB	
  compression	
  
MPLS	
  
Locator/ID	
  Separa4on	
  (LISP)	
  
OpenFlow/Sofware	
  Defined	
  Networking	
  (SDN)	
  
	
  
But it’s not just size
It’s	
  speed	
  as	
  well.	
  
10Mb	
  Ethernet	
  had	
  a	
  64	
  byte	
  min	
  packet	
  size,	
  plus	
  
preamble	
  plus	
  inter-­‐packet	
  spacing	
  
	
  =14,880	
  pps	
  
	
  =1	
  packet	
  every	
  67usec	
  
	
  	
  
We’ve	
  increased	
  speed	
  of	
  circuits,	
  but	
  lef	
  the	
  
Ethernet	
  framing	
  and	
  packet	
  size	
  limits	
  largely	
  
unaltered.	
  What	
  does	
  this	
  imply	
  for	
  router	
  
memory?	
  
5
8	
  
Wireline Speed – Ethernet
1980 1990 2000 2010 2020
1Tb
10Mb
100Mb
1Gb
10Gb
100Gb
10Mb 1982/15Kpps
100Mb 1995 / 150Kpps
1Gb 1999 / 1.5Mpps
10Gb 2002 / 15Mpps
40Gb/100Gb 2010 / 150Mpps
400Gb/1Tb 2017?
1.5Gpps
Clock Speed – Processors
1980 1990 2000 2010 2020
100Ghz
1Mhz
10Mhz
100Mhz
1GHz
10GHz
8080 2Mhz 1981
Dec Alpha 100Mz 1992
AMD 1GHz 2000
P4 3Ghz 2002
zEC12 5.5Ghz 2012
Clock Speed – Processors
CPU vs Memory Speed
Speed, Speed, Speed
What	
  memory	
  speeds	
  are	
  necessary	
  to	
  sustain	
  a	
  maximal	
  packet	
  
rate?	
  
100GE 150Mpps 6.7ns per packet
400Ge 600Mpps 1.6ns per packet
1Te 1.5Gpps 0.67ns per packet
0ns 10ns 20ns 30ns 40ns 50ns
100Ge400Ge1Te
Speed, Speed, Speed
What	
  memory	
  speeds	
  do	
  we	
  have	
  today?	
  
0ns 10ns 20ns 30ns 40ns 50ns
Commodity DRAMDDR3DRAM= 9ns -15ns
RLDRAM = 1.9ns - 12ns
Thanks	
  to	
  Greg	
  Hankins	
  
100Ge = 6.7ns
400Ge =1.67ns
1Te = 0.67ns
Scaling Speed
Scaling	
  size	
  is	
  not	
  a	
  drama4c	
  problem	
  for	
  the	
  
Internet	
  of	
  today	
  or	
  even	
  tomorrow	
  
	
  
Scaling	
  speed	
  is	
  going	
  to	
  be	
  tougher	
  over	
  4me	
  
	
  
Moore’s	
  Law	
  talks	
  about	
  the	
  number	
  of	
  gates	
  per	
  
circuit,	
  but	
  not	
  circuit	
  clocking	
  speeds	
  
Speed	
  and	
  capacity	
  could	
  be	
  the	
  major	
  design	
  
challenge	
  for	
  network	
  equipment	
  in	
  the	
  coming	
  
years	
  
hup://www.startupinnova4on.org/research/moores-­‐law/	
  
Scaling Speed
If	
  we	
  can’t	
  route	
  the	
  max	
  packet	
  rate	
  for	
  a	
  Terrabit	
  wire	
  
then:	
  
	
  
•  Should	
  the	
  IEEE	
  standards	
  group	
  recognise	
  this	
  and	
  
support	
  a	
  case	
  to	
  reduce	
  the	
  max	
  packet	
  rate	
  by	
  moving	
  
away	
  from	
  a	
  64byte	
  min	
  packet	
  size	
  for	
  the	
  1Tb	
  802.3	
  
standard?	
  
•  Can	
  we	
  push	
  this	
  into	
  Layer	
  3?	
  if	
  we	
  want	
  to	
  exploit	
  
parallelism	
  as	
  an	
  alterna4ve	
  to	
  wireline	
  speed	
  for	
  
terrabit	
  networks,	
  then	
  is	
  the	
  use	
  of	
  best	
  path	
  rou4ng	
  
protocols,	
  coupled	
  with	
  des4na4on-­‐based	
  hop-­‐based	
  
forwarding	
  going	
  to	
  scale?	
  	
  
•  Or	
  do	
  we	
  start	
  to	
  4nker	
  with	
  the	
  IP	
  architecture	
  itself?	
  
Are	
  we	
  going	
  to	
  need	
  to	
  look	
  at	
  path-­‐pinned	
  rou4ng	
  
architectures	
  to	
  provide	
  stable	
  flow-­‐level	
  parallelism	
  
within	
  the	
  network	
  to	
  limit	
  aggregate	
  flow	
  volumes?	
  
hup://www.startupinnova4on.org/research/moores-­‐law/	
  
Thank You
Questions?

Contenu connexe

Tendances

IPv6 Addressing Plans and Subnetting
IPv6 Addressing Plans and SubnettingIPv6 Addressing Plans and Subnetting
IPv6 Addressing Plans and SubnettingRIPE NCC
 
Getting IPv6 & Securing your Routing
Getting IPv6 & Securing your RoutingGetting IPv6 & Securing your Routing
Getting IPv6 & Securing your RoutingRIPE NCC
 
The trend stats of routing table at JPIX route servers
The trend stats of routing table at JPIX route serversThe trend stats of routing table at JPIX route servers
The trend stats of routing table at JPIX route serversAPNIC
 
Facilitating IPv6 Deployment
Facilitating IPv6 DeploymentFacilitating IPv6 Deployment
Facilitating IPv6 DeploymentRIPE NCC
 
Measuring IPv6 Performance, RIPE73
Measuring IPv6 Performance, RIPE73Measuring IPv6 Performance, RIPE73
Measuring IPv6 Performance, RIPE73APNIC
 
The case for IPv6
The case for IPv6The case for IPv6
The case for IPv6APNIC
 
Cisco IPv6 Deployment Statics, by Shishio Tsuchiya [APRICOT 2015]
Cisco IPv6 Deployment Statics, by Shishio Tsuchiya [APRICOT 2015]Cisco IPv6 Deployment Statics, by Shishio Tsuchiya [APRICOT 2015]
Cisco IPv6 Deployment Statics, by Shishio Tsuchiya [APRICOT 2015]APNIC
 
The State of IPv6, PTC17
The State of IPv6, PTC17The State of IPv6, PTC17
The State of IPv6, PTC17APNIC
 
APNIC Update - NZNOG 2017
APNIC Update - NZNOG 2017APNIC Update - NZNOG 2017
APNIC Update - NZNOG 2017APNIC
 
Simplified IPv6 Subnetting. Understanding What’s What.
Simplified IPv6 Subnetting. Understanding What’s What.Simplified IPv6 Subnetting. Understanding What’s What.
Simplified IPv6 Subnetting. Understanding What’s What.SolarWinds
 
BGP: Whats so special about the number 512?
BGP: Whats so special about the number 512?BGP: Whats so special about the number 512?
BGP: Whats so special about the number 512?GeoffHuston
 
IPv6 deployment at APNIC
IPv6 deployment at APNICIPv6 deployment at APNIC
IPv6 deployment at APNICAPNIC
 
IPv6 readiness among APEC TEL member economies
IPv6 readiness among APEC TEL member economiesIPv6 readiness among APEC TEL member economies
IPv6 readiness among APEC TEL member economiesAPNIC
 
IPv6 deployment, India
IPv6 deployment, IndiaIPv6 deployment, India
IPv6 deployment, IndiaAPNIC
 
IPv6 News from the RIPE NCC
IPv6 News from the RIPE NCCIPv6 News from the RIPE NCC
IPv6 News from the RIPE NCCRIPE NCC
 
Abitcool - A vast array of small-scale service providers with gigabit access,...
Abitcool - A vast array of small-scale service providers with gigabit access,...Abitcool - A vast array of small-scale service providers with gigabit access,...
Abitcool - A vast array of small-scale service providers with gigabit access,...APNIC
 
Akamai - State of Internet Raporu 2014 1. Çeyrek
Akamai - State of Internet Raporu 2014 1. ÇeyrekAkamai - State of Internet Raporu 2014 1. Çeyrek
Akamai - State of Internet Raporu 2014 1. ÇeyrekWebrazzi
 

Tendances (19)

IPv6 Addressing Plans and Subnetting
IPv6 Addressing Plans and SubnettingIPv6 Addressing Plans and Subnetting
IPv6 Addressing Plans and Subnetting
 
32 - IDNOG03 - Lia Hestina (RIPE) - ATLAS Measurement
32 - IDNOG03  - Lia Hestina (RIPE) - ATLAS Measurement32 - IDNOG03  - Lia Hestina (RIPE) - ATLAS Measurement
32 - IDNOG03 - Lia Hestina (RIPE) - ATLAS Measurement
 
Getting IPv6 & Securing your Routing
Getting IPv6 & Securing your RoutingGetting IPv6 & Securing your Routing
Getting IPv6 & Securing your Routing
 
The trend stats of routing table at JPIX route servers
The trend stats of routing table at JPIX route serversThe trend stats of routing table at JPIX route servers
The trend stats of routing table at JPIX route servers
 
06 (IDNOG02) IPv4 Address Transfer by Wita Laksono
06 (IDNOG02) IPv4 Address Transfer by Wita Laksono06 (IDNOG02) IPv4 Address Transfer by Wita Laksono
06 (IDNOG02) IPv4 Address Transfer by Wita Laksono
 
Facilitating IPv6 Deployment
Facilitating IPv6 DeploymentFacilitating IPv6 Deployment
Facilitating IPv6 Deployment
 
Measuring IPv6 Performance, RIPE73
Measuring IPv6 Performance, RIPE73Measuring IPv6 Performance, RIPE73
Measuring IPv6 Performance, RIPE73
 
The case for IPv6
The case for IPv6The case for IPv6
The case for IPv6
 
Cisco IPv6 Deployment Statics, by Shishio Tsuchiya [APRICOT 2015]
Cisco IPv6 Deployment Statics, by Shishio Tsuchiya [APRICOT 2015]Cisco IPv6 Deployment Statics, by Shishio Tsuchiya [APRICOT 2015]
Cisco IPv6 Deployment Statics, by Shishio Tsuchiya [APRICOT 2015]
 
The State of IPv6, PTC17
The State of IPv6, PTC17The State of IPv6, PTC17
The State of IPv6, PTC17
 
APNIC Update - NZNOG 2017
APNIC Update - NZNOG 2017APNIC Update - NZNOG 2017
APNIC Update - NZNOG 2017
 
Simplified IPv6 Subnetting. Understanding What’s What.
Simplified IPv6 Subnetting. Understanding What’s What.Simplified IPv6 Subnetting. Understanding What’s What.
Simplified IPv6 Subnetting. Understanding What’s What.
 
BGP: Whats so special about the number 512?
BGP: Whats so special about the number 512?BGP: Whats so special about the number 512?
BGP: Whats so special about the number 512?
 
IPv6 deployment at APNIC
IPv6 deployment at APNICIPv6 deployment at APNIC
IPv6 deployment at APNIC
 
IPv6 readiness among APEC TEL member economies
IPv6 readiness among APEC TEL member economiesIPv6 readiness among APEC TEL member economies
IPv6 readiness among APEC TEL member economies
 
IPv6 deployment, India
IPv6 deployment, IndiaIPv6 deployment, India
IPv6 deployment, India
 
IPv6 News from the RIPE NCC
IPv6 News from the RIPE NCCIPv6 News from the RIPE NCC
IPv6 News from the RIPE NCC
 
Abitcool - A vast array of small-scale service providers with gigabit access,...
Abitcool - A vast array of small-scale service providers with gigabit access,...Abitcool - A vast array of small-scale service providers with gigabit access,...
Abitcool - A vast array of small-scale service providers with gigabit access,...
 
Akamai - State of Internet Raporu 2014 1. Çeyrek
Akamai - State of Internet Raporu 2014 1. ÇeyrekAkamai - State of Internet Raporu 2014 1. Çeyrek
Akamai - State of Internet Raporu 2014 1. Çeyrek
 

En vedette

Cisco catalyst 6500 architecture white paper
Cisco catalyst 6500 architecture white paperCisco catalyst 6500 architecture white paper
Cisco catalyst 6500 architecture white paperIT Tech
 
Prof. Uri Weiser,Technion
Prof. Uri Weiser,TechnionProf. Uri Weiser,Technion
Prof. Uri Weiser,Technionchiportal
 
OIF on 400G for Next Gen Optical Networks Conference
OIF on 400G for Next Gen Optical Networks ConferenceOIF on 400G for Next Gen Optical Networks Conference
OIF on 400G for Next Gen Optical Networks ConferenceDeborah Porchivina
 
Prof. Danny Raz, Director, Bell Labs Israel, Nokia
 Prof. Danny Raz, Director, Bell Labs Israel, Nokia  Prof. Danny Raz, Director, Bell Labs Israel, Nokia
Prof. Danny Raz, Director, Bell Labs Israel, Nokia chiportal
 
Implementing Useful Clock Skew Using Skew Groups
Implementing Useful Clock Skew Using Skew GroupsImplementing Useful Clock Skew Using Skew Groups
Implementing Useful Clock Skew Using Skew GroupsM Mei
 
Fujitsu 100G Overview
Fujitsu 100G OverviewFujitsu 100G Overview
Fujitsu 100G OverviewEd Dodds
 
Beyond 100GE
Beyond 100GEBeyond 100GE
Beyond 100GEAPNIC
 
Juniper Networks Router Architecture
Juniper Networks Router ArchitectureJuniper Networks Router Architecture
Juniper Networks Router Architecturelawuah
 
End User DNS Measurement at APNIC
End User DNS Measurement at APNICEnd User DNS Measurement at APNIC
End User DNS Measurement at APNICAPNIC
 
OIF 2015 FOE Architecture Presentation
OIF 2015 FOE Architecture PresentationOIF 2015 FOE Architecture Presentation
OIF 2015 FOE Architecture PresentationDeborah Porchivina
 
What's so special about the number 512?
What's so special about the number 512?What's so special about the number 512?
What's so special about the number 512?APNIC
 
ENRZ Advanced Modulation for Low Latency Applications
ENRZ Advanced Modulation for Low Latency ApplicationsENRZ Advanced Modulation for Low Latency Applications
ENRZ Advanced Modulation for Low Latency ApplicationsDeborah Porchivina
 
Dr. John Bainbridge, Principal Application Architect, NetSpeed
 Dr. John Bainbridge, Principal Application Architect, NetSpeed  Dr. John Bainbridge, Principal Application Architect, NetSpeed
Dr. John Bainbridge, Principal Application Architect, NetSpeed chiportal
 
TCAMのしくみ
TCAMのしくみTCAMのしくみ
TCAMのしくみogatay
 

En vedette (16)

Cisco catalyst 6500 architecture white paper
Cisco catalyst 6500 architecture white paperCisco catalyst 6500 architecture white paper
Cisco catalyst 6500 architecture white paper
 
Prof. Uri Weiser,Technion
Prof. Uri Weiser,TechnionProf. Uri Weiser,Technion
Prof. Uri Weiser,Technion
 
OIF on 400G for Next Gen Optical Networks Conference
OIF on 400G for Next Gen Optical Networks ConferenceOIF on 400G for Next Gen Optical Networks Conference
OIF on 400G for Next Gen Optical Networks Conference
 
OIF CEI 56-G-FOE-April2015
OIF CEI 56-G-FOE-April2015OIF CEI 56-G-FOE-April2015
OIF CEI 56-G-FOE-April2015
 
Prof. Danny Raz, Director, Bell Labs Israel, Nokia
 Prof. Danny Raz, Director, Bell Labs Israel, Nokia  Prof. Danny Raz, Director, Bell Labs Israel, Nokia
Prof. Danny Raz, Director, Bell Labs Israel, Nokia
 
ECOC Panel on OIF CEI 56G
ECOC Panel on OIF CEI 56GECOC Panel on OIF CEI 56G
ECOC Panel on OIF CEI 56G
 
Implementing Useful Clock Skew Using Skew Groups
Implementing Useful Clock Skew Using Skew GroupsImplementing Useful Clock Skew Using Skew Groups
Implementing Useful Clock Skew Using Skew Groups
 
Fujitsu 100G Overview
Fujitsu 100G OverviewFujitsu 100G Overview
Fujitsu 100G Overview
 
Beyond 100GE
Beyond 100GEBeyond 100GE
Beyond 100GE
 
Juniper Networks Router Architecture
Juniper Networks Router ArchitectureJuniper Networks Router Architecture
Juniper Networks Router Architecture
 
End User DNS Measurement at APNIC
End User DNS Measurement at APNICEnd User DNS Measurement at APNIC
End User DNS Measurement at APNIC
 
OIF 2015 FOE Architecture Presentation
OIF 2015 FOE Architecture PresentationOIF 2015 FOE Architecture Presentation
OIF 2015 FOE Architecture Presentation
 
What's so special about the number 512?
What's so special about the number 512?What's so special about the number 512?
What's so special about the number 512?
 
ENRZ Advanced Modulation for Low Latency Applications
ENRZ Advanced Modulation for Low Latency ApplicationsENRZ Advanced Modulation for Low Latency Applications
ENRZ Advanced Modulation for Low Latency Applications
 
Dr. John Bainbridge, Principal Application Architect, NetSpeed
 Dr. John Bainbridge, Principal Application Architect, NetSpeed  Dr. John Bainbridge, Principal Application Architect, NetSpeed
Dr. John Bainbridge, Principal Application Architect, NetSpeed
 
TCAMのしくみ
TCAMのしくみTCAMのしくみ
TCAMのしくみ
 

Similaire à BGP in 2014

BGP in 2015
BGP in 2015BGP in 2015
BGP in 2015APNIC
 
Routing and Addressing in 2018
Routing and Addressing in 2018Routing and Addressing in 2018
Routing and Addressing in 2018APNIC
 
NANOG 90: 'BGP in 2023' presented by Geoff Huston
NANOG 90: 'BGP in 2023' presented by Geoff HustonNANOG 90: 'BGP in 2023' presented by Geoff Huston
NANOG 90: 'BGP in 2023' presented by Geoff HustonAPNIC
 
Addressing 2015
Addressing 2015Addressing 2015
Addressing 2015APNIC
 
IPv6 Migration Infographic with IPv4 Exhaustion Timeline for 2014
IPv6 Migration Infographic with IPv4 Exhaustion Timeline for 2014IPv6 Migration Infographic with IPv4 Exhaustion Timeline for 2014
IPv6 Migration Infographic with IPv4 Exhaustion Timeline for 2014Network Utility Force
 
WHD Presentation by Sandra Brown 3/15/16
WHD Presentation by Sandra Brown 3/15/16WHD Presentation by Sandra Brown 3/15/16
WHD Presentation by Sandra Brown 3/15/16Sandra Brown
 
Broadband India Forum Session on IPv6: The Post-IPocalypse Internet
Broadband India Forum Session on IPv6: The Post-IPocalypse InternetBroadband India Forum Session on IPv6: The Post-IPocalypse Internet
Broadband India Forum Session on IPv6: The Post-IPocalypse InternetAPNIC
 
Whitepaper what enterprises should do about i pv6 in 2011 cisco_eric.vyncke
Whitepaper what enterprises should do about i pv6 in 2011 cisco_eric.vynckeWhitepaper what enterprises should do about i pv6 in 2011 cisco_eric.vyncke
Whitepaper what enterprises should do about i pv6 in 2011 cisco_eric.vynckeNTTE_France
 
Is IPv6 Really Faster?
Is IPv6 Really Faster?Is IPv6 Really Faster?
Is IPv6 Really Faster?APNIC
 
IPv6 Performance
IPv6 PerformanceIPv6 Performance
IPv6 PerformanceAPNIC
 
John Curran - Moving to IPv6
John Curran - Moving to IPv6John Curran - Moving to IPv6
John Curran - Moving to IPv6Luz Fiumara
 
The Environment-Related Opportunities Of Unutilized IPv4 Addresses | IP Addre...
The Environment-Related Opportunities Of Unutilized IPv4 Addresses | IP Addre...The Environment-Related Opportunities Of Unutilized IPv4 Addresses | IP Addre...
The Environment-Related Opportunities Of Unutilized IPv4 Addresses | IP Addre...IPv4Mall
 
IPv4 Pricing and Transfer Update - IPv4 Market Group
IPv4 Pricing and Transfer Update - IPv4 Market GroupIPv4 Pricing and Transfer Update - IPv4 Market Group
IPv4 Pricing and Transfer Update - IPv4 Market GroupAPNIC
 
IPv6 deployment status - APEC TEL47
IPv6 deployment status - APEC TEL47IPv6 deployment status - APEC TEL47
IPv6 deployment status - APEC TEL47APNIC
 
Update on the Why and How of IPv6 Deployment
Update on the Why and How of IPv6 DeploymentUpdate on the Why and How of IPv6 Deployment
Update on the Why and How of IPv6 DeploymentRIPE NCC
 

Similaire à BGP in 2014 (20)

BGP in 2015
BGP in 2015BGP in 2015
BGP in 2015
 
Routing and Addressing in 2018
Routing and Addressing in 2018Routing and Addressing in 2018
Routing and Addressing in 2018
 
NANOG 90: 'BGP in 2023' presented by Geoff Huston
NANOG 90: 'BGP in 2023' presented by Geoff HustonNANOG 90: 'BGP in 2023' presented by Geoff Huston
NANOG 90: 'BGP in 2023' presented by Geoff Huston
 
Addressing 2015
Addressing 2015Addressing 2015
Addressing 2015
 
IPv6 Migration Infographic with IPv4 Exhaustion Timeline for 2014
IPv6 Migration Infographic with IPv4 Exhaustion Timeline for 2014IPv6 Migration Infographic with IPv4 Exhaustion Timeline for 2014
IPv6 Migration Infographic with IPv4 Exhaustion Timeline for 2014
 
WHD Presentation by Sandra Brown 3/15/16
WHD Presentation by Sandra Brown 3/15/16WHD Presentation by Sandra Brown 3/15/16
WHD Presentation by Sandra Brown 3/15/16
 
Broadband India Forum Session on IPv6: The Post-IPocalypse Internet
Broadband India Forum Session on IPv6: The Post-IPocalypse InternetBroadband India Forum Session on IPv6: The Post-IPocalypse Internet
Broadband India Forum Session on IPv6: The Post-IPocalypse Internet
 
Whitepaper what enterprises should do about i pv6 in 2011 cisco_eric.vyncke
Whitepaper what enterprises should do about i pv6 in 2011 cisco_eric.vynckeWhitepaper what enterprises should do about i pv6 in 2011 cisco_eric.vyncke
Whitepaper what enterprises should do about i pv6 in 2011 cisco_eric.vyncke
 
Is IPv6 Really Faster?
Is IPv6 Really Faster?Is IPv6 Really Faster?
Is IPv6 Really Faster?
 
IPv6
IPv6IPv6
IPv6
 
IPv6 Performance
IPv6 PerformanceIPv6 Performance
IPv6 Performance
 
Curran John
Curran JohnCurran John
Curran John
 
Curran John
Curran JohnCurran John
Curran John
 
John Curran - Moving to IPv6
John Curran - Moving to IPv6John Curran - Moving to IPv6
John Curran - Moving to IPv6
 
CTO Cybersecurity Forum 2013 Pierre Dandjinou
CTO Cybersecurity Forum 2013 Pierre  DandjinouCTO Cybersecurity Forum 2013 Pierre  Dandjinou
CTO Cybersecurity Forum 2013 Pierre Dandjinou
 
The Environment-Related Opportunities Of Unutilized IPv4 Addresses | IP Addre...
The Environment-Related Opportunities Of Unutilized IPv4 Addresses | IP Addre...The Environment-Related Opportunities Of Unutilized IPv4 Addresses | IP Addre...
The Environment-Related Opportunities Of Unutilized IPv4 Addresses | IP Addre...
 
IPv4 Pricing and Transfer Update - IPv4 Market Group
IPv4 Pricing and Transfer Update - IPv4 Market GroupIPv4 Pricing and Transfer Update - IPv4 Market Group
IPv4 Pricing and Transfer Update - IPv4 Market Group
 
IPv6 deployment status - APEC TEL47
IPv6 deployment status - APEC TEL47IPv6 deployment status - APEC TEL47
IPv6 deployment status - APEC TEL47
 
Update on the Why and How of IPv6 Deployment
Update on the Why and How of IPv6 DeploymentUpdate on the Why and How of IPv6 Deployment
Update on the Why and How of IPv6 Deployment
 
ION Bucharest - Update on the Why and How of IPv6 Deployment
ION Bucharest - Update on the Why and How of IPv6 DeploymentION Bucharest - Update on the Why and How of IPv6 Deployment
ION Bucharest - Update on the Why and How of IPv6 Deployment
 

Plus de APNIC

IP addressing and IPv6, presented by Paul Wilson at IETF 119
IP addressing and IPv6, presented by Paul Wilson at IETF 119IP addressing and IPv6, presented by Paul Wilson at IETF 119
IP addressing and IPv6, presented by Paul Wilson at IETF 119APNIC
 
draft-harrison-sidrops-manifest-number-01, presented at IETF 119
draft-harrison-sidrops-manifest-number-01, presented at IETF 119draft-harrison-sidrops-manifest-number-01, presented at IETF 119
draft-harrison-sidrops-manifest-number-01, presented at IETF 119APNIC
 
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119APNIC
 
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119APNIC
 
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119Is DNS ready for IPv6, presented by Geoff Huston at IETF 119
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119APNIC
 
Benefits of doing Internet peering and running an Internet Exchange (IX) pres...
Benefits of doing Internet peering and running an Internet Exchange (IX) pres...Benefits of doing Internet peering and running an Internet Exchange (IX) pres...
Benefits of doing Internet peering and running an Internet Exchange (IX) pres...APNIC
 
APNIC Update and RIR Policies for ccTLDs, presented at APTLD 85
APNIC Update and RIR Policies for ccTLDs, presented at APTLD 85APNIC Update and RIR Policies for ccTLDs, presented at APTLD 85
APNIC Update and RIR Policies for ccTLDs, presented at APTLD 85APNIC
 
DNS-OARC 42: Is the DNS ready for IPv6? presentation by Geoff Huston
DNS-OARC 42: Is the DNS ready for IPv6? presentation by Geoff HustonDNS-OARC 42: Is the DNS ready for IPv6? presentation by Geoff Huston
DNS-OARC 42: Is the DNS ready for IPv6? presentation by Geoff HustonAPNIC
 
APAN 57: APNIC Report at APAN 57, Bangkok, Thailand
APAN 57: APNIC Report at APAN 57, Bangkok, ThailandAPAN 57: APNIC Report at APAN 57, Bangkok, Thailand
APAN 57: APNIC Report at APAN 57, Bangkok, ThailandAPNIC
 
Lao Digital Week 2024: It's time to deploy IPv6
Lao Digital Week 2024: It's time to deploy IPv6Lao Digital Week 2024: It's time to deploy IPv6
Lao Digital Week 2024: It's time to deploy IPv6APNIC
 
AINTEC 2023: Networking in the Penumbra!
AINTEC 2023: Networking in the Penumbra!AINTEC 2023: Networking in the Penumbra!
AINTEC 2023: Networking in the Penumbra!APNIC
 
CNIRC 2023: Global and Regional IPv6 Deployment 2023
CNIRC 2023: Global and Regional IPv6 Deployment 2023CNIRC 2023: Global and Regional IPv6 Deployment 2023
CNIRC 2023: Global and Regional IPv6 Deployment 2023APNIC
 
AFSIG 2023: APNIC Foundation and support for Internet development
AFSIG 2023: APNIC Foundation and support for Internet developmentAFSIG 2023: APNIC Foundation and support for Internet development
AFSIG 2023: APNIC Foundation and support for Internet developmentAPNIC
 
AFNOG 1: Afghanistan IP Deployment Status
AFNOG 1: Afghanistan IP Deployment StatusAFNOG 1: Afghanistan IP Deployment Status
AFNOG 1: Afghanistan IP Deployment StatusAPNIC
 
AFSIG 2023: Internet routing and addressing
AFSIG 2023: Internet routing and addressingAFSIG 2023: Internet routing and addressing
AFSIG 2023: Internet routing and addressingAPNIC
 
AFSIG 2023: APNIC - Registry & Development
AFSIG 2023: APNIC - Registry & DevelopmentAFSIG 2023: APNIC - Registry & Development
AFSIG 2023: APNIC - Registry & DevelopmentAPNIC
 
Afghanistan IGF 2023: The ABCs and importance of cybersecurity
Afghanistan IGF 2023: The ABCs and importance of cybersecurityAfghanistan IGF 2023: The ABCs and importance of cybersecurity
Afghanistan IGF 2023: The ABCs and importance of cybersecurityAPNIC
 
IDNIC OPM 2023: IPv6 deployment planning and security considerations
IDNIC OPM 2023: IPv6 deployment planning and security considerationsIDNIC OPM 2023: IPv6 deployment planning and security considerations
IDNIC OPM 2023: IPv6 deployment planning and security considerationsAPNIC
 
IDNIC OPM 2023 - Internet Number Registry System
IDNIC OPM 2023 - Internet Number Registry SystemIDNIC OPM 2023 - Internet Number Registry System
IDNIC OPM 2023 - Internet Number Registry SystemAPNIC
 
PacNOG 32: Resource Public Key Infrastructure (RPKI) in 30 minutes or less
PacNOG 32: Resource Public Key Infrastructure (RPKI) in 30 minutes or lessPacNOG 32: Resource Public Key Infrastructure (RPKI) in 30 minutes or less
PacNOG 32: Resource Public Key Infrastructure (RPKI) in 30 minutes or lessAPNIC
 

Plus de APNIC (20)

IP addressing and IPv6, presented by Paul Wilson at IETF 119
IP addressing and IPv6, presented by Paul Wilson at IETF 119IP addressing and IPv6, presented by Paul Wilson at IETF 119
IP addressing and IPv6, presented by Paul Wilson at IETF 119
 
draft-harrison-sidrops-manifest-number-01, presented at IETF 119
draft-harrison-sidrops-manifest-number-01, presented at IETF 119draft-harrison-sidrops-manifest-number-01, presented at IETF 119
draft-harrison-sidrops-manifest-number-01, presented at IETF 119
 
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119
 
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119
 
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119Is DNS ready for IPv6, presented by Geoff Huston at IETF 119
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119
 
Benefits of doing Internet peering and running an Internet Exchange (IX) pres...
Benefits of doing Internet peering and running an Internet Exchange (IX) pres...Benefits of doing Internet peering and running an Internet Exchange (IX) pres...
Benefits of doing Internet peering and running an Internet Exchange (IX) pres...
 
APNIC Update and RIR Policies for ccTLDs, presented at APTLD 85
APNIC Update and RIR Policies for ccTLDs, presented at APTLD 85APNIC Update and RIR Policies for ccTLDs, presented at APTLD 85
APNIC Update and RIR Policies for ccTLDs, presented at APTLD 85
 
DNS-OARC 42: Is the DNS ready for IPv6? presentation by Geoff Huston
DNS-OARC 42: Is the DNS ready for IPv6? presentation by Geoff HustonDNS-OARC 42: Is the DNS ready for IPv6? presentation by Geoff Huston
DNS-OARC 42: Is the DNS ready for IPv6? presentation by Geoff Huston
 
APAN 57: APNIC Report at APAN 57, Bangkok, Thailand
APAN 57: APNIC Report at APAN 57, Bangkok, ThailandAPAN 57: APNIC Report at APAN 57, Bangkok, Thailand
APAN 57: APNIC Report at APAN 57, Bangkok, Thailand
 
Lao Digital Week 2024: It's time to deploy IPv6
Lao Digital Week 2024: It's time to deploy IPv6Lao Digital Week 2024: It's time to deploy IPv6
Lao Digital Week 2024: It's time to deploy IPv6
 
AINTEC 2023: Networking in the Penumbra!
AINTEC 2023: Networking in the Penumbra!AINTEC 2023: Networking in the Penumbra!
AINTEC 2023: Networking in the Penumbra!
 
CNIRC 2023: Global and Regional IPv6 Deployment 2023
CNIRC 2023: Global and Regional IPv6 Deployment 2023CNIRC 2023: Global and Regional IPv6 Deployment 2023
CNIRC 2023: Global and Regional IPv6 Deployment 2023
 
AFSIG 2023: APNIC Foundation and support for Internet development
AFSIG 2023: APNIC Foundation and support for Internet developmentAFSIG 2023: APNIC Foundation and support for Internet development
AFSIG 2023: APNIC Foundation and support for Internet development
 
AFNOG 1: Afghanistan IP Deployment Status
AFNOG 1: Afghanistan IP Deployment StatusAFNOG 1: Afghanistan IP Deployment Status
AFNOG 1: Afghanistan IP Deployment Status
 
AFSIG 2023: Internet routing and addressing
AFSIG 2023: Internet routing and addressingAFSIG 2023: Internet routing and addressing
AFSIG 2023: Internet routing and addressing
 
AFSIG 2023: APNIC - Registry & Development
AFSIG 2023: APNIC - Registry & DevelopmentAFSIG 2023: APNIC - Registry & Development
AFSIG 2023: APNIC - Registry & Development
 
Afghanistan IGF 2023: The ABCs and importance of cybersecurity
Afghanistan IGF 2023: The ABCs and importance of cybersecurityAfghanistan IGF 2023: The ABCs and importance of cybersecurity
Afghanistan IGF 2023: The ABCs and importance of cybersecurity
 
IDNIC OPM 2023: IPv6 deployment planning and security considerations
IDNIC OPM 2023: IPv6 deployment planning and security considerationsIDNIC OPM 2023: IPv6 deployment planning and security considerations
IDNIC OPM 2023: IPv6 deployment planning and security considerations
 
IDNIC OPM 2023 - Internet Number Registry System
IDNIC OPM 2023 - Internet Number Registry SystemIDNIC OPM 2023 - Internet Number Registry System
IDNIC OPM 2023 - Internet Number Registry System
 
PacNOG 32: Resource Public Key Infrastructure (RPKI) in 30 minutes or less
PacNOG 32: Resource Public Key Infrastructure (RPKI) in 30 minutes or lessPacNOG 32: Resource Public Key Infrastructure (RPKI) in 30 minutes or less
PacNOG 32: Resource Public Key Infrastructure (RPKI) in 30 minutes or less
 

BGP in 2014

  • 3. Looking through the Routing Lens There  are  very  few  ways  to  assemble  a  single   view  of  the  en4re  Internet     The  lens  of  rou4ng  is  one  of  the  ways  in  which   informa4on  rela4ng  to  the  en4re  reachable   Internet  is  bought  together     Even  so,  its  not  a  perfect  lens…  
  • 4. There is no Routing God! There  is  no  single  objec4ve  “out  of  the  system”  view  of   the  Internet’s  Rou4ng  environment.     BGP  distributes  a  rou4ng  view  that  is  modified  as  it  is   distributed,  so  every  eBGP  speaker  will  see  a  slightly   different  set  of  prefixes,  and  each  view  is  rela4ve  to  a   given  loca4on   So  the  picture  I  will  be  pain4ng  here  is  one  that  is  drawn   from  the  perspec4ve  of  AS131072.    This  is  a  stub  AS  at   the  edge  of  the  Internet.     You  may  or  may  not  have  a  similar  view  from  your   network.    
  • 5. 1994: Introduction of CIDR 2001: The Great Internet Boom and Bust 2005: Broadband to the Masses 2009: The GFC hits the Internet 2011: Address Exhaustion 20 Years of Routing the Internet This is a view pulled together from each of the routing peers of Route Views
  • 6. 1994: Introduction of CIDR 2001: The Great Internet Boom and Bust 2005: Broadband to the Masses 2009: The GFC hits the Internet 2011: Address Exhaustion 20 Years of Routing the Internet This is a view pulled together from each of the routing peers of Route Views
  • 7. 2014, as seen at Route Views
  • 8. 2014, as seen at Route Views The last quarter of 2014 saw routing system growth drop off
  • 9. Routing Indicators for IPv4 Routing prefixes – growing by some 45,000 prefixes per year AS Numbers– growing by some 3,000 prefixes per year
  • 10. Routing Indicators for IPv4 More Specifics are still taking up one half of the routing table But the average size of a routing advertisement is getting smaller
  • 11. Routing Indicators for IPv4 Address Exhaustion is now visible in the extent of advertised address space The “shape” of inter-AS interconnection appears to be steady, as the Average AS Path length has been held steady through the year
  • 12. What happened in 2014 in V4? •  From  the  look  of  the  growth  plots,  its  business  as   usual,  despite  the  increasing  pressure  on  IPv4  address   availability   •  You  may  have  no4ced  that  the  number  of  IPv4  routes   cross  across  the  threshold  value  of  512,000  routes  in   the  last  quarter  of  2014   –  And  for  some  routers  this  would’ve  caused  a  hiccup  or  two   •  You  can  also  see  that  the  pace  of  growth  of  the  rou4ng   table  is  dropping  off  towards  the  end  of  the  year   –  IPv4  address  exhaus4on  is  probably  to  blame  here!  
  • 13. How can the IPv4 network continue to grow when we are running out of IPv4 addresses? We  are  now  recycling  old  addresses  back  into   the  rou4ng  system   Some  of  these  addresses  are  transferred  in  ways   that  are  recorded  in  the  registry  system,  while   others  are  being  “leased”  without  any  clear   registra4on  entry  that  describes  the  lessee  
  • 15. IPv4 Address Reuse 50% of new addresses in 2014 were more than 1 year old 20% of new addresses in 2010 were more than 1 year old 18% of new addresses in 2014 were more than 20 years old It appears that this collection of “old” addresses includes space that has been leased rather than transferred
  • 16. IPv4 in 2014 – Growth is Slowing •  Overall  IPv4  Internet  growth  in  terms  of  BGP  is  at  a  rate  of   some  ~9%-­‐10%  p.a.   •  Address  span  growing  far  more  slowly  than  the  table  size   (although  the  LACNIC  runout  in  May  ’14  caused  a  visible   blip  in  the  address  consump4on  rate)   •  The  rate  of  growth  of  the  IPv4  Internet  is  slowing  down,   due  to:   –  Address  shortages   –  Masking  by  NAT  deployments   –  Satura4on  of  cri4cal  market  sectors   –  Transi4on  uncertainty  
  • 17. The Route Views view of IPv6 World IPv6 Day IANA IPv4 Exhaustion
  • 18. 2014 for IPv6, as seen at Route Views
  • 19. Routing Indicators for IPv6 Routing prefixes – growing by some 6,000 prefixes per year AS Numbers– growing by some 1,600 prefixes per year (which is half the V4 growth)
  • 20. Routing Indicators for IPv6 More Specifics now take up one third of the routing table The average size of a routing advertisement is getting smaller
  • 21. Routing Indicators for IPv6 Address consumption is happening at a constant rate, and not growing year by year The “shape” of inter-AS interconnection appears to be steady, as the Average AS Path length has been held steady through the year
  • 22. IPv6 in 2014 •  Overall  IPv6  Internet  growth  in  terms  of  BGP  is   20%  -­‐  40  %  p.a.   – 2012  growth  rate  was  ~  90%.       If  these  rela4ve  growth  rates  persist  then  the  IPv6  network   would  span  the  same  network  domain  as  IPv4  in  ~16  years  4me    
  • 24. BGP Size Projections For  the  Internet  this  is  a  4me  of  extreme   uncertainty   •  Registry  IPv4  address  run  out   •  Uncertainty  over  the  impacts  of  any  afer-­‐market  in   IPv4  on  the  rou4ng  table   •  Uncertainty  over  IPv6  takeup  leads  to  a  mixed  response   to  IPv6  so  far,  and  no  clear  indicator  of  trigger  points   for  change   all  of  which  which  make  this  year’s  projec4on  even   more  specula4ve  than  normal!  
  • 25. V4 - Daily Growth Rates
  • 26. V4 - Daily Growth Rates
  • 27. V4 - Relative Daily Growth Rates
  • 28. V4 - Relative Daily Growth Rates Growth  in  the  V4  network  appears  to  be   constant  at  a  long  term  average  of  120   addi4onal  routes  per  day,  or  some   45,000  addi4onal  routes  per  year     Given  that  the  V4  address  supply  has  run   out  this  implies  further  reduc4ons  in   address  size  in  routes,  which  in  turn   implies  ever  greater  reliance  on  NATs     Its  hard  to  see  how  and  why  this   situa4on  will  persist  at  its  current  levels   over  the  coming  5  year  horizon  
  • 29. IPv4 BGP Table Size predictions Jan  2013          441,000  entries                2014          488,000                  2015          530,000                    2016          580,000                2017          620,000                2018          670,000                2019          710,000                2020          760,000     These  numbers  are  dubious  due  to  uncertain;es  introduced  by  IPv4  address   exhaus;on  pressures.    
  • 31. V6 - Daily Growth Rates
  • 32. V6 - Daily Growth Rates
  • 33. V6 - Relative Growth Rates
  • 34. V6 - Relative Growth RatesGrowth  in  the  V6  network  appears  to  be   increasing,  but  in  rela4ve  terms  this  is  slowing   down.     Early  adopters,  who  have  tended  to  be  the  V4   transit  providers,  have  already  received  IPv6   alloca4on  and  are  rou4ng  them.  The  trailing   edge  of  IPv6  adop4on  are  generally  composed  of   stub  edge  networks  in  IPv4.  These  networks   appear  not  to  have  made  any  visible  moves  in   IPv6  as  yet.     If  we  see  a  change  in  this  picture  the  growth   trend  will  likely  be  exponen4al.  But  its  not  clear   when  such  a  4pping  point  will  occur  
  • 35. IPv6 BGP Table Size predictions Jan  2013              11,600  entries        2014            16,200          2015            21,000          2016                30,000                              25,000        2017            42,000          29,000        2018            58,000            34,000                2019                    82,000                            38,000        2019                  113,000          43,000         Exponen4al  Model   Linear  Model   Range of potential outcomes
  • 36. BGP Table Growth •  Nothing  in  these  figures  suggests  that  there  is  cause   for  urgent  alarm  -­‐-­‐  at  present   •  The  overall  eBGP  growth  rates  for  IPv4  are  holding  at  a   modest  level,  and  the  IPv6  table,  although  it  is  growing   at  a  faster  rela4ve  rate,    is  s4ll  small  in  size  in  absolute   terms   •  As  long  as  we  are  prepared  to  live  within  the  technical   constraints  of  the  current  rou4ng  paradigm,  the   Internet’s  use  of  BGP  will  con4nue  to  be  viable  for   some  4me  yet   •  Nothing  is  mel4ng  in  terms  of  the  size  of  the  rou4ng   table  as  yet    
  • 37. BGP Updates •  What  about  the  level  of  updates  in  BGP?   •  Let’s  look  at  the  update  load  from  a  single   eBGP  feed  in  a  DFZ  context    
  • 40. IPv4 Average AS Path Length Data  from  Route  Views  
  • 41. Updates in IPv4 BGP Nothing  in  these  figures  is  cause  for  any  great  level  of  concern  …   –  The  number  of  updates  per  instability  event  has  been  constant,  which   for  a  distance  vector  rou4ng  protocol  is  weird,  and  completely   unan4cipated.  Distance  Vector  rou4ng  protocols  should  get  noisier  as   the  popula4on  of  protocol  speakers  increases,  and  the  increase  should   be  mul4plica4ve.   –  But  this  is  not  happening  in  the  Internet   –  Which  is  good,  but  why  is  this  not  happening?   Likely  contributors  to  this  +ve  outcome  are  the  damping  effect  of   widespread  use  of  the  MRAI  interval,  and  the  topology  factor,  as  seen  in   the  rela4vely  constant  AS  Path  length  over  this  interval      
  • 42. V6 Announcements and Withdrawals
  • 44. Data  from  Route  Views   V6 Average AS Path Length
  • 45. Updates in IPv6 BGP IPv6  updates  look  a  lot  like  IPv4  updates.   Which  should  not  come  as  a  surprise     It’s  the  same  rou4ng  protocol,  and  the  same  underlying  inter-­‐AS  topology,  and   the  observa4on  is  that  the  convergence  4mes  and  instability  rate  appear  to  be   unrelated  to  the  popula4on  of  the  rou4ng  space.       So  we  see  similar  protocol  convergence  metrics  in  a  network  that  is  1/20  of   the  size  of  the  IPv4  network     It  tends  to  underline  the  importance  of  dense  connec4vity  and  extensive  use   of  local  exchanges  to  minimize  AS  path  lengths  as  a  means  of  containing   scaling  of  the  rou4ng  protocol  
  • 46. Problem? Not a Problem? There  is  nothing  is  this  data  to  suggest  that  we  will  need  a   new  inter-­‐domain  rou4ng  protocol  in  the  next  5  years       Or  even  in  the  next  10  to  15  years     But  this  is  not  the  only  scaling  aspect  of  the  Internet     Remember  that  BGP  is  a  Best  Path  selec4on  protocol.  i.e.  a   single  path  selec4on  protocol.     And  that  might  contribute  to  the  next  scaling  issue…    
  • 47. Inside a router Line Interface Card Switch Fabric Card Management Card Thanks  to  Greg  Hankins  
  • 48. Inside a line card CPU PHY Network Packet Manager DRAM TCAM *DRAM M e d i a B a c k p l a n e FIB Lookup Bank Packet Buffer Thanks  to  Greg  Hankins  
  • 49. Inside a line card CPU PHY Network Packet Manager DRAM TCAM *DRAM M e d i a B a c k p l a n e FIB Lookup Bank Packet Buffer Thanks  to  Greg  Hankins  
  • 50. FIB Lookup Memory The  interface  card’s  network  processor  passes   the  packet’s  des4na4on  address  to  the  FIB   module.     The  FIB  module  returns  with  an  outbound   interface  index  
  • 51. FIB Lookup This  can  be  achieved  by:     –  Loading  the  en4re  rou4ng  table  into  a  Ternary   Content  Addressable  Memory  bank  (TCAM)   or   –  Using  an  ASIC  implementa4on  of  a  TRIE   representa4on  of  the  rou4ng  table  with  DRAM   memory  to  hold  the  rou4ng  table     Either  way,  this  needs  fast  memory  
  • 52.     TCAM Memory Address Outbound Interface identifier 192.0.2.1   I/F  3/1   192.0.0.0/16                  11000000  00000000    xxxxxxxx      xxxxxxxx                                  3/0                 192.0.2.0/24                  11000000  00000000  00000010  xxxxxxxx                                    3/1   11000000  00000000    00000010  00000001   Longest Match The  en4re  FIB  is  loaded  into  TCAM.  Every  des4na4on  address  is   passed  through  the  TCAM,  and  within  one  TCAM  cycle  the  TCAM   returns  the  interface  index  of  the  longest  match.  Each  TCAM  bank   needs  to  be  large  enough  to  hold  the  en4re  FIB.  TTCAM  cycle  4me   needs  to  be  fast  enough  to  support  the  max  packet  rate  of  the  line   card.   TCAM width depends on the chip set in use. One popular TCAM config is 72 bits wide. IPv4 addresses consume a single 72 bit slot, IPv6 consumes two 72 bit slots. If instead you use TCAM with a slot width of 32 bits then IPv6 entries consume 4 times the equivalent slot count of IPv4 entries.
  • 53. TRIE Lookup Address Outbound Interface identifier 192.0.2.1   I/F  3/1   11000000  00000000    00000010  00000001   1/0   1/0   1/0   1/0   1/0   x/0000   ? ? ? ? ? …   ? The  en4re  FIB  is  converted  into  a  serial  decision  tree.  The  size  of   decision  tree  depends  on  the  distribu4on  of  prefix  values  in  the   FIB.  The  performance  of  the  TRIE  depends  on  the  algorithm  used   in  the  ASIC  and  the  number  of  serial  decisions  used  to  reach  a   decision   ASIC DRAM
  • 54. Memory Tradeoffs TCAM Lower Higher Higher Higher Larger 80Mbit ASIC + RLDRAM 3 Higher Lower Lower Lower Smaller 1Gbit Thanks  to  Greg  Hankins   Access Speed $ per bit Power Density Physical Size Capacity
  • 55. Memory Tradeoffs TCAMs  are  higher  cost,  but  operate  with  a  fixed   search  latency  and  a  fixed  add/delete  4me.  TCAMs   scale  linearly  with  the  size  of  the  FIB     ASICs  implement  a  TRIE  in  memory.  The  cost  is   lower,  but  the  search  and  add/delete  4mes  are   variable.  The  performance  of  the  lookup  depends   on  the  chosen  algorithm.  The  memory  efficiency  of   the  TRIE  depends  on  the  prefix  distribu4on  and  the   par4cular  algorithm  used  to  manage  the  data   structure    
  • 56. Size What  memory  size  do  we  need  for  10  years  of  FIB  growth  from   today?   TCAM V4: 2M entries (1Gt) plus V6: 1M entries (2Gt) 2014 2019 2024 512K 25K 125K 1M768K 512KV6 FIB V4 FIB Trie V4: 100Mbit memory (500Mt) plus V6: 200Mbit memory (1Gt) “The  Impact  of  Address  Alloca4on  and  Rou4ng  on  the  Structure  and     Implementa4on  of  Rou4ng  Tables”,  Narayn,  Govindan  &  Varghese,  SIGCOMM  ‘03  
  • 57. Scaling the FIB BGP  table  growth  is  slow  enough  that  we  can  con4nue  to   use  simple  FIB  lookup  in  linecards  without  straining  the   state  of  the  art  in  memory  capacity     However,  if  it  all  turns  horrible,  there  are  alterna4ves  to   using  a  complete  FIB  in  memory,  which  are  at  the   moment  variously  robust  and  variously  viable:   FIB  compression   MPLS   Locator/ID  Separa4on  (LISP)   OpenFlow/Sofware  Defined  Networking  (SDN)    
  • 58. But it’s not just size It’s  speed  as  well.   10Mb  Ethernet  had  a  64  byte  min  packet  size,  plus   preamble  plus  inter-­‐packet  spacing    =14,880  pps    =1  packet  every  67usec       We’ve  increased  speed  of  circuits,  but  lef  the   Ethernet  framing  and  packet  size  limits  largely   unaltered.  What  does  this  imply  for  router   memory?   5 8  
  • 59. Wireline Speed – Ethernet 1980 1990 2000 2010 2020 1Tb 10Mb 100Mb 1Gb 10Gb 100Gb 10Mb 1982/15Kpps 100Mb 1995 / 150Kpps 1Gb 1999 / 1.5Mpps 10Gb 2002 / 15Mpps 40Gb/100Gb 2010 / 150Mpps 400Gb/1Tb 2017? 1.5Gpps
  • 60. Clock Speed – Processors 1980 1990 2000 2010 2020 100Ghz 1Mhz 10Mhz 100Mhz 1GHz 10GHz 8080 2Mhz 1981 Dec Alpha 100Mz 1992 AMD 1GHz 2000 P4 3Ghz 2002 zEC12 5.5Ghz 2012
  • 61. Clock Speed – Processors
  • 62. CPU vs Memory Speed
  • 63. Speed, Speed, Speed What  memory  speeds  are  necessary  to  sustain  a  maximal  packet   rate?   100GE 150Mpps 6.7ns per packet 400Ge 600Mpps 1.6ns per packet 1Te 1.5Gpps 0.67ns per packet 0ns 10ns 20ns 30ns 40ns 50ns 100Ge400Ge1Te
  • 64. Speed, Speed, Speed What  memory  speeds  do  we  have  today?   0ns 10ns 20ns 30ns 40ns 50ns Commodity DRAMDDR3DRAM= 9ns -15ns RLDRAM = 1.9ns - 12ns Thanks  to  Greg  Hankins   100Ge = 6.7ns 400Ge =1.67ns 1Te = 0.67ns
  • 65. Scaling Speed Scaling  size  is  not  a  drama4c  problem  for  the   Internet  of  today  or  even  tomorrow     Scaling  speed  is  going  to  be  tougher  over  4me     Moore’s  Law  talks  about  the  number  of  gates  per   circuit,  but  not  circuit  clocking  speeds   Speed  and  capacity  could  be  the  major  design   challenge  for  network  equipment  in  the  coming   years   hup://www.startupinnova4on.org/research/moores-­‐law/  
  • 66. Scaling Speed If  we  can’t  route  the  max  packet  rate  for  a  Terrabit  wire   then:     •  Should  the  IEEE  standards  group  recognise  this  and   support  a  case  to  reduce  the  max  packet  rate  by  moving   away  from  a  64byte  min  packet  size  for  the  1Tb  802.3   standard?   •  Can  we  push  this  into  Layer  3?  if  we  want  to  exploit   parallelism  as  an  alterna4ve  to  wireline  speed  for   terrabit  networks,  then  is  the  use  of  best  path  rou4ng   protocols,  coupled  with  des4na4on-­‐based  hop-­‐based   forwarding  going  to  scale?     •  Or  do  we  start  to  4nker  with  the  IP  architecture  itself?   Are  we  going  to  need  to  look  at  path-­‐pinned  rou4ng   architectures  to  provide  stable  flow-­‐level  parallelism   within  the  network  to  limit  aggregate  flow  volumes?   hup://www.startupinnova4on.org/research/moores-­‐law/