SlideShare une entreprise Scribd logo
1  sur  52
Télécharger pour lire hors ligne
K O R E A | M A Y 1 1 - 1 2 , 2 0 2 1
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
현대백화점 리테일테크랩과
AWS Prototyping팀 개발자가
들려주는 인공 지능 무인 스토어 개발 여정
최권열
프로핑타이핑 엔지니어
AWS
강신훈
책임
현대 IT&E
박윤진
선임
현대 IT&E
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
01. 발표자 소개
02. 여의도 더현대서울 언커먼스토어(무인매장)
03. 구현 여정
04. AWS Prototyping
05. Detecting & Tracking
06. MLOps
07. 구매 행동 파악
08. 정리
AGENDA
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
01. 발표자 소개
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
AWS Prototyping Program
Development Operation
Machine
Learning
Planning Sprint Review
AWS Cloud
Cloud Native
Modern APP
MSA IaC CICD
Serverless/Container Monitoring/Security
deliver & Enable
üimplement architectures
üintegrate customer codes
ülead project/scrum/sprint
üenable the customer
AWS Services, Tools and SDKs
provide & develop
üprovide legacy source codes
üintegrate legacy source codes
üprovide legacy data
ülearn aws services
Domain-Specific Business Logics
prototype engineer customer developer
partner developer
2 Pizza - One Team
DevOps Agile
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
HYUNDAI IT&E
Total Living
ㆍ 현대리바트
ㆍ 현대L&C
Retail
ㆍ 현대백화점
ㆍ 현대백화점면세점
Food Service
ㆍ 현대그린푸드
ㆍ 현대캐터링시스템
Fashion
ㆍ 한섬
Media
ㆍ 홈쇼핑
ㆍ 퓨처넷
Growth Driver
ㆍ 현대렌탈케어
ㆍ 현대드림투어
ㆍ 현대바이오랜드
ㆍ 에버다임
현대백화점그룹의 IT 전문 회사
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
02. 여의도 더현대서울 언커먼스토어
(무인매장)
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
03. 무인 스토어 구현 여정
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
구현 여정
IT 기술 연구 조직으로 약 2년간 미래형 매장 기술 연구
1st. Retailtech LAB
ㆍ 비즈니스 로직 구체화
ㆍ 주요 기술 개발
3rd. 테스트 매장 OPEN
ㆍ 임직원 테스트 (AWS cloud)
ㆍ 정확도 향상, 비용 효율화
2nd. Proof of Concept
ㆍ 임직원 테스트 (On-premise)
4th. Uncommon Store OPEN
ㆍ 여의도 더현대서울
언커먼스토어 그랜드 오픈
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
구현 여정
On-Premise에서 AWS 클라우드로의 전환
On-Premise
유연성 확장성
신뢰성
CLOUD
장비들이 점점 많아지고, 매장 이벤트가 예측이 안되는데?
내가 필요할 때 마다 빠르게 늘려야 하는데…
비즈니스 로직만으로도 힘든데 보안까지?
장애없이 안정적으로 운영하고 싶다
데이터 학습할 때는 한 번에 많이 빠르게 하고
매장 운영할 때는 적절하게 조절하고 싶은데…
신속성
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
04. AWS Prototyping
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
인공지능 무인 스토어 상용화 어려움
이렇게 큰 서비스를 정말
개발할 수 있을까?
카메라도 늘리고, 센서도 늘리고
이거 다 어떻게 확장하지?
Machine Learning 모델만
잘 만들면 될꺼야!
어디서부터 개발 시작해야지??
군인이 단체가 들어오면
어떻게???
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
AI/ML 기반 서비스 상용화 어려움
복잡성 & 반복성
실효성 & 불확실
확장성 & 신뢰성
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
인공지능 무인 스토어 상용화 어려움
복잡성 & 반복성
실효성 & 불확실
확장성 & 신뢰성
수백개의 센서
수십대의 카메라
수십명의 방문객
수백개의 상품
데이터 수집
데이터 라벨링
모델 설계, 학습, 튜닝
모델 검증
모델 배포
Person Identification
Object Detection
Object Tracking
Pose Estimation
Sensor Fusion
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
실용적인 Practice를 적용하여 접근
Agile/Scrum Modern Application
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
실용적인 Practice를 적용하여 접근
Agile/Scrum
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
애자일 스크럼 기반 개발
Scrum/Sprint
Product
Backlog
Sprint
Planning
Sprint
Backlog
Sprint
Review/Retro
Potentially
Shippable Product
Product Owner Team
Sprint
24H
Daily Scrum
Scrum Master
작은 단위로, 점진적 반복, 실행되는 결과물 중심으로
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
애자일 스크럼 기반 개발 적용 사례
Sprint
Iteration
한 명 입장
바로 퇴장
한 명 입장
물건 한 개 구매
퇴장
두 명 입장
다른 선반에서
각자 구매
퇴장
두 명 입장
같은 선반에서
다른 상품 구매
퇴장
두 명 입장
같은 선반에서
같은 상품 구매
퇴장
처음부터 완벽한 것보다는 작은 단위의 실제 동작하는 결과로부터 복잡한 상황으로
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
애자일 스크럼 기반 개발 적용 사례
Camera Device
Cloud로 Thing 관리
Camera Video
Cloud로 업로드
사용자 선반
비젼 처리
센서 데이터
Cloud로 업로드
누가 무엇을
종합 판단
영수증 발행
사용자 출입구
비젼 처리
선반 제품
종류 판단
방문객 입장
퇴장 판단
Who Pipeline
What Pipeline
Who bought What Pipeline
1 device → nn devices 5 frame/sec → nn frame/sec
70% Accuracy → nn% Accuracy
작은 결과물로부터 기민하고 유연하게 반복하여 확장 가능하게
1 device →nnn devices
Sprint
Iteration
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
실용적인 Practice를 적용하여 접근
Agile/Scrum Modern Application
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
현대식 애플리케이션 개발
Modern Application
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
현대식 애플리케이션 개발
변화에 빠르게 대응할 수 있고 혁신할 수
있도록 민첩성을 확보하기 위해,
애플리케이션을 개발하는 방식으로
클라우드 친화적으로 설계 및 구축하여
개발 속도는 높이고 동시에 리스크를
최소화함
현대식 애플리케이션 개발
(Modern Application)
Feedback
Ideas
Experiment
Innovation
Flywheel
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
현대식 애플리케이션 개발
운영: 가능한 서버리스로
소프트웨어 전달: 자동화, 표준화
보안: 모든 구성원의 책임
아키텍처: 마이크로서비스
데이터: 결합 해제, 용도에 맞도록
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
현대식 애플리케이션 개발 적용 사례
운영: 가능한 서버리스로
소프트웨어 전달: 자동화, 표준화
보안: 모든 구성원의 책임
아키텍처: 마이크로서비스
데이터: 결합 해제, 용도에 맞도록
AWS CloudFormation: Stack
AWS Systems Manager: Parameter Store
AWS CDK: Infrastructure as Code (IaC)
AWS CodePipeline: CICD Pipeline
AWS Step Functions: MLOps Pipeline
Amazon S3: ML Dataset
AWS DynamoDB: Realtime data
AWS RDS: Web Service
Amazon Lambda: REST APIs
Amazon ECS: Batch/Realtime Processing
AWS IoT Core: Thing Management
Amazon Cognito: User AuthN/Z
AWS WAF: Firewall
AWS IAM: Access Security
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
현대식 애플리케이션 개발 적용 사례
Device Pipeline
Stream Lambda CCVM Lambda
Device Control
Admin
KVS IoT Core
User
Cloud
Thing
01
02 04
05
06
07
08
01
03
DynamoDB
01
02
03
Stack 04
• Input : Stack 02-Lamba ARN + Stack 03-Lamba ARN
• Use : Stack 02 + Stack 03
• Create : API Gateway
• Output :
Stack 02
• Lambda for registering IoT thing
• Input : DynamoDB ARN/Name
• Use : IoT Core , DynamoDB
• Create : Lambda Role/Policy + IoT Thing + Certificate
• Output : Lambda ARN
Stack 03
• Lambda for creating stream pipeline
• Input : DynamoDB ARN/Name
• Use : IoT Core , DynamoDB
• Create : Lambda Role/Policy + Stream + EC2/ECS
• Output : Lambda ARN
Stack 01
• Input : DynamoDB Config
• Create : DynamoDB
• Output : DynamoDB ARN/Name
DynamoDB ARN
Lambda Export Name
CDK Stacks
CommonInfraStack
ApiGatewayStack
CCVMStack VideoProducerStack
SystemLogInfraStack
VideoConsumerStack ModelEndpointStack
EntranceStack
Store
Cloud Common Infra (Static)
Store-Specific Infra (Dynamic)
Video Data Pipeline
(Who / When / Where)
Sensor Data Pipeline
(What / When / Where)
Pipeline Management
Thing Management
APIs
Decision
(Who / What
/ When / Where)
Data Archive
(Person History /
Confusing Scene)
Web Management Console
Configuration
(Store / Device)
Rig
(control /
pipeline)
Camera
Sensor
Rack
Shelf
Model Archive
(Tracker /
Re-Identifier)
Monitoring
Operating
DevOps / MLOps
Continuous CI/CD
Continuous Model Serving
<<Model>>
Opposite View
Person Detector
<<Model>>
Person Tracker
<<Model>>
Person Feature Extractor
<<Model>>
Person Pose Estimator
<<Compute>>
Sensor Consumer
for Product ID
<<Stream>>
Sensor Provider
at Shelf
<<Model>>
Top Down View
Person Detector
<<Compute>>
Data Consumer
for Association Decision
<<Database>>
Sensor Index
<<Storage>>
Video Frames
<<Database>>
Video Index
<<Compute>>
Video Consumer
for Person ID
<<Stream>>
Video Provider
at Shelf
<<Model>>
Person Pose Estimator
<<Compute>>
Multi-Image Consumer
for Person ID
<<Compute>>
Video Consumer
for Person ID
<<Stream>>
Video Provider
at Shelf
<<Compute>>
Video Consumer
for Person ID
<<Stream>>
Video Provider
at Shelf
<<Compute>>
Single-Video Consumer
for Person ID
<<Stream>>
Video Provider
at Shelf
<<Stream>>
Data Provider
at Shelf
<<API>>
Image Provider
at Entry
<<Compute>>
Image Consumer
for Person ID
<<Database>>
Person ID Finder
<<Database>>
Who took what at when
<<API>>
Image Provider
at Exit
<<Compute>>
Image Consumer
for Person ID
<<Compute>>
Data Consumer
for Association Decision
<<Database>>
Who took what at when
<<Compute>>
Trigger other service
<<Model>>
Opposite View
Person Detector
<<Model>>
Pose Estimator
<<Model>>
Feature Extractor
<<Model>>
Person Pose Estimator
<<Compute>>
Sensor Consumer
for Product ID
<<Stream>>
Sensor Provider
at Shelf
<<Model>>
Top Down View
Person Detector
<<Action Compute>>
Data Fusor
for Pick Event Decision
<<Database>>
Which Product(Sensor
Index), Where, When
<<Storage>>
Video Frames
<<Database>>
Where, Who, When,
Video Index
<<Compute>>
Video Consumer
for Person ID
<<Stream>>
Video Provider
at Shelf
<<Model>>
Person Pose Estimator
<<Compute>>
Video Consumer
for Person ID
<<Stream>>
Video Provider
at Shelf
<<Compute>>
Video Consumer
for Person ID
<<Stream>>
Video Provider
at Shelf
<<Stream Compute>>
Single-Video Consumer
for Tracking Person & Estimating Pose
<<Stream>>
Video Provider
at Shelf
<<API>>
Image Provider
at Entry
<<Compute>>
Image Consumer
for Person ID
<<Database>>
Person ID Finder
<<Database>>
Who took what at when
<<API>>
Image Provider
at Exit
<<Compute>>
Image Consumer
for Person ID
<<Action Compute>>
Receipts Generator
<<Database>>
Receipts
<<Compute>>
Trigger other service
<<Model>>
Person Tracker
<<Database>>
Pose, Who, When
<<Compute>>
Warning Analysis
& Notice
<<Notification>>
Alert Warning
<<Database>>
Customer Session
<<Event Hub>>
Register Event & Trigger Event
Pick Event
Exit Event
Cam
Cam
Cam
Cam
Load Cell – Sensor Hub
Load Cell – Sensor Hub
……
.
Cam
Cam
Cam
QR
<<Notification>>
Receipt Alarm
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
CDK Application
현대식 애플리케이션 개발 적용 사례
WebServiceStack
IoTThingStack
VideoIngestStack
VideoConsumeStack
BaseVPCStack
AutoScalingStack
CICDPipelineStack
ModelServingStack
UserPoolStack
CommonDataStack
SensorIngestStack
APITestingStack
…… ……
AWS Systems Manager
Parameter store
Amazon API Gateway
Endpoint
Amazon Lambda
Function
Amazon DynamoDB
Table
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
CDK Application
현대식 애플리케이션 개발 적용 사례
ModelServingStack
Amazon Elastic
Container Service
Amazon DynamoDB
Amazon SageMaker
Amazon Simple
Storage Service
ThingMangementStack
AWS Lambda
Amazon API
Gateway
Amazon DynamoDB
AWS IoTCore
VideoIngestStack
Amazon Elastic
Container Service
Amazon Kinesis
Video Streams
Amazon Kinesis
Data Streams
Amazon DynamoDB
SensorIngestStack
AWS Lambda
Amazon API
Gateway
Amazon DynamoDB
AWS Lambda
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
05. Detecting & Tracking
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
객체 탐지 및 추적
매장에 방문한 고객이 누군지, 어떻게 행동하는지 파악 필요
+
Customer
만약 점원이 있다면....
갈색 패딩을 입으신 고객님이 방금 입장하셨네! 흰디 구역으로 가시는구나!
그렇다면 우리 인공지능은 고객을 어떻게 식별하고 따라갈 수 있을까?
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
폐색 현상에 따른 트래킹 문제점
다양한 알고리즘을 연구했지만…
폐색 현상 해결을 위해 Top-View로 해결
폐색 현상 발생
최대한 폐색이 될 수 있는
상황을 제한하자!
Top-View로 바라보자!
Faster RCNN
Mask RCNN
SSD
VGG
YOLO
Detectron2
Blob
Centroid
Boosting
Dlib
Kalman filter
DeepSORT2
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
폐색 현상에 따른 트래킹 문제점
대장정의 첫걸음
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
학습용 데이터셋 확보
Top-view용 데이터셋
의도적오버피팅을통한정확도향상
당사에 필요한 View PersonLabeling
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
트래킹을 위한 최적의 속도
On-Premise로는 성능 향상의 한계 도달
Tracking할 때 초당 프레임 수가 매우 중요
AWS서비스를활용하여성능향상
→ AWS를 통한 분산 아키텍쳐
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
사람 재인식
트래킹 성능을 향상시킬 수 있는 더욱 효율적인 방법
A B
? ?
A
B
사람이 겹치지 않으면
트레커 신뢰도 높음
사람이 겹치지면
트레커 신뢰도 낮음
다시 겹치지 않으면
사람 재인식
(이후 다시 트래킹)
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
06. MLOps
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
MLOps
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
MLOps
Operation
(Infra/Tool)
Development
(Logic/Test)
Machine Learning
(Model/Data)
Practice Culture Tool/Infra
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
MLOps
Operation
(Infra/Tool)
Development
(Logic/Test)
Machine Learning
(Model/Data)
Practice Culture Tool/Infra
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
MLOps Collaboration using AWS CDK
Development
(Logic/Test)
Machine Learning
(Model/Data)
Operation
(Infra/Tool)
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
MLOps Pipeline
IaC
Automation
Model Training
Data Collection
Data
ETL
Model Loading
Monitoring
Model Serving
MSA
MLOps Pipeline
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
MLOps Pipeline
MLOps Pipeline
Data Pipeline
Collect→ Filter→ Transform→ Augmentate→ Label
Training Pipeline
Prepare→ Train→ Tune→ Validate→ Archive
Serving Pipeline
Deploy(Batch/Realtime)→ Monitor→ Scale→ Update
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Amazon ECS
Amazon S3
Amazon SageMaker
(HyperParameter/Training Job)
Amazon SageMaker
(Model)
Amazon SageMaker
(Endpoint)
AWS Lambda
(Trigger)
Amazon S3 Amazon SageMaker
Ground Truth
Amazon SageMaker
(EndpointConfig)
Model Training (AWS Step Functions)
Model Serving (AWS Cloud Development Kit)
Data Preparation
AWS Cloud
AWS Lambda
Event
(time-based)
MLOps Pipeline 적용 사례
Data Pipeline
Serving Pipeline Training Pipeline
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
MLOps Pipeline 적용 사례
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
07. 구매행동 파악
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
구매 행동 파악
매장에 방문한 고객이 무엇을 샀는지 확인 필요
+
Product
만약 점원이 있다면....
검은 옷을 입은 고객이 흰디 머그컵을 집으셨네!
그렇다면 우리 인공지능은 무엇을 구매했는지 어떻게 알 수 있을까
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
상품 인식 및 분류
Object Detection + Image Classification
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Pose Estimation
고객의 상품 구매 행동 연구
센서와 카메라에서 나오는 데이터를 Sync
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Custom Labeling Tool + SageMaker
유연한 AWS
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
08. 정리
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
여러분의 소중한 피드백을 기다립니다.
강연 종료 후, 강연 평가에 참여해 주세요!
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
감사합니다
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contenu connexe

Tendances

농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...
농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...
농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...Amazon Web Services Korea
 
AWS를 활용한 리테일,이커머스 워크로드와 온라인 서비스 이관 사례::이동열, 임혁용:: AWS Summit Seoul 2018
AWS를 활용한 리테일,이커머스 워크로드와 온라인 서비스 이관 사례::이동열, 임혁용:: AWS Summit Seoul 2018 AWS를 활용한 리테일,이커머스 워크로드와 온라인 서비스 이관 사례::이동열, 임혁용:: AWS Summit Seoul 2018
AWS를 활용한 리테일,이커머스 워크로드와 온라인 서비스 이관 사례::이동열, 임혁용:: AWS Summit Seoul 2018 Amazon Web Services Korea
 
AWS와 함께하는 클라우드 컴퓨팅 (강철 AWS 매니저) :: AWS 기초 교육 온라인 세미나
AWS와 함께하는 클라우드 컴퓨팅 (강철 AWS 매니저) :: AWS 기초 교육 온라인 세미나AWS와 함께하는 클라우드 컴퓨팅 (강철 AWS 매니저) :: AWS 기초 교육 온라인 세미나
AWS와 함께하는 클라우드 컴퓨팅 (강철 AWS 매니저) :: AWS 기초 교육 온라인 세미나Amazon Web Services Korea
 
セキュリティ設計の頻出論点
セキュリティ設計の頻出論点セキュリティ設計の頻出論点
セキュリティ設計の頻出論点Tomohiro Nakashima
 
Cloud Migration 과 Modernization 을 위한 30가지 아이디어-박기흥, AWS Migrations Specialist...
Cloud Migration 과 Modernization 을 위한 30가지 아이디어-박기흥, AWS Migrations Specialist...Cloud Migration 과 Modernization 을 위한 30가지 아이디어-박기흥, AWS Migrations Specialist...
Cloud Migration 과 Modernization 을 위한 30가지 아이디어-박기흥, AWS Migrations Specialist...Amazon Web Services Korea
 
AWS 시작하기 및 Amazon S3 살펴보기 (윤석찬) - AWS 웨비나 시리즈
AWS 시작하기 및 Amazon S3 살펴보기 (윤석찬) - AWS 웨비나 시리즈AWS 시작하기 및 Amazon S3 살펴보기 (윤석찬) - AWS 웨비나 시리즈
AWS 시작하기 및 Amazon S3 살펴보기 (윤석찬) - AWS 웨비나 시리즈Amazon Web Services Korea
 
Aws glue를 통한 손쉬운 데이터 전처리 작업하기
Aws glue를 통한 손쉬운 데이터 전처리 작업하기Aws glue를 통한 손쉬운 데이터 전처리 작업하기
Aws glue를 통한 손쉬운 데이터 전처리 작업하기Amazon Web Services Korea
 
Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나
Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나
Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나Amazon Web Services Korea
 
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나Amazon Web Services Korea
 
AWS Builders Online Series | EC2와 Lambda로 AWS 시작하기 - 조용진, AWS 솔루션즈 아키텍트
AWS Builders Online Series | EC2와 Lambda로 AWS 시작하기 - 조용진, AWS 솔루션즈 아키텍트AWS Builders Online Series | EC2와 Lambda로 AWS 시작하기 - 조용진, AWS 솔루션즈 아키텍트
AWS Builders Online Series | EC2와 Lambda로 AWS 시작하기 - 조용진, AWS 솔루션즈 아키텍트Amazon Web Services Korea
 
AWS 고객이 주로 겪는 운영 이슈에 대한 해법-AWS Summit Seoul 2017
AWS 고객이 주로 겪는 운영 이슈에 대한 해법-AWS Summit Seoul 2017AWS 고객이 주로 겪는 운영 이슈에 대한 해법-AWS Summit Seoul 2017
AWS 고객이 주로 겪는 운영 이슈에 대한 해법-AWS Summit Seoul 2017Amazon Web Services Korea
 
AWS Black Belt Techシリーズ Amazon CloudWatch & Auto Scaling
AWS Black Belt Techシリーズ  Amazon CloudWatch & Auto ScalingAWS Black Belt Techシリーズ  Amazon CloudWatch & Auto Scaling
AWS Black Belt Techシリーズ Amazon CloudWatch & Auto ScalingAmazon Web Services Japan
 
AWS 클라우드 서비스 소개 및 사례 (방희란) - AWS 101 세미나
AWS 클라우드 서비스 소개 및 사례 (방희란) - AWS 101 세미나AWS 클라우드 서비스 소개 및 사례 (방희란) - AWS 101 세미나
AWS 클라우드 서비스 소개 및 사례 (방희란) - AWS 101 세미나Amazon Web Services Korea
 
빅 데이터 분석을 위한 AWS 활용 사례 - 최정욱 솔루션즈 아키텍트:: AWS Cloud Track 1 Intro
빅 데이터 분석을 위한 AWS 활용 사례 - 최정욱 솔루션즈 아키텍트:: AWS Cloud Track 1 Intro빅 데이터 분석을 위한 AWS 활용 사례 - 최정욱 솔루션즈 아키텍트:: AWS Cloud Track 1 Intro
빅 데이터 분석을 위한 AWS 활용 사례 - 최정욱 솔루션즈 아키텍트:: AWS Cloud Track 1 IntroAmazon Web Services Korea
 
20190130 AWS Well-Architectedの活用方法とレビューの進め方をお伝えしていきたい
20190130 AWS Well-Architectedの活用方法とレビューの進め方をお伝えしていきたい20190130 AWS Well-Architectedの活用方法とレビューの進め方をお伝えしていきたい
20190130 AWS Well-Architectedの活用方法とレビューの進め方をお伝えしていきたいAmazon Web Services Japan
 
(DVO315) Log, Monitor and Analyze your IT with Amazon CloudWatch
(DVO315) Log, Monitor and Analyze your IT with Amazon CloudWatch(DVO315) Log, Monitor and Analyze your IT with Amazon CloudWatch
(DVO315) Log, Monitor and Analyze your IT with Amazon CloudWatchAmazon Web Services
 
AWS Single Sign-On (SSO) 서비스 집중 탐구 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Single Sign-On (SSO) 서비스 집중 탐구 - 윤석찬 :: AWS Unboxing 온라인 세미나AWS Single Sign-On (SSO) 서비스 집중 탐구 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Single Sign-On (SSO) 서비스 집중 탐구 - 윤석찬 :: AWS Unboxing 온라인 세미나Amazon Web Services Korea
 
20190522 AWS Black Belt Online Seminar AWS Step Functions
20190522 AWS Black Belt Online Seminar AWS Step Functions20190522 AWS Black Belt Online Seminar AWS Step Functions
20190522 AWS Black Belt Online Seminar AWS Step FunctionsAmazon Web Services Japan
 
Kubernetes/ EKS - 김광영 (AWS 솔루션즈 아키텍트)
Kubernetes/ EKS - 김광영 (AWS 솔루션즈 아키텍트)Kubernetes/ EKS - 김광영 (AWS 솔루션즈 아키텍트)
Kubernetes/ EKS - 김광영 (AWS 솔루션즈 아키텍트)Amazon Web Services Korea
 
Introduction to EC2
Introduction to EC2Introduction to EC2
Introduction to EC2Mark Squires
 

Tendances (20)

농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...
농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...
농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...
 
AWS를 활용한 리테일,이커머스 워크로드와 온라인 서비스 이관 사례::이동열, 임혁용:: AWS Summit Seoul 2018
AWS를 활용한 리테일,이커머스 워크로드와 온라인 서비스 이관 사례::이동열, 임혁용:: AWS Summit Seoul 2018 AWS를 활용한 리테일,이커머스 워크로드와 온라인 서비스 이관 사례::이동열, 임혁용:: AWS Summit Seoul 2018
AWS를 활용한 리테일,이커머스 워크로드와 온라인 서비스 이관 사례::이동열, 임혁용:: AWS Summit Seoul 2018
 
AWS와 함께하는 클라우드 컴퓨팅 (강철 AWS 매니저) :: AWS 기초 교육 온라인 세미나
AWS와 함께하는 클라우드 컴퓨팅 (강철 AWS 매니저) :: AWS 기초 교육 온라인 세미나AWS와 함께하는 클라우드 컴퓨팅 (강철 AWS 매니저) :: AWS 기초 교육 온라인 세미나
AWS와 함께하는 클라우드 컴퓨팅 (강철 AWS 매니저) :: AWS 기초 교육 온라인 세미나
 
セキュリティ設計の頻出論点
セキュリティ設計の頻出論点セキュリティ設計の頻出論点
セキュリティ設計の頻出論点
 
Cloud Migration 과 Modernization 을 위한 30가지 아이디어-박기흥, AWS Migrations Specialist...
Cloud Migration 과 Modernization 을 위한 30가지 아이디어-박기흥, AWS Migrations Specialist...Cloud Migration 과 Modernization 을 위한 30가지 아이디어-박기흥, AWS Migrations Specialist...
Cloud Migration 과 Modernization 을 위한 30가지 아이디어-박기흥, AWS Migrations Specialist...
 
AWS 시작하기 및 Amazon S3 살펴보기 (윤석찬) - AWS 웨비나 시리즈
AWS 시작하기 및 Amazon S3 살펴보기 (윤석찬) - AWS 웨비나 시리즈AWS 시작하기 및 Amazon S3 살펴보기 (윤석찬) - AWS 웨비나 시리즈
AWS 시작하기 및 Amazon S3 살펴보기 (윤석찬) - AWS 웨비나 시리즈
 
Aws glue를 통한 손쉬운 데이터 전처리 작업하기
Aws glue를 통한 손쉬운 데이터 전처리 작업하기Aws glue를 통한 손쉬운 데이터 전처리 작업하기
Aws glue를 통한 손쉬운 데이터 전처리 작업하기
 
Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나
Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나
Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나
 
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나
 
AWS Builders Online Series | EC2와 Lambda로 AWS 시작하기 - 조용진, AWS 솔루션즈 아키텍트
AWS Builders Online Series | EC2와 Lambda로 AWS 시작하기 - 조용진, AWS 솔루션즈 아키텍트AWS Builders Online Series | EC2와 Lambda로 AWS 시작하기 - 조용진, AWS 솔루션즈 아키텍트
AWS Builders Online Series | EC2와 Lambda로 AWS 시작하기 - 조용진, AWS 솔루션즈 아키텍트
 
AWS 고객이 주로 겪는 운영 이슈에 대한 해법-AWS Summit Seoul 2017
AWS 고객이 주로 겪는 운영 이슈에 대한 해법-AWS Summit Seoul 2017AWS 고객이 주로 겪는 운영 이슈에 대한 해법-AWS Summit Seoul 2017
AWS 고객이 주로 겪는 운영 이슈에 대한 해법-AWS Summit Seoul 2017
 
AWS Black Belt Techシリーズ Amazon CloudWatch & Auto Scaling
AWS Black Belt Techシリーズ  Amazon CloudWatch & Auto ScalingAWS Black Belt Techシリーズ  Amazon CloudWatch & Auto Scaling
AWS Black Belt Techシリーズ Amazon CloudWatch & Auto Scaling
 
AWS 클라우드 서비스 소개 및 사례 (방희란) - AWS 101 세미나
AWS 클라우드 서비스 소개 및 사례 (방희란) - AWS 101 세미나AWS 클라우드 서비스 소개 및 사례 (방희란) - AWS 101 세미나
AWS 클라우드 서비스 소개 및 사례 (방희란) - AWS 101 세미나
 
빅 데이터 분석을 위한 AWS 활용 사례 - 최정욱 솔루션즈 아키텍트:: AWS Cloud Track 1 Intro
빅 데이터 분석을 위한 AWS 활용 사례 - 최정욱 솔루션즈 아키텍트:: AWS Cloud Track 1 Intro빅 데이터 분석을 위한 AWS 활용 사례 - 최정욱 솔루션즈 아키텍트:: AWS Cloud Track 1 Intro
빅 데이터 분석을 위한 AWS 활용 사례 - 최정욱 솔루션즈 아키텍트:: AWS Cloud Track 1 Intro
 
20190130 AWS Well-Architectedの活用方法とレビューの進め方をお伝えしていきたい
20190130 AWS Well-Architectedの活用方法とレビューの進め方をお伝えしていきたい20190130 AWS Well-Architectedの活用方法とレビューの進め方をお伝えしていきたい
20190130 AWS Well-Architectedの活用方法とレビューの進め方をお伝えしていきたい
 
(DVO315) Log, Monitor and Analyze your IT with Amazon CloudWatch
(DVO315) Log, Monitor and Analyze your IT with Amazon CloudWatch(DVO315) Log, Monitor and Analyze your IT with Amazon CloudWatch
(DVO315) Log, Monitor and Analyze your IT with Amazon CloudWatch
 
AWS Single Sign-On (SSO) 서비스 집중 탐구 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Single Sign-On (SSO) 서비스 집중 탐구 - 윤석찬 :: AWS Unboxing 온라인 세미나AWS Single Sign-On (SSO) 서비스 집중 탐구 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Single Sign-On (SSO) 서비스 집중 탐구 - 윤석찬 :: AWS Unboxing 온라인 세미나
 
20190522 AWS Black Belt Online Seminar AWS Step Functions
20190522 AWS Black Belt Online Seminar AWS Step Functions20190522 AWS Black Belt Online Seminar AWS Step Functions
20190522 AWS Black Belt Online Seminar AWS Step Functions
 
Kubernetes/ EKS - 김광영 (AWS 솔루션즈 아키텍트)
Kubernetes/ EKS - 김광영 (AWS 솔루션즈 아키텍트)Kubernetes/ EKS - 김광영 (AWS 솔루션즈 아키텍트)
Kubernetes/ EKS - 김광영 (AWS 솔루션즈 아키텍트)
 
Introduction to EC2
Introduction to EC2Introduction to EC2
Introduction to EC2
 

Similaire à 현대백화점 리테일테크랩과 AWS Prototyping 팀 개발자가 들려주는 인공 지능 무인 스토어 개발 여정 - 최권열 AWS 프로토타이핑 엔지니어 / 강신훈 책임, 박윤진 선임 현대IT&E :: AWS Summit Seoul 2021

20210608 - Desarrollo de aplicaciones en la nube
20210608 - Desarrollo de aplicaciones en la nube20210608 - Desarrollo de aplicaciones en la nube
20210608 - Desarrollo de aplicaciones en la nubeMarcia Villalba
 
Costruire Applicazioni Moderne con AWS
Costruire Applicazioni Moderne con AWSCostruire Applicazioni Moderne con AWS
Costruire Applicazioni Moderne con AWSAmazon Web Services
 
kreuzwerker AWS Modernizing Legacy Operations with Containerized Solutions 20...
kreuzwerker AWS Modernizing Legacy Operations with Containerized Solutions 20...kreuzwerker AWS Modernizing Legacy Operations with Containerized Solutions 20...
kreuzwerker AWS Modernizing Legacy Operations with Containerized Solutions 20...kreuzwerker GmbH
 
Executing a Large-Scale Migration to AWS
Executing a Large-Scale Migration to AWSExecuting a Large-Scale Migration to AWS
Executing a Large-Scale Migration to AWSAmazon Web Services
 
Building Real-Time Serverless Data Applications With Joseph Morais and Adam W...
Building Real-Time Serverless Data Applications With Joseph Morais and Adam W...Building Real-Time Serverless Data Applications With Joseph Morais and Adam W...
Building Real-Time Serverless Data Applications With Joseph Morais and Adam W...HostedbyConfluent
 
DevConZM - Modern Applications Development in the Cloud
DevConZM - Modern Applications Development in the CloudDevConZM - Modern Applications Development in the Cloud
DevConZM - Modern Applications Development in the CloudCobus Bernard
 
AWS Accra Meetup - Developing Modern Applications in the Cloud
AWS Accra Meetup - Developing Modern Applications in the CloudAWS Accra Meetup - Developing Modern Applications in the Cloud
AWS Accra Meetup - Developing Modern Applications in the CloudCobus Bernard
 
[CPT DevOps Meetup] Developing Modern Applications in the Cloud
[CPT DevOps Meetup] Developing Modern Applications in the Cloud[CPT DevOps Meetup] Developing Modern Applications in the Cloud
[CPT DevOps Meetup] Developing Modern Applications in the CloudCobus Bernard
 
AWS Jozi Meetup Developing Modern Applications in the Cloud
AWS Jozi Meetup Developing Modern Applications in the CloudAWS Jozi Meetup Developing Modern Applications in the Cloud
AWS Jozi Meetup Developing Modern Applications in the CloudCobus Bernard
 
Developing Modern Applications in the Cloud
Developing Modern Applications in the CloudDeveloping Modern Applications in the Cloud
Developing Modern Applications in the CloudAmazon Web Services
 
The Coming Tsunami in Microservices: Operating Microservices at Scale
The Coming Tsunami in Microservices: Operating Microservices at ScaleThe Coming Tsunami in Microservices: Operating Microservices at Scale
The Coming Tsunami in Microservices: Operating Microservices at ScaleCprime
 
The Real AWS Migration Opportunity
The Real AWS Migration OpportunityThe Real AWS Migration Opportunity
The Real AWS Migration OpportunityAmazon Web Services
 
Nuvem Híbrida - EBC on the road Brazil Edition [Portuguese]
Nuvem Híbrida - EBC on the road Brazil Edition [Portuguese]Nuvem Híbrida - EBC on the road Brazil Edition [Portuguese]
Nuvem Híbrida - EBC on the road Brazil Edition [Portuguese]Amazon Web Services
 
[AWS Dev Day] 기조연설 – Olivier Klein AWS 신기술 부문 책임자, 정성권 삼성전자 수석
[AWS Dev Day] 기조연설 – Olivier Klein AWS 신기술 부문 책임자, 정성권 삼성전자 수석[AWS Dev Day] 기조연설 – Olivier Klein AWS 신기술 부문 책임자, 정성권 삼성전자 수석
[AWS Dev Day] 기조연설 – Olivier Klein AWS 신기술 부문 책임자, 정성권 삼성전자 수석Amazon Web Services Korea
 
Create and Publish AR and VR Apps with Amazon Sumerian
Create and Publish AR and VR Apps with Amazon SumerianCreate and Publish AR and VR Apps with Amazon Sumerian
Create and Publish AR and VR Apps with Amazon SumerianAmazon Web Services
 
5 Years Of Building SaaS On AWS
5 Years Of Building SaaS On AWS5 Years Of Building SaaS On AWS
5 Years Of Building SaaS On AWSChristian Beedgen
 
Transforming Enterprise IT - Transformation Day Montreal 2018
Transforming Enterprise IT - Transformation Day Montreal 2018Transforming Enterprise IT - Transformation Day Montreal 2018
Transforming Enterprise IT - Transformation Day Montreal 2018Amazon Web Services
 
AWS Summit 2014 - Perth - Keynote
AWS Summit 2014 - Perth - KeynoteAWS Summit 2014 - Perth - Keynote
AWS Summit 2014 - Perth - KeynoteAmazon Web Services
 

Similaire à 현대백화점 리테일테크랩과 AWS Prototyping 팀 개발자가 들려주는 인공 지능 무인 스토어 개발 여정 - 최권열 AWS 프로토타이핑 엔지니어 / 강신훈 책임, 박윤진 선임 현대IT&E :: AWS Summit Seoul 2021 (20)

20210608 - Desarrollo de aplicaciones en la nube
20210608 - Desarrollo de aplicaciones en la nube20210608 - Desarrollo de aplicaciones en la nube
20210608 - Desarrollo de aplicaciones en la nube
 
Costruire Applicazioni Moderne con AWS
Costruire Applicazioni Moderne con AWSCostruire Applicazioni Moderne con AWS
Costruire Applicazioni Moderne con AWS
 
CI/CD for Modern Applications
CI/CD for Modern ApplicationsCI/CD for Modern Applications
CI/CD for Modern Applications
 
kreuzwerker AWS Modernizing Legacy Operations with Containerized Solutions 20...
kreuzwerker AWS Modernizing Legacy Operations with Containerized Solutions 20...kreuzwerker AWS Modernizing Legacy Operations with Containerized Solutions 20...
kreuzwerker AWS Modernizing Legacy Operations with Containerized Solutions 20...
 
Executing a Large-Scale Migration to AWS
Executing a Large-Scale Migration to AWSExecuting a Large-Scale Migration to AWS
Executing a Large-Scale Migration to AWS
 
Building Real-Time Serverless Data Applications With Joseph Morais and Adam W...
Building Real-Time Serverless Data Applications With Joseph Morais and Adam W...Building Real-Time Serverless Data Applications With Joseph Morais and Adam W...
Building Real-Time Serverless Data Applications With Joseph Morais and Adam W...
 
DevConZM - Modern Applications Development in the Cloud
DevConZM - Modern Applications Development in the CloudDevConZM - Modern Applications Development in the Cloud
DevConZM - Modern Applications Development in the Cloud
 
AWS Accra Meetup - Developing Modern Applications in the Cloud
AWS Accra Meetup - Developing Modern Applications in the CloudAWS Accra Meetup - Developing Modern Applications in the Cloud
AWS Accra Meetup - Developing Modern Applications in the Cloud
 
[CPT DevOps Meetup] Developing Modern Applications in the Cloud
[CPT DevOps Meetup] Developing Modern Applications in the Cloud[CPT DevOps Meetup] Developing Modern Applications in the Cloud
[CPT DevOps Meetup] Developing Modern Applications in the Cloud
 
AWS Jozi Meetup Developing Modern Applications in the Cloud
AWS Jozi Meetup Developing Modern Applications in the CloudAWS Jozi Meetup Developing Modern Applications in the Cloud
AWS Jozi Meetup Developing Modern Applications in the Cloud
 
Developing Modern Applications in the Cloud
Developing Modern Applications in the CloudDeveloping Modern Applications in the Cloud
Developing Modern Applications in the Cloud
 
The Coming Tsunami in Microservices: Operating Microservices at Scale
The Coming Tsunami in Microservices: Operating Microservices at ScaleThe Coming Tsunami in Microservices: Operating Microservices at Scale
The Coming Tsunami in Microservices: Operating Microservices at Scale
 
AWS Startup Insights Singapore
AWS Startup Insights SingaporeAWS Startup Insights Singapore
AWS Startup Insights Singapore
 
The Real AWS Migration Opportunity
The Real AWS Migration OpportunityThe Real AWS Migration Opportunity
The Real AWS Migration Opportunity
 
Nuvem Híbrida - EBC on the road Brazil Edition [Portuguese]
Nuvem Híbrida - EBC on the road Brazil Edition [Portuguese]Nuvem Híbrida - EBC on the road Brazil Edition [Portuguese]
Nuvem Híbrida - EBC on the road Brazil Edition [Portuguese]
 
[AWS Dev Day] 기조연설 – Olivier Klein AWS 신기술 부문 책임자, 정성권 삼성전자 수석
[AWS Dev Day] 기조연설 – Olivier Klein AWS 신기술 부문 책임자, 정성권 삼성전자 수석[AWS Dev Day] 기조연설 – Olivier Klein AWS 신기술 부문 책임자, 정성권 삼성전자 수석
[AWS Dev Day] 기조연설 – Olivier Klein AWS 신기술 부문 책임자, 정성권 삼성전자 수석
 
Create and Publish AR and VR Apps with Amazon Sumerian
Create and Publish AR and VR Apps with Amazon SumerianCreate and Publish AR and VR Apps with Amazon Sumerian
Create and Publish AR and VR Apps with Amazon Sumerian
 
5 Years Of Building SaaS On AWS
5 Years Of Building SaaS On AWS5 Years Of Building SaaS On AWS
5 Years Of Building SaaS On AWS
 
Transforming Enterprise IT - Transformation Day Montreal 2018
Transforming Enterprise IT - Transformation Day Montreal 2018Transforming Enterprise IT - Transformation Day Montreal 2018
Transforming Enterprise IT - Transformation Day Montreal 2018
 
AWS Summit 2014 - Perth - Keynote
AWS Summit 2014 - Perth - KeynoteAWS Summit 2014 - Perth - Keynote
AWS Summit 2014 - Perth - Keynote
 

Plus de Amazon Web Services Korea

AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2Amazon Web Services Korea
 
AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1Amazon Web Services Korea
 
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...Amazon Web Services Korea
 
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon Web Services Korea
 
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Web Services Korea
 
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Amazon Web Services Korea
 
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...Amazon Web Services Korea
 
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Amazon Web Services Korea
 
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon Web Services Korea
 
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...Amazon Web Services Korea
 
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...Amazon Web Services Korea
 
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...Amazon Web Services Korea
 
From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...Amazon Web Services Korea
 
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...Amazon Web Services Korea
 
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...Amazon Web Services Korea
 
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...Amazon Web Services Korea
 
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...Amazon Web Services Korea
 
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...Amazon Web Services Korea
 
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...Amazon Web Services Korea
 
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...Amazon Web Services Korea
 

Plus de Amazon Web Services Korea (20)

AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2
 
AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1
 
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
 
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
 
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
 
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
 
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
 
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
 
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
 
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
 
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
 
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
 
From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...
 
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
 
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
 
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
 
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
 
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
 
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
 
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
 

Dernier

Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Scott Andery
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesThousandEyes
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch TuesdayIvanti
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
Manual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance AuditManual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance AuditSkynet Technologies
 

Dernier (20)

Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch Tuesday
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
Manual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance AuditManual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance Audit
 

현대백화점 리테일테크랩과 AWS Prototyping 팀 개발자가 들려주는 인공 지능 무인 스토어 개발 여정 - 최권열 AWS 프로토타이핑 엔지니어 / 강신훈 책임, 박윤진 선임 현대IT&E :: AWS Summit Seoul 2021

  • 1. K O R E A | M A Y 1 1 - 1 2 , 2 0 2 1
  • 2. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 현대백화점 리테일테크랩과 AWS Prototyping팀 개발자가 들려주는 인공 지능 무인 스토어 개발 여정 최권열 프로핑타이핑 엔지니어 AWS 강신훈 책임 현대 IT&E 박윤진 선임 현대 IT&E
  • 3. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 01. 발표자 소개 02. 여의도 더현대서울 언커먼스토어(무인매장) 03. 구현 여정 04. AWS Prototyping 05. Detecting & Tracking 06. MLOps 07. 구매 행동 파악 08. 정리 AGENDA
  • 4. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 01. 발표자 소개
  • 5. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Prototyping Program Development Operation Machine Learning Planning Sprint Review AWS Cloud Cloud Native Modern APP MSA IaC CICD Serverless/Container Monitoring/Security deliver & Enable üimplement architectures üintegrate customer codes ülead project/scrum/sprint üenable the customer AWS Services, Tools and SDKs provide & develop üprovide legacy source codes üintegrate legacy source codes üprovide legacy data ülearn aws services Domain-Specific Business Logics prototype engineer customer developer partner developer 2 Pizza - One Team DevOps Agile
  • 6. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. HYUNDAI IT&E Total Living ㆍ 현대리바트 ㆍ 현대L&C Retail ㆍ 현대백화점 ㆍ 현대백화점면세점 Food Service ㆍ 현대그린푸드 ㆍ 현대캐터링시스템 Fashion ㆍ 한섬 Media ㆍ 홈쇼핑 ㆍ 퓨처넷 Growth Driver ㆍ 현대렌탈케어 ㆍ 현대드림투어 ㆍ 현대바이오랜드 ㆍ 에버다임 현대백화점그룹의 IT 전문 회사
  • 7. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 02. 여의도 더현대서울 언커먼스토어 (무인매장)
  • 8. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  • 9. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 03. 무인 스토어 구현 여정
  • 10. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 구현 여정 IT 기술 연구 조직으로 약 2년간 미래형 매장 기술 연구 1st. Retailtech LAB ㆍ 비즈니스 로직 구체화 ㆍ 주요 기술 개발 3rd. 테스트 매장 OPEN ㆍ 임직원 테스트 (AWS cloud) ㆍ 정확도 향상, 비용 효율화 2nd. Proof of Concept ㆍ 임직원 테스트 (On-premise) 4th. Uncommon Store OPEN ㆍ 여의도 더현대서울 언커먼스토어 그랜드 오픈
  • 11. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 구현 여정 On-Premise에서 AWS 클라우드로의 전환 On-Premise 유연성 확장성 신뢰성 CLOUD 장비들이 점점 많아지고, 매장 이벤트가 예측이 안되는데? 내가 필요할 때 마다 빠르게 늘려야 하는데… 비즈니스 로직만으로도 힘든데 보안까지? 장애없이 안정적으로 운영하고 싶다 데이터 학습할 때는 한 번에 많이 빠르게 하고 매장 운영할 때는 적절하게 조절하고 싶은데… 신속성
  • 12. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 04. AWS Prototyping
  • 13. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 인공지능 무인 스토어 상용화 어려움 이렇게 큰 서비스를 정말 개발할 수 있을까? 카메라도 늘리고, 센서도 늘리고 이거 다 어떻게 확장하지? Machine Learning 모델만 잘 만들면 될꺼야! 어디서부터 개발 시작해야지?? 군인이 단체가 들어오면 어떻게???
  • 14. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. AI/ML 기반 서비스 상용화 어려움 복잡성 & 반복성 실효성 & 불확실 확장성 & 신뢰성
  • 15. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 인공지능 무인 스토어 상용화 어려움 복잡성 & 반복성 실효성 & 불확실 확장성 & 신뢰성 수백개의 센서 수십대의 카메라 수십명의 방문객 수백개의 상품 데이터 수집 데이터 라벨링 모델 설계, 학습, 튜닝 모델 검증 모델 배포 Person Identification Object Detection Object Tracking Pose Estimation Sensor Fusion
  • 16. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 실용적인 Practice를 적용하여 접근 Agile/Scrum Modern Application
  • 17. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 실용적인 Practice를 적용하여 접근 Agile/Scrum
  • 18. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 애자일 스크럼 기반 개발 Scrum/Sprint Product Backlog Sprint Planning Sprint Backlog Sprint Review/Retro Potentially Shippable Product Product Owner Team Sprint 24H Daily Scrum Scrum Master 작은 단위로, 점진적 반복, 실행되는 결과물 중심으로
  • 19. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 애자일 스크럼 기반 개발 적용 사례 Sprint Iteration 한 명 입장 바로 퇴장 한 명 입장 물건 한 개 구매 퇴장 두 명 입장 다른 선반에서 각자 구매 퇴장 두 명 입장 같은 선반에서 다른 상품 구매 퇴장 두 명 입장 같은 선반에서 같은 상품 구매 퇴장 처음부터 완벽한 것보다는 작은 단위의 실제 동작하는 결과로부터 복잡한 상황으로
  • 20. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 애자일 스크럼 기반 개발 적용 사례 Camera Device Cloud로 Thing 관리 Camera Video Cloud로 업로드 사용자 선반 비젼 처리 센서 데이터 Cloud로 업로드 누가 무엇을 종합 판단 영수증 발행 사용자 출입구 비젼 처리 선반 제품 종류 판단 방문객 입장 퇴장 판단 Who Pipeline What Pipeline Who bought What Pipeline 1 device → nn devices 5 frame/sec → nn frame/sec 70% Accuracy → nn% Accuracy 작은 결과물로부터 기민하고 유연하게 반복하여 확장 가능하게 1 device →nnn devices Sprint Iteration
  • 21. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 실용적인 Practice를 적용하여 접근 Agile/Scrum Modern Application
  • 22. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 현대식 애플리케이션 개발 Modern Application
  • 23. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 현대식 애플리케이션 개발 변화에 빠르게 대응할 수 있고 혁신할 수 있도록 민첩성을 확보하기 위해, 애플리케이션을 개발하는 방식으로 클라우드 친화적으로 설계 및 구축하여 개발 속도는 높이고 동시에 리스크를 최소화함 현대식 애플리케이션 개발 (Modern Application) Feedback Ideas Experiment Innovation Flywheel
  • 24. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 현대식 애플리케이션 개발 운영: 가능한 서버리스로 소프트웨어 전달: 자동화, 표준화 보안: 모든 구성원의 책임 아키텍처: 마이크로서비스 데이터: 결합 해제, 용도에 맞도록
  • 25. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 현대식 애플리케이션 개발 적용 사례 운영: 가능한 서버리스로 소프트웨어 전달: 자동화, 표준화 보안: 모든 구성원의 책임 아키텍처: 마이크로서비스 데이터: 결합 해제, 용도에 맞도록 AWS CloudFormation: Stack AWS Systems Manager: Parameter Store AWS CDK: Infrastructure as Code (IaC) AWS CodePipeline: CICD Pipeline AWS Step Functions: MLOps Pipeline Amazon S3: ML Dataset AWS DynamoDB: Realtime data AWS RDS: Web Service Amazon Lambda: REST APIs Amazon ECS: Batch/Realtime Processing AWS IoT Core: Thing Management Amazon Cognito: User AuthN/Z AWS WAF: Firewall AWS IAM: Access Security
  • 26. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 현대식 애플리케이션 개발 적용 사례 Device Pipeline Stream Lambda CCVM Lambda Device Control Admin KVS IoT Core User Cloud Thing 01 02 04 05 06 07 08 01 03 DynamoDB 01 02 03 Stack 04 • Input : Stack 02-Lamba ARN + Stack 03-Lamba ARN • Use : Stack 02 + Stack 03 • Create : API Gateway • Output : Stack 02 • Lambda for registering IoT thing • Input : DynamoDB ARN/Name • Use : IoT Core , DynamoDB • Create : Lambda Role/Policy + IoT Thing + Certificate • Output : Lambda ARN Stack 03 • Lambda for creating stream pipeline • Input : DynamoDB ARN/Name • Use : IoT Core , DynamoDB • Create : Lambda Role/Policy + Stream + EC2/ECS • Output : Lambda ARN Stack 01 • Input : DynamoDB Config • Create : DynamoDB • Output : DynamoDB ARN/Name DynamoDB ARN Lambda Export Name CDK Stacks CommonInfraStack ApiGatewayStack CCVMStack VideoProducerStack SystemLogInfraStack VideoConsumerStack ModelEndpointStack EntranceStack Store Cloud Common Infra (Static) Store-Specific Infra (Dynamic) Video Data Pipeline (Who / When / Where) Sensor Data Pipeline (What / When / Where) Pipeline Management Thing Management APIs Decision (Who / What / When / Where) Data Archive (Person History / Confusing Scene) Web Management Console Configuration (Store / Device) Rig (control / pipeline) Camera Sensor Rack Shelf Model Archive (Tracker / Re-Identifier) Monitoring Operating DevOps / MLOps Continuous CI/CD Continuous Model Serving <<Model>> Opposite View Person Detector <<Model>> Person Tracker <<Model>> Person Feature Extractor <<Model>> Person Pose Estimator <<Compute>> Sensor Consumer for Product ID <<Stream>> Sensor Provider at Shelf <<Model>> Top Down View Person Detector <<Compute>> Data Consumer for Association Decision <<Database>> Sensor Index <<Storage>> Video Frames <<Database>> Video Index <<Compute>> Video Consumer for Person ID <<Stream>> Video Provider at Shelf <<Model>> Person Pose Estimator <<Compute>> Multi-Image Consumer for Person ID <<Compute>> Video Consumer for Person ID <<Stream>> Video Provider at Shelf <<Compute>> Video Consumer for Person ID <<Stream>> Video Provider at Shelf <<Compute>> Single-Video Consumer for Person ID <<Stream>> Video Provider at Shelf <<Stream>> Data Provider at Shelf <<API>> Image Provider at Entry <<Compute>> Image Consumer for Person ID <<Database>> Person ID Finder <<Database>> Who took what at when <<API>> Image Provider at Exit <<Compute>> Image Consumer for Person ID <<Compute>> Data Consumer for Association Decision <<Database>> Who took what at when <<Compute>> Trigger other service <<Model>> Opposite View Person Detector <<Model>> Pose Estimator <<Model>> Feature Extractor <<Model>> Person Pose Estimator <<Compute>> Sensor Consumer for Product ID <<Stream>> Sensor Provider at Shelf <<Model>> Top Down View Person Detector <<Action Compute>> Data Fusor for Pick Event Decision <<Database>> Which Product(Sensor Index), Where, When <<Storage>> Video Frames <<Database>> Where, Who, When, Video Index <<Compute>> Video Consumer for Person ID <<Stream>> Video Provider at Shelf <<Model>> Person Pose Estimator <<Compute>> Video Consumer for Person ID <<Stream>> Video Provider at Shelf <<Compute>> Video Consumer for Person ID <<Stream>> Video Provider at Shelf <<Stream Compute>> Single-Video Consumer for Tracking Person & Estimating Pose <<Stream>> Video Provider at Shelf <<API>> Image Provider at Entry <<Compute>> Image Consumer for Person ID <<Database>> Person ID Finder <<Database>> Who took what at when <<API>> Image Provider at Exit <<Compute>> Image Consumer for Person ID <<Action Compute>> Receipts Generator <<Database>> Receipts <<Compute>> Trigger other service <<Model>> Person Tracker <<Database>> Pose, Who, When <<Compute>> Warning Analysis & Notice <<Notification>> Alert Warning <<Database>> Customer Session <<Event Hub>> Register Event & Trigger Event Pick Event Exit Event Cam Cam Cam Cam Load Cell – Sensor Hub Load Cell – Sensor Hub …… . Cam Cam Cam QR <<Notification>> Receipt Alarm
  • 27. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. CDK Application 현대식 애플리케이션 개발 적용 사례 WebServiceStack IoTThingStack VideoIngestStack VideoConsumeStack BaseVPCStack AutoScalingStack CICDPipelineStack ModelServingStack UserPoolStack CommonDataStack SensorIngestStack APITestingStack …… …… AWS Systems Manager Parameter store Amazon API Gateway Endpoint Amazon Lambda Function Amazon DynamoDB Table
  • 28. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. CDK Application 현대식 애플리케이션 개발 적용 사례 ModelServingStack Amazon Elastic Container Service Amazon DynamoDB Amazon SageMaker Amazon Simple Storage Service ThingMangementStack AWS Lambda Amazon API Gateway Amazon DynamoDB AWS IoTCore VideoIngestStack Amazon Elastic Container Service Amazon Kinesis Video Streams Amazon Kinesis Data Streams Amazon DynamoDB SensorIngestStack AWS Lambda Amazon API Gateway Amazon DynamoDB AWS Lambda
  • 29. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 05. Detecting & Tracking
  • 30. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 객체 탐지 및 추적 매장에 방문한 고객이 누군지, 어떻게 행동하는지 파악 필요 + Customer 만약 점원이 있다면.... 갈색 패딩을 입으신 고객님이 방금 입장하셨네! 흰디 구역으로 가시는구나! 그렇다면 우리 인공지능은 고객을 어떻게 식별하고 따라갈 수 있을까?
  • 31. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 폐색 현상에 따른 트래킹 문제점 다양한 알고리즘을 연구했지만… 폐색 현상 해결을 위해 Top-View로 해결 폐색 현상 발생 최대한 폐색이 될 수 있는 상황을 제한하자! Top-View로 바라보자! Faster RCNN Mask RCNN SSD VGG YOLO Detectron2 Blob Centroid Boosting Dlib Kalman filter DeepSORT2
  • 32. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 폐색 현상에 따른 트래킹 문제점 대장정의 첫걸음
  • 33. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 학습용 데이터셋 확보 Top-view용 데이터셋 의도적오버피팅을통한정확도향상 당사에 필요한 View PersonLabeling
  • 34. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 트래킹을 위한 최적의 속도 On-Premise로는 성능 향상의 한계 도달 Tracking할 때 초당 프레임 수가 매우 중요 AWS서비스를활용하여성능향상 → AWS를 통한 분산 아키텍쳐
  • 35. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 사람 재인식 트래킹 성능을 향상시킬 수 있는 더욱 효율적인 방법 A B ? ? A B 사람이 겹치지 않으면 트레커 신뢰도 높음 사람이 겹치지면 트레커 신뢰도 낮음 다시 겹치지 않으면 사람 재인식 (이후 다시 트래킹)
  • 36. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 06. MLOps
  • 37. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. MLOps
  • 38. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. MLOps Operation (Infra/Tool) Development (Logic/Test) Machine Learning (Model/Data) Practice Culture Tool/Infra
  • 39. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. MLOps Operation (Infra/Tool) Development (Logic/Test) Machine Learning (Model/Data) Practice Culture Tool/Infra
  • 40. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. MLOps Collaboration using AWS CDK Development (Logic/Test) Machine Learning (Model/Data) Operation (Infra/Tool)
  • 41. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. MLOps Pipeline IaC Automation Model Training Data Collection Data ETL Model Loading Monitoring Model Serving MSA MLOps Pipeline
  • 42. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. MLOps Pipeline MLOps Pipeline Data Pipeline Collect→ Filter→ Transform→ Augmentate→ Label Training Pipeline Prepare→ Train→ Tune→ Validate→ Archive Serving Pipeline Deploy(Batch/Realtime)→ Monitor→ Scale→ Update
  • 43. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon ECS Amazon S3 Amazon SageMaker (HyperParameter/Training Job) Amazon SageMaker (Model) Amazon SageMaker (Endpoint) AWS Lambda (Trigger) Amazon S3 Amazon SageMaker Ground Truth Amazon SageMaker (EndpointConfig) Model Training (AWS Step Functions) Model Serving (AWS Cloud Development Kit) Data Preparation AWS Cloud AWS Lambda Event (time-based) MLOps Pipeline 적용 사례 Data Pipeline Serving Pipeline Training Pipeline
  • 44. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. MLOps Pipeline 적용 사례
  • 45. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 07. 구매행동 파악
  • 46. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 구매 행동 파악 매장에 방문한 고객이 무엇을 샀는지 확인 필요 + Product 만약 점원이 있다면.... 검은 옷을 입은 고객이 흰디 머그컵을 집으셨네! 그렇다면 우리 인공지능은 무엇을 구매했는지 어떻게 알 수 있을까
  • 47. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 상품 인식 및 분류 Object Detection + Image Classification
  • 48. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Pose Estimation 고객의 상품 구매 행동 연구 센서와 카메라에서 나오는 데이터를 Sync
  • 49. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Custom Labeling Tool + SageMaker 유연한 AWS
  • 50. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 08. 정리
  • 51. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 여러분의 소중한 피드백을 기다립니다. 강연 종료 후, 강연 평가에 참여해 주세요! © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  • 52. © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. 감사합니다 © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.