SlideShare une entreprise Scribd logo
1  sur  61
Professor asastent of department histology, cytology and
embryology - KHODOROVSKA ALLA
Histology is the study of the tissues of the body and of how these
tissues are arranged to constitute organs. Each of the fundamental
tissues is formed by several types of cells and typically by specific
associations of cells and extracellular matrix. Histology is classed as
a subdiscipline of anatomy, because its methods involve dividing
tissues and organs into pieces and preparing them for microscopic
examination and chemical analyses.
Two aspects of the subject are distinguished;
special histology deals with the arrangement and special
adaptations of tissues in the various organs whereas
general histology deals with the components of the individual
tissues.

Cytology is the science
about a cell.
The cell is the basic structural and functional unit of all
multicellular organisms, limited to an active cell
membrane, cytoplasm and nucleus. There are 2 basic cell
types:
Prokaryotic

cells

are typically small,
single-celled organisms
(bacteria) that lack a
nuclear
envelope,
histones,
and
membranous
organelles.

Eukaryotic
exist
primarily
components
multicellular
organisms.

cells
as
of
Сytoplasm
Сytoplasm
The cytoplasm is a complex
colloidal system. The cytoplasm of a
cell consists of:
organelles
inclusions
hyaloplasm
The
structure
of
hyaloplasm
includes
water,
proteins,
nucleinic
acids,
different polysaccharides and a
lot of enzymes. The colloid
system of hyaloplasm can be in a
liquid or gel consistence.
cytoplasm
Сell membrane
Сell membrane
The cell membrane (plasmalemma) is an universal system which
form many structures of a cell. Each cell is bounded by a cell. The
plasmalemma includes 3 layer:
I. Glycocalyx (carbohydrates)
II. Lipid bilayer (lipid molecule and proteins)
III. Submembrane cortical layer (actin microfilaments and microtubules)
Сell membrane
Сell membrane
The structure of each membrane includes:
Proteins make
50-60% of its weight,
lipids 30-40 % and
carbohydrates 5-10%.
Most
membrane
proteins
of
the
following 3 groups:

proteins
lipids
carbohydrates

carbohydrates

Proteins

іntegral
transmembrane
рeripheral
lipids
Сell membrane
Сell membrane
Integral membrane proteins are tightly lodged in the lipid bilayer;
detergents are required to extract them. They are folded, with
their hydrophilic amino acids in contact with the phosphate groups
of the membrane phospholipids and their hydrophobic amino acids
in contact with the fatty-acid tails.
Тransmembrane proteins from onlyone membrane surface, while
others, penetrate the entire membrane and protrude from both
sides.
Peripheral membrane proteins
are more loosely associated
with the inner or outer
membrane surface.
Сell membrane
Сell membrane
The inner and the outer dense line composed of a single layer of
phospholipids, between them settle some proteins. Carbohydrates
occur on plasma membranes mainly as oligosaccharide moieties of
membrane glycoproteins and glycolipids.
Membrane oligosaccharides
have
a
characteristic
branching structure and
project from the cell's outer
surface,
forming
a
superficial coat called the
glycocalyx that participates
in cell adhesion and
recognition.

Structures of plasmalemma
The plasmalemma carry out some of the important functions:
The plasmalemma carry out some of the important functions:

•Barrier the plasmalemma separates a cell from an environment
and other cells; the nucleus is separated from cytoplasm,
membranes organelles from hyaloplasm.
•Receptor on a surface of plasmalemma. There are special
structures-receptors due to which the cell finds out different
chemical substances, physical factors, other cells, hormones and
antigens.

special structures-receptors
•Transport-through a membrane of cell freely passes water, salts and
substances with low molecular weight. Such transport is called
passive.
•The transport against a gradient of concentration is called active.

Passive diffusion
Passive diffusion
Certain
substances
(e.g.,
water) can cross the
membrane in either
direction, following
a
concentration
gradient.
Passive diffusion
does not require
energy expenditure.
Facilitated diffusion
Facilitated diffusion

Certain molecules (e.g.,
glucose) cannot freely
diffuse across membranes
but must be helped across
by
a
membrane
component.
This
facilitated diffusion is
often unidirectional, but it
follows a concentration
gradient and requires no
energy.
Some nondiffusible molecules can move into or out
of cell either along or against a concentration gradient.
Such movement requires energy, usually as ATP. An
example of this active transport is the sodium pump
(Na+/K+-ATPase), which can expel sodium ions from a cell
even when the external sodium concentration is higher
than the internal one.

Active
Active
transport
transport
Endocytosis сells engulf extracellular substances and bring
them into the cytoplasm in membrane-limited vesicles by
mechanisms described collectively a endocytosis.
Exocytosis removes substances from the cell. Cells use this
process both for secretion and for excretion of undigested material.
A membrane-limited vesicle or secretory granule fuses with the
plasma membrane and releases its contents into the extracellular
space, without disrupting the plasma membrane.

Endocytosis

Exocytosis
•In phagocytosis (“cell eating”), the cell engulfs insoluble
extracellular substances, such as large macromolecules or
entire bacteria. The vesicles formed are termed
phagosomes.
•In pinocytosis (“cell drinking”), the cell engulfs small
amounts of intercellular fluid, which may contain a variety
of solutes. Pinocytotic vesicles are usually smaller than
phagosomes.

Pinocytosis
a

f

Phagocytosis
f
Pinocytotic vesicles are usually smaller than phagosomes
Intercellular connections
Simple contact – membranes of two cells are on distance of 10-12
nm in such manner that glycocalyx one cell adjoins with glycocalyx
of another cell. The basic function is metabolism and information
interchange between cells.
Zonulae occludentes — also
called tight junctions. Zonula
occludens are located between
adjacent plasma membranes most
typically near the apices of
epithelial cells. They form a "beltlike" junction that encircles the
entire circumference of the cell.
These junctions act as barriers
that prevent the movement of
molecules into the intercellular
spaces.
Intercellular connections
Intercellular connections
Zonular adherentes

are band-like
adhesion. This device surrounds the cell and
joins it to its neighbors.

Desmosomes (Maculae adherens).
This is the most common type of tight junction
between adjoining cells. A desmosome is a small
circumscribed area of attachment – attachment
plaques. At the side of a desmosome the plasma
membrane (of each cell) is thickened because of
the presence of dense layer of protein on inner
surface.
Desmosomes are serving
to attach the basal cell
membrane to the basal
lamina.
Gap junctions,

Intercellular connections

also called communicating junctions, are regions of
intercellular communication.
They are widespread in epithelial tissues, in
cardiac muscle smooth muscle cells and neurons. Gap junctions are built by six
closely packed transmembrane proteins connexins that assemble to from
structures called connexons. The two connexons fuse, forming the functional
intercellular communication channel. The hydrophilic channel permits the
passage of ions, small molecules and hormones.
Intercellular connections
Plasma membrane enfoldings of the

basal plasma
membrane increase the surface area available for transport. The
basal surface of some epithelia, especially those involved in ion
transport, possesses multiple enfoldings of the basal plasma
membrane. These enfoldings partition the basal cytoplasm and
many mitochondria into the finger-like enfoldings.

Synapse

- type of contact
between two nervous cells or
between a nervous cell and a
muscle. Through synapses pass
nervous impulses.
Cytoplasm structures can be divided into 3 groups:
•Organelles
are
membrane-bound,
enzymecontaining, permanent subcellular compatrments.
•Cytoplasmic inclusions are structures, membranebound or not, that are generally more transient than
organelles and less actively involved in cell metabolism.
•Cytoplasmic matrix the cytoskeleton is composed of
proteinaceous elements that form a supporting network
within the cytoplasm; some of these elements
(microtubules) also form discrete cytoplasmic structures
such as centrioles.
Organelles constantly present in a cell are described as
membranous and nonmembranous.
The membranous organelles include:
endoplasmic reticulum (rER and sER)
mitochondria
Golgi apparatus
lysosomes
peroxisomes
The nonmembranous organelles include:
microtubules
filaments (different varieties)
centrioles
ribosomes
Membranous organelles are the most part of organelles
of a cell.
The largest of the cytoplasmic organelles, mitochondria are the
energy providers of the cell. The size to bacteria (usually 2-6 mm
in lenght and 0.2 mm in diameter but quite variable) and have
varios shapes: spheric, ovoid, filamentous. Each mitochondrion is
bounded by 2 unit membranes.
The outer mitochondrial membrane has a smooth contour and
forms a continuous but relatively porous covering. It is freely
permeable to various small molecules.
The
inner
mitochondrial
membrane is less porous and is
therefore semipermeable. It has
numerous infoldings, or cristae, that
project into the mitochondrion’s
interior. The mitochondrial cristae
of most cells are shelflike, but those
in
steroid-secreting
cells
are
typically more tubular.
The mitochondrial membranes create 2 membrane-limited spaces. The
intermembrane space is located between the inner and outer membranes and is
continuous with the interacristal space that extends into the cristae. The
intercristal space, or matrix space, is enclosed by the inner membrane and
contains the mitochondrial matrix.
The mitochondrial matrix contains
water, solutes, and large matrix
granules, believed to be concerned
with
mitochondrial
calcium-ion
concentrations. It also contains
circular DNA and mitochondrial
ribosomes similar to those of bacteria.
The matrix contains numerous
soluble enzymes involved in such
specialized mitochondrial functions as
(citric acid
the Krebs cycle cycle, tricarboxylic acid cycle),

b-oxidation of lipids, and
mitochondrial
DNA
DNA synthesis.
Basic cytology
Function the provide of cell with the energy for chemical and
mechanical work by storing energy generated from cellular
metabolites in the high-energy bonds of ATP.
Mitochondria are found in nearly all eukaryotic cells, and in most
they are dispersed throughout the cytoplasm.
However, they accumulate in the
highest concentrations in cell types and
intracellular regions with the highest
energy requirements.
Cardiac muscle cells are notable for
the abundance of their mitochondria.
Epithelial cells lining the kidney
tubules have abundant mitochodria
interdigitated between basal plasma
membrane infoldings where active
transport of ions and water occurs.
DNA
The ribosomes are protein-synthesizing organelles. Each type of
ribosome has 2 unequal ribosomal subunits. Cytoplasmic ribosomes
are composed of ribosomal RNA (rRNA) synthesized in the nucleos
and associated proteins synthesized in the cytoplasm.

ribosomes
They are intensely basophilic. Light microscopy reveals cytoplasmic
accumulations of ribosomes as basophilic patches, formerly termed
ergastoplasm in grandular cells and Nissl bodies in neurons. In
electron micrographs, ribosomes appear as small, electron-dense
cytoplasmic granules.

Nissl bodies
Cytoplasmic ribosomes occur in 2 forms.
Free ribosomes are individual ribosomes dispersed in cytoplasm.
Polysomes are groups of ribosomes evenly distributed along a
single strand of messenger RNA (mRNA), an arrangement that
permits synthesis of multiple copies of a protein from the same
message. Polysomal ribosomes read (translate) the mRNA code and
thus play a critical role in assembling amino acids into specific
proteins, are found free in the cytoplasm (free polysomes) and
attached to membranes of the rER.
Free polysomes are involved in the
synthesis of structural proteins and
enzymes for intracellular use.
Polysomes of the rER are involved
in synthesizing proteins that are
secreted or
isolated.
Endoplasmic Reticulum
The endoplasmic reticulum (ER) is a complex organelle involved in the
synthesis, packaging, and processing of various cell substances. It is a
freely anastomosing network (reticulum) of membranes that form vesicles,
or cisternae; these may be elongated, flattened, rounded, or tubular.

Transfer vesicles (transitional
vesicles) are small, membranelimited vesicles that bud from
the ER and cross the
intervening cytoplasm to reach
the Golgi complex for further
processing or packaging of
their contents.
ER occurs in 2 forms:

rough
smooth
Rough endoplasmic reticulum (rER)
The also called granular endoplasmic reticulum, is studded with
ribosomes, many of them in polysomal clusters.
rER
cisternae
are
typically
parallel,
flattened, and elongated,
especially
in
cells
specialized for protein
secretion
(pancreatic
acinar cells, plasma cells).
The ribosomes give rER
basophilic
staining
properties.
The fine structure of
rER (membranes and
individual ribosomes) is visible only with the
electron microscope.
Rough endoplasmic reticulum (RER)
rER is mainly concerned with the synhtesis of proteins for
sequestration from the rest of the cytoplasm, ie, secretory proteins
such as collagen, proteins for incorporation into cell membranes,
and lysosomal enzymes (separated from the rest of the cytoplasm to
prevent autolysis).
RER in protein-secreting
epithelial cells often lies in
the
basal
cytoplasm,
between
the
plasma
membrane and the nucleus.
Smooth endoplasmic reticulum (SER)
The smooth endoplasmic reticulum (SER) lacks ribosomes
and thus appears smooth in electron micrographs.
SER cisternae are more
tubular or vesicular than those
of RER.
SER stains poorly, if at all, so
with the light microscope it is
indistinguishable from the rest
of the cytoplasm.
Because it lacks ribosomes, the
SER cannot synthesize proteins.
It has many enzymes, important
in lipid metabolism, steroid
hormone synthesis, glycogen
synthesis
(glucose-6phosphatase), and detoxification.
Smooth endoplasmic reticulum (SER)
The sER is suspended in the
cytoplasm of many cells and
is especially abundant in cells
that
synthesize
steroid
hormones (cells of the adrenal
cortex, gonads in liver cells
“hepatocytes”, where it is
involved in glycogen synthesis
and drug detoxification).
Specialized
SER
termed
sarcoplasmic reticulum is
found in striated muscle cells,
where it helps to regulate
muscle
contraction
by
sequestering and releasing
calcium ions.
The Golgi complex (Golgi apparatus) participates in many activities,
particularly those associated with secretion. It has an essential role
in coordinating membrane flow and vesicle traffic among organelles.
flattened cisternae;
The composed of 3 major
compartments:
conspicious stack of 3-10
discrete, slightly curved,
flattened cisternae;
numerous small vesicles
peripheral to the stack;
a few large vacuoles,
sometimes
called
condensing vacuoles, at
the concave surface of the
stack.
flattened cisternae;
The cis face (convex face,
forming face) of the stack is
usually closest to adjacent
dilated ER cisternae and is
surrounded by transfer
vesicles. Its cisternae stain
more darkly with osmium.
The trans face (concave
face, maturing face) often
harbors several condensing
vacuoles and generally faces
away from the nucleus.

flattened cisternae;

flattened cisternae;
Lysosomes are spheric, membrane-limited vesicles that
may contain more than 50 enzymes each and function as
the cellular digestive system. Their characteristic enzyme
activities distinguish them from other cellular granules.
The enzyme most widely exploited for their identification
is acid phosphate, because it occurs almost exclusively in
lysosomes. Other enzymes common in lysosomes are
ribonucleases, deoxyribonucleases, cathepsins, sulfatases,
b-glucoronidase, and phospholipases and other proteases,
glucosidases, and lipases.
Lysosomal enzymes usually occur as glycoproteins
and are most active at an acidic pH. Lysosomes
occur in various sizes and electron densities,
depending on their level of activity.
Primary lysosomes are small (5-8 nm), with electron-dense
contents; they appear as black circles in electron micrographs. They
are the storage form of lysosomes, and their enzymes are mostly
inactive. Lysosomes enzymes synthesized and coreglycosylated in the
RER are transferred to the Golgi complex for further glycosylation;
it is uncertain whether their final packaging as primary lysosomes
occurs in the Golgi complex. The primary lysosomes disperse
through the cytoplasm.
They are found in most cells
but are most abundant in
phagocytic cells (macrophages,
neutrophils).

lysosomes
Primary lysosomes
Secondary lysosomes are larger and less electron-dense and have a
mottled appearance in electron micrographs. They are formed by
the fusion of one or more primary lysosomes with a phagosome.
Their primary function is the digestion of products of heterophagy
and autophagy; when the lysosomal enzymes mix with the
phagosome contents, they become active.
Lysosomal enzymes also catabolize certain products of cell synthesis,
thus regulating the quality and quantity of secretory material.
Secondary lysosomes occur
throughout the cytoplasm in
many cells, in numbers that
reflect the cell’s lysosomal
and phagocytic activity.
Residual bodies
are
membranelimited inclusion of
varying size and
electron
density
associated with the
terminal phases of
lysosome function.
They
contain
undigestible
materials such as
pigments, crystals,
and certain lipids.
Primary lysosomes
Peroxisomes are membrane-limited, enzyme-containing vesicles
somewhat larger than primary lysosomes. Peroxisomes function in
hydrogen peroxide metabolism. They contain urate oxidase,
hydroxyacid oxidase, and d-amino acid oxidase, which produce
hydrogen peroxide capable of killing bacteria; they also contain
catalase, which oxidizes various substrates and uses the hydrogen
removed in the process to convert the toxic hydrogen peroxide to
water.
Peroxisomes
also
participate
in
gluconeogenesis by assisting in the boxidation of fatty acids. They are found
dispersed in the cytoplasm or in
association with the SER.
with
Microtubules are the thickest components of the cytoskeleton, with
diameters of 24 nm. They are fine tubular structures of variable
lenght, with dense walls (5 nm thick) and a clear internal space (14
nm in internal diameter). The walls are composed of subunits called
tubulin heterodimers, each of which consists of one a-tubulin and
one b-tubulin protein molecule. The tubulin heterodimers are
arranged in protofilaments.
Thirteen of these threadlike b-tubulin
polymers of a- and b-tubulin
align parallel to one another to
form the wall of each
microtubule.
Microtubules
increase in length by adding
new heterodimers to one end,
called the nucleation site.

a-tubulin

protofilaments
Microfilaments are the thinnest cytoskeletal components (5-7 nm
wide). They are usually composed of one of several types of actin
protein. In striated muscle cells, actin filaments form a stable
paracrystalline array in association with filaments of myosin. Actin
filaments in other cells are less stable and can dissociate and
reassemble. These changes are regulated in part by calcium ions and
cyclic AMP and by actin-binding proteins in the cytoplasm.
Microfilaments are contractile, but to contract, they usually interact
with myosin. In muscle cells, myosin forms thick filaments. In
nonmuscle cells, it exists in soluble form.In nonmuscle cells,
microfilaments are generally distributed as an irregular meshwork
throughout the cytoplasm.
tropomyosin

myosin

actin
A centriole is a cylindric group of microtubules, 150 nm in overall
diameter and 350-500 nm long, containing 9 microtubule triplets in a
pinwheel array. Each microtubule in a triplet shares a portion of the
wall of the neighboring microtubule.
An interphase (nondividing)
cell has a pair of adjacent
centrioles with perpendicular
long axes, each surrounded by
several
electron-dense
satellites, or pericentriolar
bodies.
Other
cytoplasmic
microtubules
originate
from the pericenriolar
bodies and radiate into the
cytoplasm.
Centrioles are the structural organizers of the cell. Centriole
duplication is a prerequisite for cell division, and during mitosis
the centrioles organize the microtubules of the mitotic spindle.
Location. Between cell divisions,
centrioles are near the nucleus, often
surrounded by Golgi complexes. The
centrioles and associated Golgi
complexes
constitute
the
cell
cytocenter, which appears as a clear
zone near the nucleus. During the S
phase of interphase, each centriole
duplicates by giving rise to a
procentriole that grows at right
angels to the original. During mitosis,
the new centriole pairs migrate to
opposite cell poles to organize the
spindle.
Prominent among inclusions serving as storage depots are spheric
lipid droplets, which differ in appearance depending upon the type
of histologic preparation.
Glycogen granules are inclusions that are PAS-positive in light
microscopy and appear in electron micrographs as rosettes of
electron-dense particles. Both lipid droplets and glycogen granules
lack a limiting membrane.
Melanin is a brownish pigment widely distributed in vertebrates,
often found in electron-dense, membrane-limited granules termed
melanosomes. It is particularly abundant in epidermal cells and in
the pigment layer of the retina.
NUCLEUS
Nuclei vary in appearance from tissue to tissue and cell to cell, but
they generally have a:

nuclear envelope
nucleoplasm
chromatin
one to several nucleoli

generally
NUCLEUS
The nuclear contents are set apart from the cytoplasm by a double
membrane called the nuclear envelope and a narrow (40-70 nm)
intermembrane space called the perinuclear space.
The nuclear envelope is often considered an exctension of the
RER, because its outer surface is often peppered with ribosomes and
shows occasional continuities with the RER.
The inside of the inner
membrane is lined with the
fibrous lamina, a layer
consisting of proteins called
nuclear laminа.

generally

inside
NUCLEUS
The envelope is perforated by many nuclear pores,
each of which has a diameter of about 70 nm and is
bounded by:

8 globular subunits
called annular proteins,
which
present
an
octagonal appearance in
some preparations.
Each pore is covered
by
a
proteinaceous
diaphragm
that
is
thinner
than
the
envelope.

globular subunits

generally
PORES
The pores provide a channel
for
the
movement
of
important molecules between
the nucleus and cytoplasm.
These
molecules include
nucleic acids synthesized in the
nucleus and used in the
cytoplasm (mRNA, rRNA,
tRNA)
and
proteins
synthesized in the cytoplasm
and used in the nucleus
(histones, polymerases).
nucleus
generally
Струкщ

Струкщ
Nucleoplasm
The nucleoplasm is the matrix in which the other
intranuclear components are embedded. It is composed of
enzymatic and nonenzymatic proteins, metabolites, ions,
and water.
heterochromatin
It includes the nuclear
matrix – a fibrillar
“nucleoskeletal” structure
that appears to bind
certain
hormone
receptors-and
newly
synthesized DNA.
Nuclear chromatin
Nuclear chromatin is an intensely basophilic substance
consisting of DNA and associated histone and nonhistone
proteins.
Nuclei containing highly coiled chromatin, termed
heterochromatin, stain darkly with basic dyes.
heterochromatin

coiled
Nuclear chromatin
Chromatin is a complex of DNA and proteins. It
is responsible for the characteristic basophilia of
the nucleus.
The
densely
staining
material
is
highly
condensed chromatin called
heterochromatin and the
lightly staining material is a
dispersed
form
called
euchromatin.
Chromosomes
The chromosomes, the most highly condensed form of
chromatin, are visible during mitosis. In females, only one
X chromosome (either of the 2) is used by each cell;
The inactive X chromosome is often visible as a clump of
heterochromatin termed sex chromatin, or the Barr body.
In most cells, the Barr
body is attached to the
inner surface of the
nuclear envelope. In a
neutrophilic leukocyte,
it may appear as a
drumstick-shaped
appendage
of
the
lobulated nucleus.
Nucleolus
During interphase (between mitoses), each nucleus
usually has at least one (or2) intensely basophilic body
called a nucleolus. Nucleoli are the synthesis sites for
most ribosomal RNA (rRNA).
The
nucleolus
disappears
in
preparation
for
mitosis and reappears
after
mitosis
is
completed.
Nucleolus
The term nucleolonema is used by light microscopists to refer to a
threadlike basophilic substructure of the nucleolus. The nucleolonema
contains 2 rRNA-rich components distinguishable by electron microscopy.
The pars fibrosa consists of densely packed ribonucleoprotein fibers, 510 nm in diameter. These fibers consist of the newly synthesized primary
transcripts of the rRNA genes and associated proteins.

The pars granulosa
contains dense granules,
15-20 nm in diameter,
that represent maturing
ribosomal
subunits
during
assembly
for
export to the cytoplasm.

Nucleolus

pars fibrosa

pars granulosa
Nucleolus
pars fibrosa
pars granulosa
Thank you for attention !

Contenu connexe

Tendances (20)

Intro to histology
Intro to histologyIntro to histology
Intro to histology
 
Nervous tissue histology
Nervous tissue  histology Nervous tissue  histology
Nervous tissue histology
 
Cell & Its Orgenells
Cell & Its OrgenellsCell & Its Orgenells
Cell & Its Orgenells
 
Histopathological techniques -sectioning, STAINING, EMBEDDING, fixaton, micro...
Histopathological techniques -sectioning, STAINING, EMBEDDING, fixaton, micro...Histopathological techniques -sectioning, STAINING, EMBEDDING, fixaton, micro...
Histopathological techniques -sectioning, STAINING, EMBEDDING, fixaton, micro...
 
introduction of cytopathology
introduction of cytopathologyintroduction of cytopathology
introduction of cytopathology
 
Biochemistry
BiochemistryBiochemistry
Biochemistry
 
Cell biology
Cell biologyCell biology
Cell biology
 
Cell Histology, Structure and Function of Cell,
Cell Histology, Structure and Function of Cell,Cell Histology, Structure and Function of Cell,
Cell Histology, Structure and Function of Cell,
 
Cell & Types
Cell & TypesCell & Types
Cell & Types
 
Fixation of tissues
Fixation of tissuesFixation of tissues
Fixation of tissues
 
Histology of the breast
Histology of the breastHistology of the breast
Histology of the breast
 
Histology Made Easy: Chap 1: Introduction to Histology
Histology Made Easy: Chap 1: Introduction to HistologyHistology Made Easy: Chap 1: Introduction to Histology
Histology Made Easy: Chap 1: Introduction to Histology
 
Histology of Nervous system
Histology of Nervous systemHistology of Nervous system
Histology of Nervous system
 
Histology & its methods of study
Histology & its methods of studyHistology & its methods of study
Histology & its methods of study
 
Cytoplasm ppt (introduction structure & function)
Cytoplasm  ppt (introduction structure & function)Cytoplasm  ppt (introduction structure & function)
Cytoplasm ppt (introduction structure & function)
 
The cell
The cellThe cell
The cell
 
Exocytosis, endocytosis
Exocytosis, endocytosisExocytosis, endocytosis
Exocytosis, endocytosis
 
Organelles
OrganellesOrganelles
Organelles
 
Cell movement
Cell movementCell movement
Cell movement
 
epithelium
epitheliumepithelium
epithelium
 

En vedette

Cytotechniques
Cytotechniques  Cytotechniques
Cytotechniques drtousif
 
Exfoliative cytology
Exfoliative cytologyExfoliative cytology
Exfoliative cytologyShamin Joshi
 
FINE NEEDLE ASPIRATION CYTOLOGY / FNAC
FINE NEEDLE ASPIRATION CYTOLOGY / FNACFINE NEEDLE ASPIRATION CYTOLOGY / FNAC
FINE NEEDLE ASPIRATION CYTOLOGY / FNACK BHATTACHARJEE
 
Exfoliative cytology
Exfoliative cytology Exfoliative cytology
Exfoliative cytology Atifa Ambreen
 
Introduction to Life
Introduction to LifeIntroduction to Life
Introduction to LifeSmita Shukla
 
Current concepts in cervical cytology
Current concepts in cervical cytologyCurrent concepts in cervical cytology
Current concepts in cervical cytologycharu batra atreja
 
Cell block and liquid based cytology
Cell block and liquid based cytologyCell block and liquid based cytology
Cell block and liquid based cytologyDr Neha Mahajan
 
Гістологія органів ендокринної системи
Гістологія органів ендокринної системиГістологія органів ендокринної системи
Гістологія органів ендокринної системиAlla Khodorovska
 
Епітеліальна тканина
Епітеліальна тканинаЕпітеліальна тканина
Епітеліальна тканинаAlla Khodorovska
 
Respiratory System / Дихальна система
Respiratory System / Дихальна системаRespiratory System / Дихальна система
Respiratory System / Дихальна системаAlla Khodorovska
 
Methods to-study-histology
Methods to-study-histologyMethods to-study-histology
Methods to-study-histologyHoolahoop13
 
Oral wound healing, biopsy,exfoliative cytology
Oral wound healing, biopsy,exfoliative cytologyOral wound healing, biopsy,exfoliative cytology
Oral wound healing, biopsy,exfoliative cytologyHrudi Sahoo
 
Cervical cytopathology
Cervical cytopathologyCervical cytopathology
Cervical cytopathologyMonika Nema
 

En vedette (20)

Cytotechniques
Cytotechniques  Cytotechniques
Cytotechniques
 
Exfoliative cytology
Exfoliative cytologyExfoliative cytology
Exfoliative cytology
 
Exfoliative cytology
Exfoliative cytologyExfoliative cytology
Exfoliative cytology
 
FINE NEEDLE ASPIRATION CYTOLOGY / FNAC
FINE NEEDLE ASPIRATION CYTOLOGY / FNACFINE NEEDLE ASPIRATION CYTOLOGY / FNAC
FINE NEEDLE ASPIRATION CYTOLOGY / FNAC
 
Exfoliative cytology
Exfoliative cytology Exfoliative cytology
Exfoliative cytology
 
Cytology 2016
Cytology 2016Cytology 2016
Cytology 2016
 
fine needle aspiration cytology by rahul raj
fine needle aspiration cytology by rahul rajfine needle aspiration cytology by rahul raj
fine needle aspiration cytology by rahul raj
 
Introduction to Life
Introduction to LifeIntroduction to Life
Introduction to Life
 
Current concepts in cervical cytology
Current concepts in cervical cytologyCurrent concepts in cervical cytology
Current concepts in cervical cytology
 
Cell block and liquid based cytology
Cell block and liquid based cytologyCell block and liquid based cytology
Cell block and liquid based cytology
 
cytopreparation techniques part 2
cytopreparation techniques part 2cytopreparation techniques part 2
cytopreparation techniques part 2
 
cytopreparation techniques part 1
cytopreparation techniques part 1cytopreparation techniques part 1
cytopreparation techniques part 1
 
Гістологія органів ендокринної системи
Гістологія органів ендокринної системиГістологія органів ендокринної системи
Гістологія органів ендокринної системи
 
Епітеліальна тканина
Епітеліальна тканинаЕпітеліальна тканина
Епітеліальна тканина
 
Respiratory System / Дихальна система
Respiratory System / Дихальна системаRespiratory System / Дихальна система
Respiratory System / Дихальна система
 
Methods to-study-histology
Methods to-study-histologyMethods to-study-histology
Methods to-study-histology
 
Fnac breast
Fnac breastFnac breast
Fnac breast
 
Oral wound healing, biopsy,exfoliative cytology
Oral wound healing, biopsy,exfoliative cytologyOral wound healing, biopsy,exfoliative cytology
Oral wound healing, biopsy,exfoliative cytology
 
Cytogenetics
Cytogenetics Cytogenetics
Cytogenetics
 
Cervical cytopathology
Cervical cytopathologyCervical cytopathology
Cervical cytopathology
 

Similaire à Basic cytology

Cell & its organelles, inter cellular conections
Cell & its organelles, inter cellular conectionsCell & its organelles, inter cellular conections
Cell & its organelles, inter cellular conectionsDr K Ambareesha Goud PhD
 
Cell physiology
Cell physiologyCell physiology
Cell physiologyvmailj
 
cells structure and transport mechanisms
cells structure and transport mechanismscells structure and transport mechanisms
cells structure and transport mechanismsReisa Roberts
 
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptx
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptxINTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptx
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptxprajkatakamble201720
 
Lecture 1 -_cells_structure_and_transport_mechanisms
Lecture 1 -_cells_structure_and_transport_mechanismsLecture 1 -_cells_structure_and_transport_mechanisms
Lecture 1 -_cells_structure_and_transport_mechanismsKingJC899_GUNplay
 
Introduction Biochemistry for BPT Students
Introduction Biochemistry for BPT StudentsIntroduction Biochemistry for BPT Students
Introduction Biochemistry for BPT StudentsKalaivanisathishr
 
cytoplasm and its organelles
cytoplasm and its organellescytoplasm and its organelles
cytoplasm and its organellesFatimaSundus1
 
2 Plant Cell physiology and their role tt
2 Plant Cell physiology and their role tt2 Plant Cell physiology and their role tt
2 Plant Cell physiology and their role ttBhim Joshi
 
Cytology in electron microscopy
Cytology in electron microscopyCytology in electron microscopy
Cytology in electron microscopyMazzucchettiIan
 
Cells and its components(Anatomy) Easy explanation
Cells and its components(Anatomy) Easy explanationCells and its components(Anatomy) Easy explanation
Cells and its components(Anatomy) Easy explanationSwatilekha Das
 
cellsanditscomponents-181011191551.pdf
cellsanditscomponents-181011191551.pdfcellsanditscomponents-181011191551.pdf
cellsanditscomponents-181011191551.pdftiarafowler772
 

Similaire à Basic cytology (20)

Cell & its organelles, inter cellular conections
Cell & its organelles, inter cellular conectionsCell & its organelles, inter cellular conections
Cell & its organelles, inter cellular conections
 
Cell physiology
Cell physiologyCell physiology
Cell physiology
 
CELL PHYSIOLOGY
CELL PHYSIOLOGYCELL PHYSIOLOGY
CELL PHYSIOLOGY
 
cells structure and transport mechanisms
cells structure and transport mechanismscells structure and transport mechanisms
cells structure and transport mechanisms
 
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptx
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptxINTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptx
INTRODUCTION AND CELLULAR LEVEL OF ORGANIZATION.pptx
 
Unit1-Cell_Str.pptx
Unit1-Cell_Str.pptxUnit1-Cell_Str.pptx
Unit1-Cell_Str.pptx
 
Lecture 1 -_cells_structure_and_transport_mechanisms
Lecture 1 -_cells_structure_and_transport_mechanismsLecture 1 -_cells_structure_and_transport_mechanisms
Lecture 1 -_cells_structure_and_transport_mechanisms
 
Introduction Biochemistry for BPT Students
Introduction Biochemistry for BPT StudentsIntroduction Biochemistry for BPT Students
Introduction Biochemistry for BPT Students
 
Cell
CellCell
Cell
 
Mdsc 1001 pbl problem 1
Mdsc 1001 pbl problem 1Mdsc 1001 pbl problem 1
Mdsc 1001 pbl problem 1
 
2.cell structure
2.cell structure2.cell structure
2.cell structure
 
Cell
CellCell
Cell
 
cytoplasm and its organelles
cytoplasm and its organellescytoplasm and its organelles
cytoplasm and its organelles
 
The cell
The cellThe cell
The cell
 
2 Plant Cell physiology and their role tt
2 Plant Cell physiology and their role tt2 Plant Cell physiology and their role tt
2 Plant Cell physiology and their role tt
 
Cytology in electron microscopy
Cytology in electron microscopyCytology in electron microscopy
Cytology in electron microscopy
 
1. cell
1. cell1. cell
1. cell
 
Cells and its components(Anatomy) Easy explanation
Cells and its components(Anatomy) Easy explanationCells and its components(Anatomy) Easy explanation
Cells and its components(Anatomy) Easy explanation
 
cellsanditscomponents-181011191551.pdf
cellsanditscomponents-181011191551.pdfcellsanditscomponents-181011191551.pdf
cellsanditscomponents-181011191551.pdf
 
Physiology essays
Physiology essaysPhysiology essays
Physiology essays
 

Plus de Alla Khodorovska

Histology of the Nervous tissue
Histology of the Nervous tissueHistology of the Nervous tissue
Histology of the Nervous tissueAlla Khodorovska
 
Гістологія органів серцево-судинної системи
Гістологія органів серцево-судинної системиГістологія органів серцево-судинної системи
Гістологія органів серцево-судинної системиAlla Khodorovska
 
Орган слуху та рівноваги
Орган слуху та рівновагиОрган слуху та рівноваги
Орган слуху та рівновагиAlla Khodorovska
 
Орган смаку та нюху
Орган смаку та нюхуОрган смаку та нюху
Орган смаку та нюхуAlla Khodorovska
 

Plus de Alla Khodorovska (7)

Histology of the Nervous tissue
Histology of the Nervous tissueHistology of the Nervous tissue
Histology of the Nervous tissue
 
Histology of the Muscules
Histology of the MusculesHistology of the Muscules
Histology of the Muscules
 
Histology of the Blood
Histology of the BloodHistology of the Blood
Histology of the Blood
 
Гістологія органів серцево-судинної системи
Гістологія органів серцево-судинної системиГістологія органів серцево-судинної системи
Гістологія органів серцево-судинної системи
 
Орган слуху та рівноваги
Орган слуху та рівновагиОрган слуху та рівноваги
Орган слуху та рівноваги
 
Орган зору
Орган зоруОрган зору
Орган зору
 
Орган смаку та нюху
Орган смаку та нюхуОрган смаку та нюху
Орган смаку та нюху
 

Dernier

Over the counter (OTC)- Sale, rational use.pptx
Over the counter (OTC)- Sale, rational use.pptxOver the counter (OTC)- Sale, rational use.pptx
Over the counter (OTC)- Sale, rational use.pptxraviapr7
 
Diploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfDiploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfMohonDas
 
The Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George WellsThe Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George WellsEugene Lysak
 
How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17Celine George
 
5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...CaraSkikne1
 
Department of Health Compounder Question ‍Solution 2022.pdf
Department of Health Compounder Question ‍Solution 2022.pdfDepartment of Health Compounder Question ‍Solution 2022.pdf
Department of Health Compounder Question ‍Solution 2022.pdfMohonDas
 
Slides CapTechTalks Webinar March 2024 Joshua Sinai.pptx
Slides CapTechTalks Webinar March 2024 Joshua Sinai.pptxSlides CapTechTalks Webinar March 2024 Joshua Sinai.pptx
Slides CapTechTalks Webinar March 2024 Joshua Sinai.pptxCapitolTechU
 
3.21.24 The Origins of Black Power.pptx
3.21.24  The Origins of Black Power.pptx3.21.24  The Origins of Black Power.pptx
3.21.24 The Origins of Black Power.pptxmary850239
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17Celine George
 
EBUS5423 Data Analytics and Reporting Bl
EBUS5423 Data Analytics and Reporting BlEBUS5423 Data Analytics and Reporting Bl
EBUS5423 Data Analytics and Reporting BlDr. Bruce A. Johnson
 
How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17Celine George
 
10 Topics For MBA Project Report [HR].pdf
10 Topics For MBA Project Report [HR].pdf10 Topics For MBA Project Report [HR].pdf
10 Topics For MBA Project Report [HR].pdfJayanti Pande
 
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRADUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRATanmoy Mishra
 
How to Create a Toggle Button in Odoo 17
How to Create a Toggle Button in Odoo 17How to Create a Toggle Button in Odoo 17
How to Create a Toggle Button in Odoo 17Celine George
 
How to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesHow to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesCeline George
 
Quality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICEQuality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICESayali Powar
 
Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.EnglishCEIPdeSigeiro
 

Dernier (20)

Over the counter (OTC)- Sale, rational use.pptx
Over the counter (OTC)- Sale, rational use.pptxOver the counter (OTC)- Sale, rational use.pptx
Over the counter (OTC)- Sale, rational use.pptx
 
Diploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfDiploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdf
 
The Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George WellsThe Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George Wells
 
Prelims of Kant get Marx 2.0: a general politics quiz
Prelims of Kant get Marx 2.0: a general politics quizPrelims of Kant get Marx 2.0: a general politics quiz
Prelims of Kant get Marx 2.0: a general politics quiz
 
How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17
 
5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...
 
Department of Health Compounder Question ‍Solution 2022.pdf
Department of Health Compounder Question ‍Solution 2022.pdfDepartment of Health Compounder Question ‍Solution 2022.pdf
Department of Health Compounder Question ‍Solution 2022.pdf
 
Personal Resilience in Project Management 2 - TV Edit 1a.pdf
Personal Resilience in Project Management 2 - TV Edit 1a.pdfPersonal Resilience in Project Management 2 - TV Edit 1a.pdf
Personal Resilience in Project Management 2 - TV Edit 1a.pdf
 
Slides CapTechTalks Webinar March 2024 Joshua Sinai.pptx
Slides CapTechTalks Webinar March 2024 Joshua Sinai.pptxSlides CapTechTalks Webinar March 2024 Joshua Sinai.pptx
Slides CapTechTalks Webinar March 2024 Joshua Sinai.pptx
 
3.21.24 The Origins of Black Power.pptx
3.21.24  The Origins of Black Power.pptx3.21.24  The Origins of Black Power.pptx
3.21.24 The Origins of Black Power.pptx
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17
 
EBUS5423 Data Analytics and Reporting Bl
EBUS5423 Data Analytics and Reporting BlEBUS5423 Data Analytics and Reporting Bl
EBUS5423 Data Analytics and Reporting Bl
 
How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17
 
March 2024 Directors Meeting, Division of Student Affairs and Academic Support
March 2024 Directors Meeting, Division of Student Affairs and Academic SupportMarch 2024 Directors Meeting, Division of Student Affairs and Academic Support
March 2024 Directors Meeting, Division of Student Affairs and Academic Support
 
10 Topics For MBA Project Report [HR].pdf
10 Topics For MBA Project Report [HR].pdf10 Topics For MBA Project Report [HR].pdf
10 Topics For MBA Project Report [HR].pdf
 
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRADUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
 
How to Create a Toggle Button in Odoo 17
How to Create a Toggle Button in Odoo 17How to Create a Toggle Button in Odoo 17
How to Create a Toggle Button in Odoo 17
 
How to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesHow to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 Sales
 
Quality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICEQuality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICE
 
Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.
 

Basic cytology

  • 1. Professor asastent of department histology, cytology and embryology - KHODOROVSKA ALLA
  • 2. Histology is the study of the tissues of the body and of how these tissues are arranged to constitute organs. Each of the fundamental tissues is formed by several types of cells and typically by specific associations of cells and extracellular matrix. Histology is classed as a subdiscipline of anatomy, because its methods involve dividing tissues and organs into pieces and preparing them for microscopic examination and chemical analyses. Two aspects of the subject are distinguished; special histology deals with the arrangement and special adaptations of tissues in the various organs whereas general histology deals with the components of the individual tissues. Cytology is the science about a cell.
  • 3. The cell is the basic structural and functional unit of all multicellular organisms, limited to an active cell membrane, cytoplasm and nucleus. There are 2 basic cell types: Prokaryotic cells are typically small, single-celled organisms (bacteria) that lack a nuclear envelope, histones, and membranous organelles. Eukaryotic exist primarily components multicellular organisms. cells as of
  • 4. Сytoplasm Сytoplasm The cytoplasm is a complex colloidal system. The cytoplasm of a cell consists of: organelles inclusions hyaloplasm The structure of hyaloplasm includes water, proteins, nucleinic acids, different polysaccharides and a lot of enzymes. The colloid system of hyaloplasm can be in a liquid or gel consistence. cytoplasm
  • 5. Сell membrane Сell membrane The cell membrane (plasmalemma) is an universal system which form many structures of a cell. Each cell is bounded by a cell. The plasmalemma includes 3 layer: I. Glycocalyx (carbohydrates) II. Lipid bilayer (lipid molecule and proteins) III. Submembrane cortical layer (actin microfilaments and microtubules)
  • 6. Сell membrane Сell membrane The structure of each membrane includes: Proteins make 50-60% of its weight, lipids 30-40 % and carbohydrates 5-10%. Most membrane proteins of the following 3 groups: proteins lipids carbohydrates carbohydrates Proteins іntegral transmembrane рeripheral lipids
  • 7. Сell membrane Сell membrane Integral membrane proteins are tightly lodged in the lipid bilayer; detergents are required to extract them. They are folded, with their hydrophilic amino acids in contact with the phosphate groups of the membrane phospholipids and their hydrophobic amino acids in contact with the fatty-acid tails. Тransmembrane proteins from onlyone membrane surface, while others, penetrate the entire membrane and protrude from both sides. Peripheral membrane proteins are more loosely associated with the inner or outer membrane surface.
  • 8. Сell membrane Сell membrane The inner and the outer dense line composed of a single layer of phospholipids, between them settle some proteins. Carbohydrates occur on plasma membranes mainly as oligosaccharide moieties of membrane glycoproteins and glycolipids. Membrane oligosaccharides have a characteristic branching structure and project from the cell's outer surface, forming a superficial coat called the glycocalyx that participates in cell adhesion and recognition. Structures of plasmalemma
  • 9. The plasmalemma carry out some of the important functions: The plasmalemma carry out some of the important functions: •Barrier the plasmalemma separates a cell from an environment and other cells; the nucleus is separated from cytoplasm, membranes organelles from hyaloplasm. •Receptor on a surface of plasmalemma. There are special structures-receptors due to which the cell finds out different chemical substances, physical factors, other cells, hormones and antigens. special structures-receptors
  • 10. •Transport-through a membrane of cell freely passes water, salts and substances with low molecular weight. Such transport is called passive. •The transport against a gradient of concentration is called active. Passive diffusion Passive diffusion Certain substances (e.g., water) can cross the membrane in either direction, following a concentration gradient. Passive diffusion does not require energy expenditure.
  • 11. Facilitated diffusion Facilitated diffusion Certain molecules (e.g., glucose) cannot freely diffuse across membranes but must be helped across by a membrane component. This facilitated diffusion is often unidirectional, but it follows a concentration gradient and requires no energy.
  • 12. Some nondiffusible molecules can move into or out of cell either along or against a concentration gradient. Such movement requires energy, usually as ATP. An example of this active transport is the sodium pump (Na+/K+-ATPase), which can expel sodium ions from a cell even when the external sodium concentration is higher than the internal one. Active Active transport transport
  • 13. Endocytosis сells engulf extracellular substances and bring them into the cytoplasm in membrane-limited vesicles by mechanisms described collectively a endocytosis. Exocytosis removes substances from the cell. Cells use this process both for secretion and for excretion of undigested material. A membrane-limited vesicle or secretory granule fuses with the plasma membrane and releases its contents into the extracellular space, without disrupting the plasma membrane. Endocytosis Exocytosis
  • 14. •In phagocytosis (“cell eating”), the cell engulfs insoluble extracellular substances, such as large macromolecules or entire bacteria. The vesicles formed are termed phagosomes. •In pinocytosis (“cell drinking”), the cell engulfs small amounts of intercellular fluid, which may contain a variety of solutes. Pinocytotic vesicles are usually smaller than phagosomes. Pinocytosis a f Phagocytosis f
  • 15. Pinocytotic vesicles are usually smaller than phagosomes
  • 16. Intercellular connections Simple contact – membranes of two cells are on distance of 10-12 nm in such manner that glycocalyx one cell adjoins with glycocalyx of another cell. The basic function is metabolism and information interchange between cells. Zonulae occludentes — also called tight junctions. Zonula occludens are located between adjacent plasma membranes most typically near the apices of epithelial cells. They form a "beltlike" junction that encircles the entire circumference of the cell. These junctions act as barriers that prevent the movement of molecules into the intercellular spaces.
  • 18. Intercellular connections Zonular adherentes are band-like adhesion. This device surrounds the cell and joins it to its neighbors. Desmosomes (Maculae adherens). This is the most common type of tight junction between adjoining cells. A desmosome is a small circumscribed area of attachment – attachment plaques. At the side of a desmosome the plasma membrane (of each cell) is thickened because of the presence of dense layer of protein on inner surface. Desmosomes are serving to attach the basal cell membrane to the basal lamina.
  • 19. Gap junctions, Intercellular connections also called communicating junctions, are regions of intercellular communication. They are widespread in epithelial tissues, in cardiac muscle smooth muscle cells and neurons. Gap junctions are built by six closely packed transmembrane proteins connexins that assemble to from structures called connexons. The two connexons fuse, forming the functional intercellular communication channel. The hydrophilic channel permits the passage of ions, small molecules and hormones.
  • 20. Intercellular connections Plasma membrane enfoldings of the basal plasma membrane increase the surface area available for transport. The basal surface of some epithelia, especially those involved in ion transport, possesses multiple enfoldings of the basal plasma membrane. These enfoldings partition the basal cytoplasm and many mitochondria into the finger-like enfoldings. Synapse - type of contact between two nervous cells or between a nervous cell and a muscle. Through synapses pass nervous impulses.
  • 21. Cytoplasm structures can be divided into 3 groups: •Organelles are membrane-bound, enzymecontaining, permanent subcellular compatrments. •Cytoplasmic inclusions are structures, membranebound or not, that are generally more transient than organelles and less actively involved in cell metabolism. •Cytoplasmic matrix the cytoskeleton is composed of proteinaceous elements that form a supporting network within the cytoplasm; some of these elements (microtubules) also form discrete cytoplasmic structures such as centrioles.
  • 22. Organelles constantly present in a cell are described as membranous and nonmembranous. The membranous organelles include: endoplasmic reticulum (rER and sER) mitochondria Golgi apparatus lysosomes peroxisomes The nonmembranous organelles include: microtubules filaments (different varieties) centrioles ribosomes Membranous organelles are the most part of organelles of a cell.
  • 23. The largest of the cytoplasmic organelles, mitochondria are the energy providers of the cell. The size to bacteria (usually 2-6 mm in lenght and 0.2 mm in diameter but quite variable) and have varios shapes: spheric, ovoid, filamentous. Each mitochondrion is bounded by 2 unit membranes. The outer mitochondrial membrane has a smooth contour and forms a continuous but relatively porous covering. It is freely permeable to various small molecules. The inner mitochondrial membrane is less porous and is therefore semipermeable. It has numerous infoldings, or cristae, that project into the mitochondrion’s interior. The mitochondrial cristae of most cells are shelflike, but those in steroid-secreting cells are typically more tubular.
  • 24. The mitochondrial membranes create 2 membrane-limited spaces. The intermembrane space is located between the inner and outer membranes and is continuous with the interacristal space that extends into the cristae. The intercristal space, or matrix space, is enclosed by the inner membrane and contains the mitochondrial matrix. The mitochondrial matrix contains water, solutes, and large matrix granules, believed to be concerned with mitochondrial calcium-ion concentrations. It also contains circular DNA and mitochondrial ribosomes similar to those of bacteria. The matrix contains numerous soluble enzymes involved in such specialized mitochondrial functions as (citric acid the Krebs cycle cycle, tricarboxylic acid cycle), b-oxidation of lipids, and mitochondrial DNA DNA synthesis.
  • 26. Function the provide of cell with the energy for chemical and mechanical work by storing energy generated from cellular metabolites in the high-energy bonds of ATP. Mitochondria are found in nearly all eukaryotic cells, and in most they are dispersed throughout the cytoplasm. However, they accumulate in the highest concentrations in cell types and intracellular regions with the highest energy requirements. Cardiac muscle cells are notable for the abundance of their mitochondria. Epithelial cells lining the kidney tubules have abundant mitochodria interdigitated between basal plasma membrane infoldings where active transport of ions and water occurs. DNA
  • 27. The ribosomes are protein-synthesizing organelles. Each type of ribosome has 2 unequal ribosomal subunits. Cytoplasmic ribosomes are composed of ribosomal RNA (rRNA) synthesized in the nucleos and associated proteins synthesized in the cytoplasm. ribosomes
  • 28. They are intensely basophilic. Light microscopy reveals cytoplasmic accumulations of ribosomes as basophilic patches, formerly termed ergastoplasm in grandular cells and Nissl bodies in neurons. In electron micrographs, ribosomes appear as small, electron-dense cytoplasmic granules. Nissl bodies
  • 29. Cytoplasmic ribosomes occur in 2 forms. Free ribosomes are individual ribosomes dispersed in cytoplasm. Polysomes are groups of ribosomes evenly distributed along a single strand of messenger RNA (mRNA), an arrangement that permits synthesis of multiple copies of a protein from the same message. Polysomal ribosomes read (translate) the mRNA code and thus play a critical role in assembling amino acids into specific proteins, are found free in the cytoplasm (free polysomes) and attached to membranes of the rER. Free polysomes are involved in the synthesis of structural proteins and enzymes for intracellular use. Polysomes of the rER are involved in synthesizing proteins that are secreted or isolated.
  • 30. Endoplasmic Reticulum The endoplasmic reticulum (ER) is a complex organelle involved in the synthesis, packaging, and processing of various cell substances. It is a freely anastomosing network (reticulum) of membranes that form vesicles, or cisternae; these may be elongated, flattened, rounded, or tubular. Transfer vesicles (transitional vesicles) are small, membranelimited vesicles that bud from the ER and cross the intervening cytoplasm to reach the Golgi complex for further processing or packaging of their contents. ER occurs in 2 forms: rough smooth
  • 31. Rough endoplasmic reticulum (rER) The also called granular endoplasmic reticulum, is studded with ribosomes, many of them in polysomal clusters. rER cisternae are typically parallel, flattened, and elongated, especially in cells specialized for protein secretion (pancreatic acinar cells, plasma cells). The ribosomes give rER basophilic staining properties. The fine structure of rER (membranes and individual ribosomes) is visible only with the electron microscope.
  • 32. Rough endoplasmic reticulum (RER) rER is mainly concerned with the synhtesis of proteins for sequestration from the rest of the cytoplasm, ie, secretory proteins such as collagen, proteins for incorporation into cell membranes, and lysosomal enzymes (separated from the rest of the cytoplasm to prevent autolysis). RER in protein-secreting epithelial cells often lies in the basal cytoplasm, between the plasma membrane and the nucleus.
  • 33. Smooth endoplasmic reticulum (SER) The smooth endoplasmic reticulum (SER) lacks ribosomes and thus appears smooth in electron micrographs. SER cisternae are more tubular or vesicular than those of RER. SER stains poorly, if at all, so with the light microscope it is indistinguishable from the rest of the cytoplasm. Because it lacks ribosomes, the SER cannot synthesize proteins. It has many enzymes, important in lipid metabolism, steroid hormone synthesis, glycogen synthesis (glucose-6phosphatase), and detoxification.
  • 34. Smooth endoplasmic reticulum (SER) The sER is suspended in the cytoplasm of many cells and is especially abundant in cells that synthesize steroid hormones (cells of the adrenal cortex, gonads in liver cells “hepatocytes”, where it is involved in glycogen synthesis and drug detoxification). Specialized SER termed sarcoplasmic reticulum is found in striated muscle cells, where it helps to regulate muscle contraction by sequestering and releasing calcium ions.
  • 35. The Golgi complex (Golgi apparatus) participates in many activities, particularly those associated with secretion. It has an essential role in coordinating membrane flow and vesicle traffic among organelles. flattened cisternae; The composed of 3 major compartments: conspicious stack of 3-10 discrete, slightly curved, flattened cisternae; numerous small vesicles peripheral to the stack; a few large vacuoles, sometimes called condensing vacuoles, at the concave surface of the stack. flattened cisternae;
  • 36. The cis face (convex face, forming face) of the stack is usually closest to adjacent dilated ER cisternae and is surrounded by transfer vesicles. Its cisternae stain more darkly with osmium. The trans face (concave face, maturing face) often harbors several condensing vacuoles and generally faces away from the nucleus. flattened cisternae; flattened cisternae;
  • 37. Lysosomes are spheric, membrane-limited vesicles that may contain more than 50 enzymes each and function as the cellular digestive system. Their characteristic enzyme activities distinguish them from other cellular granules. The enzyme most widely exploited for their identification is acid phosphate, because it occurs almost exclusively in lysosomes. Other enzymes common in lysosomes are ribonucleases, deoxyribonucleases, cathepsins, sulfatases, b-glucoronidase, and phospholipases and other proteases, glucosidases, and lipases. Lysosomal enzymes usually occur as glycoproteins and are most active at an acidic pH. Lysosomes occur in various sizes and electron densities, depending on their level of activity.
  • 38. Primary lysosomes are small (5-8 nm), with electron-dense contents; they appear as black circles in electron micrographs. They are the storage form of lysosomes, and their enzymes are mostly inactive. Lysosomes enzymes synthesized and coreglycosylated in the RER are transferred to the Golgi complex for further glycosylation; it is uncertain whether their final packaging as primary lysosomes occurs in the Golgi complex. The primary lysosomes disperse through the cytoplasm. They are found in most cells but are most abundant in phagocytic cells (macrophages, neutrophils). lysosomes
  • 40. Secondary lysosomes are larger and less electron-dense and have a mottled appearance in electron micrographs. They are formed by the fusion of one or more primary lysosomes with a phagosome. Their primary function is the digestion of products of heterophagy and autophagy; when the lysosomal enzymes mix with the phagosome contents, they become active. Lysosomal enzymes also catabolize certain products of cell synthesis, thus regulating the quality and quantity of secretory material. Secondary lysosomes occur throughout the cytoplasm in many cells, in numbers that reflect the cell’s lysosomal and phagocytic activity.
  • 41. Residual bodies are membranelimited inclusion of varying size and electron density associated with the terminal phases of lysosome function. They contain undigestible materials such as pigments, crystals, and certain lipids.
  • 43. Peroxisomes are membrane-limited, enzyme-containing vesicles somewhat larger than primary lysosomes. Peroxisomes function in hydrogen peroxide metabolism. They contain urate oxidase, hydroxyacid oxidase, and d-amino acid oxidase, which produce hydrogen peroxide capable of killing bacteria; they also contain catalase, which oxidizes various substrates and uses the hydrogen removed in the process to convert the toxic hydrogen peroxide to water. Peroxisomes also participate in gluconeogenesis by assisting in the boxidation of fatty acids. They are found dispersed in the cytoplasm or in association with the SER. with
  • 44. Microtubules are the thickest components of the cytoskeleton, with diameters of 24 nm. They are fine tubular structures of variable lenght, with dense walls (5 nm thick) and a clear internal space (14 nm in internal diameter). The walls are composed of subunits called tubulin heterodimers, each of which consists of one a-tubulin and one b-tubulin protein molecule. The tubulin heterodimers are arranged in protofilaments. Thirteen of these threadlike b-tubulin polymers of a- and b-tubulin align parallel to one another to form the wall of each microtubule. Microtubules increase in length by adding new heterodimers to one end, called the nucleation site. a-tubulin protofilaments
  • 45. Microfilaments are the thinnest cytoskeletal components (5-7 nm wide). They are usually composed of one of several types of actin protein. In striated muscle cells, actin filaments form a stable paracrystalline array in association with filaments of myosin. Actin filaments in other cells are less stable and can dissociate and reassemble. These changes are regulated in part by calcium ions and cyclic AMP and by actin-binding proteins in the cytoplasm. Microfilaments are contractile, but to contract, they usually interact with myosin. In muscle cells, myosin forms thick filaments. In nonmuscle cells, it exists in soluble form.In nonmuscle cells, microfilaments are generally distributed as an irregular meshwork throughout the cytoplasm. tropomyosin myosin actin
  • 46. A centriole is a cylindric group of microtubules, 150 nm in overall diameter and 350-500 nm long, containing 9 microtubule triplets in a pinwheel array. Each microtubule in a triplet shares a portion of the wall of the neighboring microtubule. An interphase (nondividing) cell has a pair of adjacent centrioles with perpendicular long axes, each surrounded by several electron-dense satellites, or pericentriolar bodies. Other cytoplasmic microtubules originate from the pericenriolar bodies and radiate into the cytoplasm.
  • 47. Centrioles are the structural organizers of the cell. Centriole duplication is a prerequisite for cell division, and during mitosis the centrioles organize the microtubules of the mitotic spindle. Location. Between cell divisions, centrioles are near the nucleus, often surrounded by Golgi complexes. The centrioles and associated Golgi complexes constitute the cell cytocenter, which appears as a clear zone near the nucleus. During the S phase of interphase, each centriole duplicates by giving rise to a procentriole that grows at right angels to the original. During mitosis, the new centriole pairs migrate to opposite cell poles to organize the spindle.
  • 48. Prominent among inclusions serving as storage depots are spheric lipid droplets, which differ in appearance depending upon the type of histologic preparation. Glycogen granules are inclusions that are PAS-positive in light microscopy and appear in electron micrographs as rosettes of electron-dense particles. Both lipid droplets and glycogen granules lack a limiting membrane. Melanin is a brownish pigment widely distributed in vertebrates, often found in electron-dense, membrane-limited granules termed melanosomes. It is particularly abundant in epidermal cells and in the pigment layer of the retina.
  • 49. NUCLEUS Nuclei vary in appearance from tissue to tissue and cell to cell, but they generally have a: nuclear envelope nucleoplasm chromatin one to several nucleoli generally
  • 50. NUCLEUS The nuclear contents are set apart from the cytoplasm by a double membrane called the nuclear envelope and a narrow (40-70 nm) intermembrane space called the perinuclear space. The nuclear envelope is often considered an exctension of the RER, because its outer surface is often peppered with ribosomes and shows occasional continuities with the RER. The inside of the inner membrane is lined with the fibrous lamina, a layer consisting of proteins called nuclear laminа. generally inside
  • 51. NUCLEUS The envelope is perforated by many nuclear pores, each of which has a diameter of about 70 nm and is bounded by: 8 globular subunits called annular proteins, which present an octagonal appearance in some preparations. Each pore is covered by a proteinaceous diaphragm that is thinner than the envelope. globular subunits generally
  • 52. PORES The pores provide a channel for the movement of important molecules between the nucleus and cytoplasm. These molecules include nucleic acids synthesized in the nucleus and used in the cytoplasm (mRNA, rRNA, tRNA) and proteins synthesized in the cytoplasm and used in the nucleus (histones, polymerases). nucleus generally
  • 54. Nucleoplasm The nucleoplasm is the matrix in which the other intranuclear components are embedded. It is composed of enzymatic and nonenzymatic proteins, metabolites, ions, and water. heterochromatin It includes the nuclear matrix – a fibrillar “nucleoskeletal” structure that appears to bind certain hormone receptors-and newly synthesized DNA.
  • 55. Nuclear chromatin Nuclear chromatin is an intensely basophilic substance consisting of DNA and associated histone and nonhistone proteins. Nuclei containing highly coiled chromatin, termed heterochromatin, stain darkly with basic dyes. heterochromatin coiled
  • 56. Nuclear chromatin Chromatin is a complex of DNA and proteins. It is responsible for the characteristic basophilia of the nucleus. The densely staining material is highly condensed chromatin called heterochromatin and the lightly staining material is a dispersed form called euchromatin.
  • 57. Chromosomes The chromosomes, the most highly condensed form of chromatin, are visible during mitosis. In females, only one X chromosome (either of the 2) is used by each cell; The inactive X chromosome is often visible as a clump of heterochromatin termed sex chromatin, or the Barr body. In most cells, the Barr body is attached to the inner surface of the nuclear envelope. In a neutrophilic leukocyte, it may appear as a drumstick-shaped appendage of the lobulated nucleus.
  • 58. Nucleolus During interphase (between mitoses), each nucleus usually has at least one (or2) intensely basophilic body called a nucleolus. Nucleoli are the synthesis sites for most ribosomal RNA (rRNA). The nucleolus disappears in preparation for mitosis and reappears after mitosis is completed.
  • 59. Nucleolus The term nucleolonema is used by light microscopists to refer to a threadlike basophilic substructure of the nucleolus. The nucleolonema contains 2 rRNA-rich components distinguishable by electron microscopy. The pars fibrosa consists of densely packed ribonucleoprotein fibers, 510 nm in diameter. These fibers consist of the newly synthesized primary transcripts of the rRNA genes and associated proteins. The pars granulosa contains dense granules, 15-20 nm in diameter, that represent maturing ribosomal subunits during assembly for export to the cytoplasm. Nucleolus pars fibrosa pars granulosa
  • 61. Thank you for attention !