SlideShare une entreprise Scribd logo
1  sur  50
Télécharger pour lire hors ligne
LECTURE 6: EXAMPLE
VR APPLICATIONS
COMP 4026 – Advanced HCI
Semester 5 - 2017
Bruce Thomas, Mark Billinghurst
University of South Australia
August 31st 2017
Lecture 5: Recap
• Interaction Design for VR
• Iterative method for designing VR experiences
• Applying well known ID techniques to VR
• Interaction Design Process
• Needs analysis
• Experience Design
• System Prototyping
• Evaluation
The Interaction Design Process
Evaluate
(Re)Design
Identify needs/
establish
requirements
Build an
interactive
version
Final Product
Develop alternative prototypes/concepts and compare them
And iterate, iterate, iterate....
Methods for Identifying User Needs
Learn from
people
Learn from
analogous
settings
Learn from
Experts
Immersive
yourself in
context
VR Design Considerations
• Use UI Best Practices
• Adapt know UI guidelines to VR
• Use of Interface Metaphors/Affordances
• Decide best metaphor for VR application
• Design for Humans
• Use Human Information Processing model
• Design for Different User Groups
• Different users may have unique needs
• Design for the Whole User
• Social, cultural, emotional, physical cognitive
Typical Development Steps
▪ Sketching
▪ Storyboards
▪ UI Mockups
▪ Interaction Flows
▪ Video Prototypes
▪ Interactive Prototypes
▪ Final Native Application
Increased
Fidelity &
Interactivity
VR Prototyping Tools
• Low Fidelity
• Sketched Paper Interfaces – pen/paper, non-interactive
• Onride Photoshop tool – digital, non-interactive
• InstaVR - 360 web based tool, simple interactivity
• SketchBox – create VR interface inside VR
• High Fidelity
• Entiti – template based VR with visual programming
• A-Frame – web based VR tool using HTML
• EditorVR – Unity wrapper inside VR
• Unity/Unreal Game Engine – programming needed
Four Evaluation Paradigms
•‘quick and dirty’
•usability testing (lab studies)
•field studies
•predictive evaluation
Characteristics of Approaches
Usability
testing
Field
studies
Predictive
Users do task natural not involved
Location controlled natural anywhere
When prototype early prototype
Data quantitative qualitative problems
Feed back measures &
errors
descriptions problems
Type applied naturalistic expert
Examples Mentioned
EXAMPLE VR APPLICATIONS
Virtual Reality Applications
• Ideal applications for VR should:
• Be strongly visual, have 3D spatial elements
• Benefit from first person immersion
• Benefit from 3D manipulation/navigation
• Support Autonomy, Interaction and Presence (AIP Cube)
• Etc..
Many Possible Types of VR Applications
From https://www.slideshare.net/ampnewventures/virtual-reality-vr-continuum-amp-new-ventures
Potential Disruption for Existing Domains
https://www.slideshare.net/BDMIFund/the-emerging-virtual-reality-landscape-a-primer
Example VR Applications
• Education
• Google Expeditions
• Medicine
• Virtual Characters
• Entertainment
• The Void, Zero Latency
• Art + Design
• Tilt Brush
• Collaboration
• Facebook Spaces
EDUCATION
Google Expeditions
• https://edu.google.com/expeditions/
• Mobile VR Educational application (Android, iOS)
• Designed for classroom experiences
Google Expeditions
• Goal: Provide low cost educational VR experience
• Based on Google Cardboard VR platform
• Different roles:
• Guide— person leading an expedition on a tablet
• Explorer— person following an expedition on a phone.
• Usage
• Used by over 1 million students
• Over 500 educational experiences developed
• Royal Collection Trust, American Museum of Natural History, etc.
Teacher Led VR Experiences
• Teacher/Guide uses tablet to control the experience
• Selects the virtual tour experience
• Guide sees tour script, can select immersive scenes to view
• Guide sees focus point and where individual students are looking
• Students connect as followers, look at what guides highlight
Guide Interface
System
• Hardware
• Google Cardboard mobile viewer
• Smart phones + tablet (class set)
• Wireless router
• Software
• Viewer and Guide applications (iOS/Android)
• 360 image/video VR experiences
Class set for 30 students
Example Experiences
• Over 500 locations/experiences
• Great barrier reef, Great Wall of China, Grand Canyon, etc.
Demonstration
• https://www.youtube.com/watch?v=3MQ9yG_QfDA
Feedback
• Teacher/student survey (100 people)
• 65% experienced a “Wow” moment during Google expedition
• Noted the variety of educator styles and approaches possible
• People enjoyed “The feeling of ‘being’ there”
From https://www.slideshare.net/zoesujon/google-expeditions-virtual-reality-and-the-classroom
Limitations
• 53% of participants identified some problems, including:
• Difficult for some people who wore glasses
• Some complained of eye strain, headaches or nausea
• Some staff were reluctant/resistant to use the leader tablet
• Issues of disabilities and inclusion
Challenges/Solutions
• Making VR accessible
• Designing for phones, tablets, low cost viewers
• Synchronizing content with all viewers
• Teacher controlled viewing
• Teacher can guide experiences
• Engaging interaction on simple viewers
• Head pointing based interaction, button input
• Supporting Educational goals
• Providing compelling educational content
MEDICINE
Virtual Patients
• Problem
• Many doctors have poor doctor/patient skills
• Have limited opportunity during training to learn skills
• Solution
• Virtual patients that doctors can communicate with naturally
• Artificial agents with speech understanding
Typical System Setup
• Trainee in front of projection screen
• Speech and gesture recognition
• Intelligent agent on screen
Johnsen, K., Raij, A., Stevens, A., Lind, D. S., & Lok, B. (2007, April). The validity of a virtual
human experience for interpersonal skills education. In Proceedings of the SIGCHI conference
on Human factors in computing systems (pp. 1049-1058). ACM.
Demo:
• https://www.youtube.com/watch?v=xC70_tRGOOk
Key Findings
• Virtual Humans can replace actors in training
• interaction skills used with a virtual human translate to
the interaction skills used with a real human
• Students feel a strong sense of co-presence
• Having character respond to speech and gesture
increases immersion
• VR is capable of creating realistic characters
• Life size, intelligent backend, speech recognition
• Skills learnt transfer to real world
Challenges/Solutions
• Training in medical environment
• Design for training in medical exam room
• Use projected VR not HMDs
• Natural interaction
• Support speech and gesture interaction
• Tactile/haptic feedback
• Use prosthetics to add support for palpation and other
tactile interaction between doctor and virtual patient
• Supporting Educational goals
• Give virtual character domain knowledge
ENTERTAINMENT
Large Scale VR Gaming
• Provide multi-player VR gaming in warehouse space
• Examples
• The Void - https://www.thevoid.com/
• Zero Latency - https://zerolatencyvr.com/
Typical System
• Wide Area Tracking
• Computer vision, lights/reflective balls
• > 120 cameras for 300 m2 space
• Backpack VR system
• Haptic feedback vest, wireless HMD
• Real Props
• Tracked objects, walls
Tracking cameras
Backpack system
The Void Demo
• https://www.youtube.com/watch?v=XgetffuOgBA
Challenges/Solutions
• Wide area tracking
• Computer vision tracking of
• Over 100 cameras + multiple servers
• Freedom of movement
• Custom wireless VR backpacks
• Ruggedized HMDs, weapon props
• Natural interaction
• Redirected walking, tangible props
• Compelling content
• Multi-sensory feedback, custom game platform
ART + DESIGN
Tilt Brush
• Intuitive 3D immersive drawing/sculpting program
• Developed by Patrick Hackett and Drew Skillman 2014
• Acquired by Google in 2015
• https://www.tiltbrush.com/
Functionality
• Goal: Extremely natural 3D painting/sculpting
• User Interface
• Two handed interface designed for two controllers (Vive, Rift)
• Brush in dominant hand, tool palette in non-dominant
• Typical drawing functionality – color, brush width, undo/redo, etc..
• Content sharing
• Created content can be exported/shared in 2D/3D formats
Demo
• https://www.youtube.com/watch?v=TckqNdrdbgk
Artist Feedback
• https://www.youtube.com/watch?v=91J8pLHdDB0
Example Tilt Brush Sketches
• https://vr.google.com/sketches/
• Explore in desktop VR
Challenges/Solutions
• Intuitive Interface
• Very natural metaphor – painting in space
• Two handed interface – map to VR controllers
• Familiar menu objects from paint programs
• Need for limited training
• Provide in app training, tool tips
• Content sharing
• Enable content to be exported in variety of formats
• Video, animated GIFs, 2D images, 3D files
• Engaging Experience
• Provides novel immersive artistic experience
COLLABORATION
Facebook Spaces
• Collaborative VR environment
• VR meeting and interaction space (up to 4 people)
• Focus on communication
• Speech and gesture based
• https://www.facebook.com/spaces
System Interaction
• Designed for Oculus Rift/HTC Vive
• Upper body tracking, touch controllers
• Simple interaction
• Loading scenes, direct object manipulation
• Content creation
• Selfie pictures, simple sketching
Demo
• https://www.youtube.com/watch?v=PVf3m7e7OKU
Challenges/Solutions
• Create shared sense of Presence
• Use common background, shared objects
• Natural communication
• Support non-verbal behaviour, speech/gesture input
• Intuitive interaction
• Map real body motion onto Avatars
• Limited ability to navigate/move through environment
• Engaging Experience
• Shared content creation, experience capture
www.empathiccomputing.org
@marknb00
mark.billinghurst@unisa.edu.au

Contenu connexe

Tendances

COMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and SystemsCOMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and SystemsMark Billinghurst
 
COMP 4026 Lecture2: Design and Prototype
COMP 4026 Lecture2: Design and PrototypeCOMP 4026 Lecture2: Design and Prototype
COMP 4026 Lecture2: Design and PrototypeMark Billinghurst
 
VSMM 2016 Keynote: Using AR and VR to create Empathic Experiences
VSMM 2016 Keynote: Using AR and VR to create Empathic ExperiencesVSMM 2016 Keynote: Using AR and VR to create Empathic Experiences
VSMM 2016 Keynote: Using AR and VR to create Empathic ExperiencesMark Billinghurst
 
Comp4010 Lecture7 Designing AR Systems
Comp4010 Lecture7 Designing AR SystemsComp4010 Lecture7 Designing AR Systems
Comp4010 Lecture7 Designing AR SystemsMark Billinghurst
 
Developing AR and VR Experiences with Unity
Developing AR and VR Experiences with UnityDeveloping AR and VR Experiences with Unity
Developing AR and VR Experiences with UnityMark Billinghurst
 
COMP 4010 Lecture 6: VR Applications
COMP 4010 Lecture 6: VR ApplicationsCOMP 4010 Lecture 6: VR Applications
COMP 4010 Lecture 6: VR ApplicationsMark Billinghurst
 
Lecture 8 Introduction to Augmented Reality
Lecture 8 Introduction to Augmented RealityLecture 8 Introduction to Augmented Reality
Lecture 8 Introduction to Augmented RealityMark Billinghurst
 
Mobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface DesignMobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface DesignMark Billinghurst
 
COMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR SystemsCOMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR SystemsMark Billinghurst
 
Comp4010 lecture6 Prototyping
Comp4010 lecture6 PrototypingComp4010 lecture6 Prototyping
Comp4010 lecture6 PrototypingMark Billinghurst
 
COMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRCOMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRMark Billinghurst
 
COMP 4026 - Lecture1 introduction
COMP 4026 - Lecture1 introductionCOMP 4026 - Lecture1 introduction
COMP 4026 - Lecture1 introductionMark Billinghurst
 
Comp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsComp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsMark Billinghurst
 
COMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR InteractionCOMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR InteractionMark Billinghurst
 
COMP 4010 - Lecture 5: Interaction Design for Virtual Reality
COMP 4010 - Lecture 5: Interaction Design for Virtual RealityCOMP 4010 - Lecture 5: Interaction Design for Virtual Reality
COMP 4010 - Lecture 5: Interaction Design for Virtual RealityMark Billinghurst
 
COMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual RealityCOMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual RealityMark Billinghurst
 
COMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual RealityCOMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual RealityMark Billinghurst
 

Tendances (20)

COMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and SystemsCOMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and Systems
 
Lecture 4: VR Systems
Lecture 4: VR SystemsLecture 4: VR Systems
Lecture 4: VR Systems
 
COMP 4026 Lecture2: Design and Prototype
COMP 4026 Lecture2: Design and PrototypeCOMP 4026 Lecture2: Design and Prototype
COMP 4026 Lecture2: Design and Prototype
 
VSMM 2016 Keynote: Using AR and VR to create Empathic Experiences
VSMM 2016 Keynote: Using AR and VR to create Empathic ExperiencesVSMM 2016 Keynote: Using AR and VR to create Empathic Experiences
VSMM 2016 Keynote: Using AR and VR to create Empathic Experiences
 
Comp4010 Lecture7 Designing AR Systems
Comp4010 Lecture7 Designing AR SystemsComp4010 Lecture7 Designing AR Systems
Comp4010 Lecture7 Designing AR Systems
 
Developing AR and VR Experiences with Unity
Developing AR and VR Experiences with UnityDeveloping AR and VR Experiences with Unity
Developing AR and VR Experiences with Unity
 
COMP 4010 Lecture 6: VR Applications
COMP 4010 Lecture 6: VR ApplicationsCOMP 4010 Lecture 6: VR Applications
COMP 4010 Lecture 6: VR Applications
 
Lecture 8 Introduction to Augmented Reality
Lecture 8 Introduction to Augmented RealityLecture 8 Introduction to Augmented Reality
Lecture 8 Introduction to Augmented Reality
 
Mobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface DesignMobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface Design
 
COMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR SystemsCOMP 4010 - Lecture 3 VR Systems
COMP 4010 - Lecture 3 VR Systems
 
Comp4010 lecture6 Prototyping
Comp4010 lecture6 PrototypingComp4010 lecture6 Prototyping
Comp4010 lecture6 Prototyping
 
COMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRCOMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VR
 
COMP 4026 - Lecture1 introduction
COMP 4026 - Lecture1 introductionCOMP 4026 - Lecture1 introduction
COMP 4026 - Lecture1 introduction
 
Comp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsComp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research Directions
 
COMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR InteractionCOMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR Interaction
 
COMP 4010 - Lecture 5: Interaction Design for Virtual Reality
COMP 4010 - Lecture 5: Interaction Design for Virtual RealityCOMP 4010 - Lecture 5: Interaction Design for Virtual Reality
COMP 4010 - Lecture 5: Interaction Design for Virtual Reality
 
COMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual RealityCOMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual Reality
 
Designing Usable Interface
Designing Usable InterfaceDesigning Usable Interface
Designing Usable Interface
 
From Interaction to Empathy
From Interaction to EmpathyFrom Interaction to Empathy
From Interaction to Empathy
 
COMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual RealityCOMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual Reality
 

En vedette

COMP 4010 Lecture12 - Research Directions in AR and VR
COMP 4010 Lecture12 - Research Directions in AR and VRCOMP 4010 Lecture12 - Research Directions in AR and VR
COMP 4010 Lecture12 - Research Directions in AR and VRMark Billinghurst
 
Fifty Shades of Augmented Reality: Creating Connection Using AR
Fifty Shades of Augmented Reality: Creating Connection Using ARFifty Shades of Augmented Reality: Creating Connection Using AR
Fifty Shades of Augmented Reality: Creating Connection Using ARMark Billinghurst
 
COMP 4010 - Lecture 7: Introduction to Augmented Reality
COMP 4010 - Lecture 7: Introduction to Augmented RealityCOMP 4010 - Lecture 7: Introduction to Augmented Reality
COMP 4010 - Lecture 7: Introduction to Augmented RealityMark Billinghurst
 
COMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR TechnologyCOMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR TechnologyMark Billinghurst
 
COMP 4010 - Lecture10: Mobile AR
COMP 4010 - Lecture10: Mobile ARCOMP 4010 - Lecture10: Mobile AR
COMP 4010 - Lecture10: Mobile ARMark Billinghurst
 
Collaborative Immersive Analytics
Collaborative Immersive AnalyticsCollaborative Immersive Analytics
Collaborative Immersive AnalyticsMark Billinghurst
 
COMP 4010 Lecture 9 AR Interaction
COMP 4010 Lecture 9 AR InteractionCOMP 4010 Lecture 9 AR Interaction
COMP 4010 Lecture 9 AR InteractionMark Billinghurst
 
COMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR ApplicationsCOMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR ApplicationsMark Billinghurst
 
Create Your Own VR Experience
Create Your Own VR ExperienceCreate Your Own VR Experience
Create Your Own VR ExperienceMark Billinghurst
 
Beyond Reality (2027): The Future of Virtual and Augmented Reality
Beyond Reality (2027): The Future of Virtual and Augmented RealityBeyond Reality (2027): The Future of Virtual and Augmented Reality
Beyond Reality (2027): The Future of Virtual and Augmented RealityMark Billinghurst
 
Building VR Applications For Google Cardboard
Building VR Applications For Google CardboardBuilding VR Applications For Google Cardboard
Building VR Applications For Google CardboardMark Billinghurst
 
COMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual RealityCOMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual RealityMark Billinghurst
 
COMP 4010: Lecture2 VR Technology
COMP 4010: Lecture2 VR TechnologyCOMP 4010: Lecture2 VR Technology
COMP 4010: Lecture2 VR TechnologyMark Billinghurst
 
Using Interaction Design Methods for Creating AR and VR Interfaces
Using Interaction Design Methods for Creating AR and VR InterfacesUsing Interaction Design Methods for Creating AR and VR Interfaces
Using Interaction Design Methods for Creating AR and VR InterfacesMark Billinghurst
 

En vedette (15)

COMP 4010 Lecture12 - Research Directions in AR and VR
COMP 4010 Lecture12 - Research Directions in AR and VRCOMP 4010 Lecture12 - Research Directions in AR and VR
COMP 4010 Lecture12 - Research Directions in AR and VR
 
Fifty Shades of Augmented Reality: Creating Connection Using AR
Fifty Shades of Augmented Reality: Creating Connection Using ARFifty Shades of Augmented Reality: Creating Connection Using AR
Fifty Shades of Augmented Reality: Creating Connection Using AR
 
Easy Virtual Reality
Easy Virtual RealityEasy Virtual Reality
Easy Virtual Reality
 
COMP 4010 - Lecture 7: Introduction to Augmented Reality
COMP 4010 - Lecture 7: Introduction to Augmented RealityCOMP 4010 - Lecture 7: Introduction to Augmented Reality
COMP 4010 - Lecture 7: Introduction to Augmented Reality
 
COMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR TechnologyCOMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR Technology
 
COMP 4010 - Lecture10: Mobile AR
COMP 4010 - Lecture10: Mobile ARCOMP 4010 - Lecture10: Mobile AR
COMP 4010 - Lecture10: Mobile AR
 
Collaborative Immersive Analytics
Collaborative Immersive AnalyticsCollaborative Immersive Analytics
Collaborative Immersive Analytics
 
COMP 4010 Lecture 9 AR Interaction
COMP 4010 Lecture 9 AR InteractionCOMP 4010 Lecture 9 AR Interaction
COMP 4010 Lecture 9 AR Interaction
 
COMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR ApplicationsCOMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR Applications
 
Create Your Own VR Experience
Create Your Own VR ExperienceCreate Your Own VR Experience
Create Your Own VR Experience
 
Beyond Reality (2027): The Future of Virtual and Augmented Reality
Beyond Reality (2027): The Future of Virtual and Augmented RealityBeyond Reality (2027): The Future of Virtual and Augmented Reality
Beyond Reality (2027): The Future of Virtual and Augmented Reality
 
Building VR Applications For Google Cardboard
Building VR Applications For Google CardboardBuilding VR Applications For Google Cardboard
Building VR Applications For Google Cardboard
 
COMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual RealityCOMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual Reality
 
COMP 4010: Lecture2 VR Technology
COMP 4010: Lecture2 VR TechnologyCOMP 4010: Lecture2 VR Technology
COMP 4010: Lecture2 VR Technology
 
Using Interaction Design Methods for Creating AR and VR Interfaces
Using Interaction Design Methods for Creating AR and VR InterfacesUsing Interaction Design Methods for Creating AR and VR Interfaces
Using Interaction Design Methods for Creating AR and VR Interfaces
 

Similaire à COMP 4010: Lecture 6 Example VR Applications

Applying virtual environments in distance learning of product development
Applying virtual environments in distance learning of product developmentApplying virtual environments in distance learning of product development
Applying virtual environments in distance learning of product developmentHAMK Design Factory
 
Lecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VRLecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VRMark Billinghurst
 
2016 AR Summer School - Lecture4
2016 AR Summer School - Lecture42016 AR Summer School - Lecture4
2016 AR Summer School - Lecture4Mark Billinghurst
 
De diepte in met virtual reality
De diepte in met virtual realityDe diepte in met virtual reality
De diepte in met virtual realitySURF Events
 
Digital toolbox for 21st Century Learning
Digital toolbox for 21st Century LearningDigital toolbox for 21st Century Learning
Digital toolbox for 21st Century LearningHawkesdale P12 College
 
Using your projector in your classroom
Using your projector in your classroomUsing your projector in your classroom
Using your projector in your classroomHeather Lewis
 
SL formal_education
SL formal_educationSL formal_education
SL formal_educationJason Murray
 
Application in Augmented and Virtual Reality
Application in Augmented and Virtual RealityApplication in Augmented and Virtual Reality
Application in Augmented and Virtual RealityMark Billinghurst
 
Designing and Evaluating Virtual Reality for Learning
Designing and Evaluating Virtual Reality for LearningDesigning and Evaluating Virtual Reality for Learning
Designing and Evaluating Virtual Reality for LearningUniversity of Sheffield
 
Technology integration elementary
Technology integration elementaryTechnology integration elementary
Technology integration elementarypkwyatt
 
Using your projector in your classroom- UPDATED
Using your projector in your classroom- UPDATEDUsing your projector in your classroom- UPDATED
Using your projector in your classroom- UPDATEDHeather Lewis
 
Website Usability & User Experience: Veel bezoekers, weinig klanten?
Website Usability & User Experience: Veel bezoekers, weinig klanten?Website Usability & User Experience: Veel bezoekers, weinig klanten?
Website Usability & User Experience: Veel bezoekers, weinig klanten?Johan Verhaegen
 
Social VR 2x.pptx
Social VR 2x.pptxSocial VR 2x.pptx
Social VR 2x.pptxE E
 

Similaire à COMP 4010: Lecture 6 Example VR Applications (20)

Applying virtual environments in distance learning of product development
Applying virtual environments in distance learning of product developmentApplying virtual environments in distance learning of product development
Applying virtual environments in distance learning of product development
 
Lecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VRLecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VR
 
2016 AR Summer School - Lecture4
2016 AR Summer School - Lecture42016 AR Summer School - Lecture4
2016 AR Summer School - Lecture4
 
De diepte in met virtual reality
De diepte in met virtual realityDe diepte in met virtual reality
De diepte in met virtual reality
 
Digital toolbox for 21st Century Learning
Digital toolbox for 21st Century LearningDigital toolbox for 21st Century Learning
Digital toolbox for 21st Century Learning
 
Tell me what you want and I’ll show you what you can have: who drives design ...
Tell me what you want and I’ll show you what you can have: who drives design ...Tell me what you want and I’ll show you what you can have: who drives design ...
Tell me what you want and I’ll show you what you can have: who drives design ...
 
Griot: Open Source Storytelling Tool
Griot: Open Source Storytelling ToolGriot: Open Source Storytelling Tool
Griot: Open Source Storytelling Tool
 
Using your projector in your classroom
Using your projector in your classroomUsing your projector in your classroom
Using your projector in your classroom
 
Storytelling
StorytellingStorytelling
Storytelling
 
SL formal_education
SL formal_educationSL formal_education
SL formal_education
 
Application in Augmented and Virtual Reality
Application in Augmented and Virtual RealityApplication in Augmented and Virtual Reality
Application in Augmented and Virtual Reality
 
Designing and Evaluating Virtual Reality for Learning
Designing and Evaluating Virtual Reality for LearningDesigning and Evaluating Virtual Reality for Learning
Designing and Evaluating Virtual Reality for Learning
 
Technology integration elementary
Technology integration elementaryTechnology integration elementary
Technology integration elementary
 
SXSW 2019 VR Takeaways
SXSW 2019 VR Takeaways SXSW 2019 VR Takeaways
SXSW 2019 VR Takeaways
 
Using your projector in your classroom- UPDATED
Using your projector in your classroom- UPDATEDUsing your projector in your classroom- UPDATED
Using your projector in your classroom- UPDATED
 
Website Usability & User Experience: Veel bezoekers, weinig klanten?
Website Usability & User Experience: Veel bezoekers, weinig klanten?Website Usability & User Experience: Veel bezoekers, weinig klanten?
Website Usability & User Experience: Veel bezoekers, weinig klanten?
 
How to Design Transformative Experiences
How to Design Transformative ExperiencesHow to Design Transformative Experiences
How to Design Transformative Experiences
 
e Assessment
e Assessmente Assessment
e Assessment
 
Tech resources for teachers
Tech resources for teachersTech resources for teachers
Tech resources for teachers
 
Social VR 2x.pptx
Social VR 2x.pptxSocial VR 2x.pptx
Social VR 2x.pptx
 

Plus de Mark Billinghurst

Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Future Research Directions for Augmented Reality
Future Research Directions for Augmented RealityFuture Research Directions for Augmented Reality
Future Research Directions for Augmented RealityMark Billinghurst
 
Evaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesEvaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesMark Billinghurst
 
Empathic Computing: Delivering the Potential of the Metaverse
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the MetaverseMark Billinghurst
 
Empathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseMark Billinghurst
 
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationMark Billinghurst
 
Empathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseMark Billinghurst
 
2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VRMark Billinghurst
 
2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR SystemsMark Billinghurst
 
Novel Interfaces for AR Systems
Novel Interfaces for AR SystemsNovel Interfaces for AR Systems
Novel Interfaces for AR SystemsMark Billinghurst
 
2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR PrototypingMark Billinghurst
 
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR InteractionMark Billinghurst
 
2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR TechnologyMark Billinghurst
 
2022 COMP4010 Lecture2: Perception
2022 COMP4010 Lecture2: Perception2022 COMP4010 Lecture2: Perception
2022 COMP4010 Lecture2: PerceptionMark Billinghurst
 
2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XR2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XRMark Billinghurst
 
Empathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsEmpathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsMark Billinghurst
 
Empathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseEmpathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseMark Billinghurst
 

Plus de Mark Billinghurst (20)

Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Future Research Directions for Augmented Reality
Future Research Directions for Augmented RealityFuture Research Directions for Augmented Reality
Future Research Directions for Augmented Reality
 
Evaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesEvaluation Methods for Social XR Experiences
Evaluation Methods for Social XR Experiences
 
Empathic Computing: Delivering the Potential of the Metaverse
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the Metaverse
 
Empathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the Metaverse
 
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
 
Empathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader Metaverse
 
2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR
 
2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems
 
ISS2022 Keynote
ISS2022 KeynoteISS2022 Keynote
ISS2022 Keynote
 
Novel Interfaces for AR Systems
Novel Interfaces for AR SystemsNovel Interfaces for AR Systems
Novel Interfaces for AR Systems
 
2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping
 
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction
 
2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology
 
2022 COMP4010 Lecture2: Perception
2022 COMP4010 Lecture2: Perception2022 COMP4010 Lecture2: Perception
2022 COMP4010 Lecture2: Perception
 
2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XR2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XR
 
Empathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsEmpathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive Analytics
 
Metaverse Learning
Metaverse LearningMetaverse Learning
Metaverse Learning
 
Empathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseEmpathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole Metaverse
 

Dernier

"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 

Dernier (20)

"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 

COMP 4010: Lecture 6 Example VR Applications

  • 1. LECTURE 6: EXAMPLE VR APPLICATIONS COMP 4026 – Advanced HCI Semester 5 - 2017 Bruce Thomas, Mark Billinghurst University of South Australia August 31st 2017
  • 2. Lecture 5: Recap • Interaction Design for VR • Iterative method for designing VR experiences • Applying well known ID techniques to VR • Interaction Design Process • Needs analysis • Experience Design • System Prototyping • Evaluation
  • 3. The Interaction Design Process Evaluate (Re)Design Identify needs/ establish requirements Build an interactive version Final Product Develop alternative prototypes/concepts and compare them And iterate, iterate, iterate....
  • 4. Methods for Identifying User Needs Learn from people Learn from analogous settings Learn from Experts Immersive yourself in context
  • 5. VR Design Considerations • Use UI Best Practices • Adapt know UI guidelines to VR • Use of Interface Metaphors/Affordances • Decide best metaphor for VR application • Design for Humans • Use Human Information Processing model • Design for Different User Groups • Different users may have unique needs • Design for the Whole User • Social, cultural, emotional, physical cognitive
  • 6. Typical Development Steps ▪ Sketching ▪ Storyboards ▪ UI Mockups ▪ Interaction Flows ▪ Video Prototypes ▪ Interactive Prototypes ▪ Final Native Application Increased Fidelity & Interactivity
  • 7. VR Prototyping Tools • Low Fidelity • Sketched Paper Interfaces – pen/paper, non-interactive • Onride Photoshop tool – digital, non-interactive • InstaVR - 360 web based tool, simple interactivity • SketchBox – create VR interface inside VR • High Fidelity • Entiti – template based VR with visual programming • A-Frame – web based VR tool using HTML • EditorVR – Unity wrapper inside VR • Unity/Unreal Game Engine – programming needed
  • 8. Four Evaluation Paradigms •‘quick and dirty’ •usability testing (lab studies) •field studies •predictive evaluation
  • 9. Characteristics of Approaches Usability testing Field studies Predictive Users do task natural not involved Location controlled natural anywhere When prototype early prototype Data quantitative qualitative problems Feed back measures & errors descriptions problems Type applied naturalistic expert
  • 12. Virtual Reality Applications • Ideal applications for VR should: • Be strongly visual, have 3D spatial elements • Benefit from first person immersion • Benefit from 3D manipulation/navigation • Support Autonomy, Interaction and Presence (AIP Cube) • Etc..
  • 13. Many Possible Types of VR Applications From https://www.slideshare.net/ampnewventures/virtual-reality-vr-continuum-amp-new-ventures
  • 14.
  • 15. Potential Disruption for Existing Domains https://www.slideshare.net/BDMIFund/the-emerging-virtual-reality-landscape-a-primer
  • 16. Example VR Applications • Education • Google Expeditions • Medicine • Virtual Characters • Entertainment • The Void, Zero Latency • Art + Design • Tilt Brush • Collaboration • Facebook Spaces
  • 18. Google Expeditions • https://edu.google.com/expeditions/ • Mobile VR Educational application (Android, iOS) • Designed for classroom experiences
  • 19. Google Expeditions • Goal: Provide low cost educational VR experience • Based on Google Cardboard VR platform • Different roles: • Guide— person leading an expedition on a tablet • Explorer— person following an expedition on a phone. • Usage • Used by over 1 million students • Over 500 educational experiences developed • Royal Collection Trust, American Museum of Natural History, etc.
  • 20. Teacher Led VR Experiences • Teacher/Guide uses tablet to control the experience • Selects the virtual tour experience • Guide sees tour script, can select immersive scenes to view • Guide sees focus point and where individual students are looking • Students connect as followers, look at what guides highlight Guide Interface
  • 21. System • Hardware • Google Cardboard mobile viewer • Smart phones + tablet (class set) • Wireless router • Software • Viewer and Guide applications (iOS/Android) • 360 image/video VR experiences Class set for 30 students
  • 22. Example Experiences • Over 500 locations/experiences • Great barrier reef, Great Wall of China, Grand Canyon, etc.
  • 24. Feedback • Teacher/student survey (100 people) • 65% experienced a “Wow” moment during Google expedition • Noted the variety of educator styles and approaches possible • People enjoyed “The feeling of ‘being’ there” From https://www.slideshare.net/zoesujon/google-expeditions-virtual-reality-and-the-classroom
  • 25. Limitations • 53% of participants identified some problems, including: • Difficult for some people who wore glasses • Some complained of eye strain, headaches or nausea • Some staff were reluctant/resistant to use the leader tablet • Issues of disabilities and inclusion
  • 26. Challenges/Solutions • Making VR accessible • Designing for phones, tablets, low cost viewers • Synchronizing content with all viewers • Teacher controlled viewing • Teacher can guide experiences • Engaging interaction on simple viewers • Head pointing based interaction, button input • Supporting Educational goals • Providing compelling educational content
  • 28. Virtual Patients • Problem • Many doctors have poor doctor/patient skills • Have limited opportunity during training to learn skills • Solution • Virtual patients that doctors can communicate with naturally • Artificial agents with speech understanding
  • 29. Typical System Setup • Trainee in front of projection screen • Speech and gesture recognition • Intelligent agent on screen Johnsen, K., Raij, A., Stevens, A., Lind, D. S., & Lok, B. (2007, April). The validity of a virtual human experience for interpersonal skills education. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 1049-1058). ACM.
  • 31. Key Findings • Virtual Humans can replace actors in training • interaction skills used with a virtual human translate to the interaction skills used with a real human • Students feel a strong sense of co-presence • Having character respond to speech and gesture increases immersion • VR is capable of creating realistic characters • Life size, intelligent backend, speech recognition • Skills learnt transfer to real world
  • 32. Challenges/Solutions • Training in medical environment • Design for training in medical exam room • Use projected VR not HMDs • Natural interaction • Support speech and gesture interaction • Tactile/haptic feedback • Use prosthetics to add support for palpation and other tactile interaction between doctor and virtual patient • Supporting Educational goals • Give virtual character domain knowledge
  • 34. Large Scale VR Gaming • Provide multi-player VR gaming in warehouse space • Examples • The Void - https://www.thevoid.com/ • Zero Latency - https://zerolatencyvr.com/
  • 35. Typical System • Wide Area Tracking • Computer vision, lights/reflective balls • > 120 cameras for 300 m2 space • Backpack VR system • Haptic feedback vest, wireless HMD • Real Props • Tracked objects, walls Tracking cameras Backpack system
  • 36. The Void Demo • https://www.youtube.com/watch?v=XgetffuOgBA
  • 37. Challenges/Solutions • Wide area tracking • Computer vision tracking of • Over 100 cameras + multiple servers • Freedom of movement • Custom wireless VR backpacks • Ruggedized HMDs, weapon props • Natural interaction • Redirected walking, tangible props • Compelling content • Multi-sensory feedback, custom game platform
  • 39. Tilt Brush • Intuitive 3D immersive drawing/sculpting program • Developed by Patrick Hackett and Drew Skillman 2014 • Acquired by Google in 2015 • https://www.tiltbrush.com/
  • 40. Functionality • Goal: Extremely natural 3D painting/sculpting • User Interface • Two handed interface designed for two controllers (Vive, Rift) • Brush in dominant hand, tool palette in non-dominant • Typical drawing functionality – color, brush width, undo/redo, etc.. • Content sharing • Created content can be exported/shared in 2D/3D formats
  • 43. Example Tilt Brush Sketches • https://vr.google.com/sketches/ • Explore in desktop VR
  • 44. Challenges/Solutions • Intuitive Interface • Very natural metaphor – painting in space • Two handed interface – map to VR controllers • Familiar menu objects from paint programs • Need for limited training • Provide in app training, tool tips • Content sharing • Enable content to be exported in variety of formats • Video, animated GIFs, 2D images, 3D files • Engaging Experience • Provides novel immersive artistic experience
  • 46. Facebook Spaces • Collaborative VR environment • VR meeting and interaction space (up to 4 people) • Focus on communication • Speech and gesture based • https://www.facebook.com/spaces
  • 47. System Interaction • Designed for Oculus Rift/HTC Vive • Upper body tracking, touch controllers • Simple interaction • Loading scenes, direct object manipulation • Content creation • Selfie pictures, simple sketching
  • 49. Challenges/Solutions • Create shared sense of Presence • Use common background, shared objects • Natural communication • Support non-verbal behaviour, speech/gesture input • Intuitive interaction • Map real body motion onto Avatars • Limited ability to navigate/move through environment • Engaging Experience • Shared content creation, experience capture