SlideShare une entreprise Scribd logo
1  sur  75
1
 6.0 Partial differentials
 6.1 The Schrödinger Wave Equation
 6.2 Expectation Values
 6.3 Infinite Square-Well Potential
 6.4 Finite Square-Well Potential
 6.5 Three-Dimensional Infinite-Potential Well
 6.6 Simple Harmonic Oscillator
 6.7 Barriers and Tunneling in some books an
extra chapter due to its technical importance
CHAPTER 6
Quantum Mechanics IIQuantum Mechanics II
I think it is safe to say that no one understands quantum mechanics. Do not keep saying to
yourself, if you can possibly avoid it, “But how can it be like that?” because you will get
“down the drain” into a blind alley from which nobody has yet escaped. Nobody knows how it
can be like that.
- Richard Feynman
2
2
),( yxyxf =
2
.}
),(
{
),(
x
y
yxf
y
yxf
consx =
∂
∂
=
∂
∂
=
yx
x
yxf
x
yxf
consy 2}
),(
{
),(
. =
∂
∂
=
∂
∂
= y
x
yxf
xx
yxf
consy 2}
),(
{
),(
.2
2
=
∂
∂
∂
∂
=
∂
∂
=
0}
),(
{
),(2
.2
=
∂
∂
∂
∂
=
∂
∂
=consx
y
yxf
yy
yxf
yyxf
y
yxf
x
yxf 2),((),(),( 2
2
2
2
2
=
∂
∂
+
∂
∂
=∇
d→∂
y will often be time t for 1D wave functions
axax
eae
dx
d
⋅=)( iaxiax
eiae
dx
d
⋅=)(
axaax
dx
d
cos)(sin ⋅=
axaax
dx
d
sin)(cos ⋅−=
θθθ
sincos ie i
−=−
θθθ
sincos iei
+=
0}
),(
{
),(
.2
2
=
∂
∂
∂
∂
=
∂
∂
=consx
y
yxf
yy
yxf
3
Modern Physics
waves or
particles?
How come
they are
characteristic
of atoms?
How come we can’t
derive this from
Maxwellian waves?
then applications,
PH 312
the correct theory of matter
at lastJ.J. Thompson (1987) electron
4
5
Plane wave for electric
field vector
Light “wavicals” are special, obey the time dependent
Helmholtz (wave) equation
As we also know from special relativity
A light wave is its own probability density wave, idea by Einstein
fc λ=
λ
hkp == 
6
Loved his pipe, wine, and many mistresses = a really great physicist, kind of
started biophysics with his booklet “What is life?”
left the top theoretical physics position in all of Germany (at Berlin University)
for Ireland on his own account in 1938 disgruntled by stupid German policies,
his mother was English, …Republic of Ireland remained neutral during WWII
7
6.1. The Schrödinger Wave Equation
 The Schrödinger wave equation in its time-dependent form for a
particle of energy E moving in a potential V in one dimension is
 The extension into three dimensions is
where is an imaginary number.
The statement is in both cases that operators act on the
wave function, V = V(x,t) in the first equation for 1D, V =
V(x,y,z,t) in the second equation for 3D
Equivalent to time dependent
Helmholtz (wave) equation,
which can be derived from
Newton’s force laws, BUT
Schrödinger equation cannot be
derived from anything else !!!
m = mass of electron
8
Comparison of Classical and Quantum
Mechanics
 Newton’s second law and Schrödinger’s wave equation are
both differential equations.
 Newton’s second law can be derived from the Schrödinger
wave equation, so the latter is the more fundamental – cannot
be derived from anything else.
 Classical mechanics only appears to be more precise because
it deals with macroscopic phenomena. The underlying
uncertainties in macroscopic measurements are just too small
to be significant, the un-correctable systematic rest error that is
due to the uncertainty principle is too small to be noticed for
heavy objects
am
dt
xdm
dtdt
xdm
dt
vdm
dt
pdF

⋅=⋅=
⋅
⋅=⋅== 2
Non-relativistically, m is constant and taken out of
the differential
9
Divide by the wave function, what do you get?
Total energy = kinetic energy + potential energy in operator
form, i.e. total energy is conserved, we ignore rest energy
and special relativity, always need to make sure that
particles move with v < 0.01c or better 1
/α ≈ 1
/137
while there can be undetected energy fluctuations within the uncertainty limit,
wave particle duality is taken care of by the i, i.e. going complex, into Hilbert
space
),( txE Ψ⋅=
Eigenfunctions of total energy En solve Schroedienger equation, En are
eigenvalues (you may remember algebra of matrices, solving linear systems of equations)
),( txE Ψ⋅=
10
The potential
energy function
does not vary in
space and time,
it’s a constant,
either zero or any
value
Free particle wave function solves the
Schrödinger equation with a constant
potential, can be set zero
11
It’s simply a consequence of the linearity of
the Schrödinger equation, if two wave
functions are solutions to it, the sum and
difference between the two is also a solution.
Modern physics is not about cats in boxes, but all kinds of tiny
tiny particles in their natural environment, before we look we do
not know in which of many allowed states a particle is in, so we
do look, i.e. collapse the wave function into a probability
density and calculate all that is knowable by expectation values
(with the help of operators on the wavefunction)
12
Free particle solution of the Schrödinger wave
equation, harmonic/plane matter wave, V = 0 or constant
 The wave function for a plane wave
which describes a wave moving in the x direction to the right from
minus infinity to plus infinity (left it you change the sign). In general
the amplitude (A) may also be complex. Out of the sum of infinitely
many different plane matter waves, we can create wave packets,
just as we did for classical waves earlier
 Wave functions are also not restricted to being real. All traveling
matter waves are complex. Note that the sin term has an imaginary
number in front of it. Only physically measurable quantities must be
real. These include the probability of finding the particle someplace
(either sometimes or all the time), momentum, energy, anything you
want to know
If V = 0 and not constant, it is no longer a free particle, then we need
to normalize, setting the scale for all measurements by operators
13
Normalization and Probability
 The probability P(x) dx of a particle being between x and x + dx
was given in the equation
 The probability of the particle being between x1 and x2 is given
by
 The wave function must also be normalized so that the
probability of the particle being somewhere on the x axis is 1.
Since the only things we are allowed to know are all calculated from the wave
function for a particular physical scenario V(x,t) function, normalization sets the
scale
Compare previous chapter !!!
14
Need to fulfill this
condition,
Ψ(x,t) and Ψ*(x,t) both
needs to have the
same prefactor that is
the reciprocal value of
the integral when
multiplied
It is going to be 1/Sqrt
whatever the integral
comes to
something finite
1
_
1*
_
1 =•Ψ•Ψ∫
∞
∞−
dx
finitesomethingfinitesomething
since Schrödinger
equation is linear, a
prefactor on both sides
changes nothing
15
try to normalize the wave function for a free
particle
∞
No big deal, just a useful model, superposing of infinitely many plane
waves with the right properties leads to the wave packet that we need to
normalize in order to set the physical scale right
What
does this
mean?
Probability of fining the particle is in each finite unit segment identical
and finite, adding all of these unit segments together gives infinity – so
the particle is everywhere at the same time, better one does not know
where it is at all
But
no longer apply,
definite E and p
here we have a ∆E again
16
Properties of valid wave functions
I. Boundary conditions, to make the mathematics
work
1) In order to avoid infinite probabilities, the wave function must be finite
everywhere.
2) In order to avoid multiple values of the probability, the wave function
must be single valued.
3) For finite potentials, the wave function and its derivative must be
continuous. This is required because the second-order derivative term
in the wave equation must be single valued. (There are exceptions to
this rule when V is infinite.)
4) In order to normalize the wave functions, they must approach zero as x
approaches infinity.
 Wave functions that do not posses these mathematical
properties do not correspond to physically realizable
circumstances.
= 1 for normalization
17
Properties of valid wave functions II
II. Boundary condition, to bring the physics in
 Every problem has its specific wave function (that sure
needs to get the maths of the Schrödinger equation right)
 it all depends on the potential energy function, the physics
of the problem to be solved is encoded there
 we need a function, not a vector so instead of force we use
potential energy
Fxk
kx
dx
d 
−==)
2
(
2
2
)()(
2
kx
xUxV ==
e.g. potential energy
function of a spring, does
not depend on time
Hooke’s law in
Newton’s formulation
V1 can be set zero
∫ ⋅−=−=∆
2
1
12 xdFVVV

gradient of potential
energy function = - force
18
Time-Independent Schrödinger Wave
Equation
 The potential in many cases will not depend explicitly on time.
 The dependence on time and position can then be separated in the
Schrödinger wave equation. Let ,
which yields:
Now divide by the wave function:
 The left side depends only on time, and the right side depends only on
spatial coordinates. Hence each side must be equal to a constant. The
time dependent side is
What might this B possibly be? given the
fact that the Schrödinger equation is a
statement on the conservation of total
energy, which is constant in a stationary
state
19
 We integrate both sides and find:
where C is an integration constant that we may choose to be 0. Therefore
This determines f to be
 This is known as the time-independent Schrödinger wave equation, and it is a
fundamental equation in quantum mechanics.
Time-Independent Schrödinger Wave
Equation Continued
Dimensional analysis of
the exponent leads to E !
What else could B possibly
be? given the fact that the
Schrödinger equation is a
statement on the
conservation of total energy
In order to do this, f(t) needs
to be eigen function
20
Stationary State
 The wave function can be written as:
 Whenever the potential energy function is not time dependent
 The probability density becomes:
 The probability distributions are constant in time. This is a standing
wave phenomena that is called the stationary state.
ω⋅= E So whenever you see circular frequency omega, you can also
think total energy divided by h-bar
λ
hkp ==  So whenever you see the wave number, you can also
think linear momentum divided by h-bar
Remember when you see
E think ω and vice versa
21
6.2: Expectation Values, what one will measure on
average is derived from correct wave function for a problem
 The expectation value is the expected result of the average of
many measurements of a given quantity. The expectation value
of x is denoted by <x>
 Any measurable quantity for which we can calculate the
expectation value is called a physical observable. The
expectation values of physical observables (for example,
position, linear momentum, angular momentum, and energy)
must be real, because the experimental results of
measurements are real.
 The average value of x is
3 3 4 4
22
Continuous Expectation Values
 We can change from discrete to
continuous variables by using the
probability P(x,t) of observing the
particle at a particular x and t.
 Using the wave function, the
expectation value is:
 The expectation value of any
function g(x) for a normalized wave
function:
x and g(x) are operators !!!, x could also have been in the middle of
conjugant complex wave function times wave function as it the rule
for all operators
23
Momentum Operator
 To find the expectation value of p, we first need to
represent p in terms of x and t. Consider the derivative
of the wave function of a free particle with respect to x:
With k = p / ħ we have
This yields
 This suggests we define the momentum operator as
.
 The expectation value of the momentum is
λ
hkp == 
24
 The position x is its own operator as seen above.
 The time derivative of the free-particle wave function is
Substituting ω = E / ħ yields
 The energy operator is
 The expectation value of the energy is
Position and Energy Operators
ω⋅= E
25
For anything you want to know, there is an operator, the procedure is always
the same to get the information out of the wave function that represents your
problem, just let the correct operator loose on it, it’s that simple
26
Only a very few operators are fundamental
If you need an operator, make it up from the classical
physics equation by replacing x, p, E(t) with their
operators
The new operator will have the same functional relationship
for the x, p, E(t) operators as the classical physics
equation,
example kinetic energy operator
m
p
mvKE
22
1
2
2
==
][ˆ xxx ==
2
222
2
)()(
2
1
2
ˆˆ][
xmx
i
x
i
mm
p
KEEKKE op
∂
∂
⋅−=
∂
∂
−⋅
∂
∂
−⋅====


27
Some expectation values are sharp some
others fuzzy
Since there is scatter in the actual positions
(x), the calculated expectation value will
have an uncertainty, fuzziness (Note that x
is its own operator.)
][ˆ xxx ==
][ˆ xxx =>≠<
Normalizing condition, note its effect !
28
Some expectation values are sharp some
others fuzzy, continued I
For any observable, fuzzy or not
If not fuzzy, ΔQ = 0
Because <Q2
>= <Q>2
x may as well stand
for any kind of
operator Q
29
Some expectation values are sharp some
others fuzzy, continued II
 Eigen values of operators are always sharp (an actual – physical
- measurement may give some variation in the result, but the
calculation gives zero fuzziness
 Say Q is the Hamiltonian operator A wave function that solves this
equation is an eigenfunction of this
operator, E is the corresponding
eigenvalue, apply this operator
twice and you get E2
– which sure is
the same as squaring to result of
applying it once (E)
So if the potential energy operator acts to confine a particle of mass m, we
will have a discrete set of stationary states with total energies, E1, E2, …
][ˆ][ˆ)( VVUUxU ====
30
31
6.3: Infinite Square-Well Potential
 The simplest such system is that of a particle trapped in a box with infinitely
hard walls that the particle cannot penetrate. This potential is called an
infinite square well and is given by
 Clearly the wave function must be zero where the potential
is infinite,
there will be infinitely many En eigenvaules with their matching eigenfunctions
 Where the potential is zero inside the box, the Schrödinger wave
equation becomes where .
 The general solution is .
Note that this wave function is real because we are considering a
standing wave, that is the sum of two moving waves
i
ee
xk
xikxik
n
nn
2
)sin(
−
−
=
B = 0, as just the sin term will do
λ
π2=k
n
nk
λ
π2=
32
Physical boundary condition
 Boundary conditions of the potential dictate that the wave function must
be zero at x = 0 and x = L. This yields valid solutions for integer values of
n such that kL = nπ.
 The wave function is now
 We normalize the wave function
 The normalized wave function becomes
 These functions are identical to those obtained for a vibrating string with
fixed ends.
33
Quantized Energy
 The quantized wave number now becomes
 Solving for the energy yields
 Note that the energy depends on the integer values of n. Hence the
energy is quantized and nonzero.
 The special case of n = 1 is called the ground state energy.
There is an infinite number of energy levels, because the potential barrier
is infinitely high
Ground
state
energy,
zero point
energy,
there is
no n = 0
34
Some “trajectories” of a particle in a box (infinite square well/ infinitely deep well)
according to Newton's laws of classical mechanics (A), and according to the
Schrödinger equation of quantum mechanics. In (B-F), the horizontal axis is
position, and the vertical axis is the real part (blue) and imaginary part (red) of the
wavefunction. The states (B,C,D) are energy eigenstates, but (E,F) are not.
http://en.wikipedia.org/wiki/Particle_in_a_box
no potential
energy in this
scenario, there is
a discrete set of
wave numbers
since an integral
number of
wavelength need
to fit into the box
for any kind
of other
calculation
normalize
i
ee
xk
xikxik
n
nn
2
)sin(
−
−
=
35
Bohr’s correspondence
principle
36
Normalization, to set the
scale of a wave function
if we had not used a normalized wave
function, the probability of finding the
particle in the box would not be unity, and
we would not have gotten our 81.8% result
37
approximately
Bohr’s
correspondence
principle
38
Given the
stationary
wave functions
i
ee
xk
xikxik
n
nn
2
)sin(
−
−
=
Because square of momentum is related to kinetic energy,
momentum has a spread due to uncertainty principle, !!!
No surprise, momentum
is a vector, goes back
and forth with same
value but different sign
39
2012
Usages of
Particles in
boxes
40
2012
Usages of
Particles in a
box
Bringing
photons into a
box, releasing
them and
manipulating
them there,
including
measuring how
many are
there ..
For more download
41
6.4: Finite Square-Well Potential
 The finite square-well potential is
 The Schrödinger equation outside the finite well in regions I and III is
or using
yields . Considering that the wave function must be zero at
infinity, the solutions for this equation are
Note the importance of the sign in the Schroedinger equation
42
 Inside the square well, where the potential V is zero, the wave equation
becomes where
 Instead of a sinusoidal solution we have
 The boundary conditions require that
and the wave function must be smooth where the regions meet.
 Note that the
wave function is
nonzero outside
of the box.
Finite Square-Well Solution
There is a finite number of energy levels, because the potential barrier is
finite in height, however shallow the well, there is at lease one energy level
Also the first derivatives with
respect to x need to match
43
Penetration Depth
 The penetration depth is the distance outside the potential well where
the probability significantly decreases. It is given by
 It should not be surprising to find that the penetration distance that
violates classical physics is proportional to Planck’s constant.
44
Quantum wires
Quantum dots
CdS2
45
 The wave function must be a function of all three spatial coordinates.
We begin with the conservation of energy
 Multiply this by the wave function to get
 Now consider momentum as an operator acting on the wave
function. In this case, the operator must act twice on each
dimension. Given:
 The three dimensional Schrödinger wave equation is
6.5: Three-Dimensional Infinite-Potential Well
First slide in this chapter
46
Separation of variables, δ d
Everything is there three times, three variables, three sin functions,
three k, three p
47
Degeneracy
 Analysis of the Schrödinger wave equation in three dimensions
introduces three quantum numbers that quantize the energy.
 A quantum state is degenerate when there is more than one
wave function (eigen function) for a given energy (eigen value).

Degeneracy results from particular symmetry properties of the
potential energy function that describes the system. A perturbation of
the potential energy can remove the degeneracy.
For a cubic box
48More next chapter
Spherical potential, very
high symmetry, a lot of
degeneracy
49
50
6.6: Simple Harmonic Oscillator
 Simple harmonic oscillators describe many physical situations: springs,
diatomic molecules and atomic lattices.
 Consider the Taylor expansion of a potential function:
Redefining the minimum potential and the zero potential, we have
Substituting this into the wave equation:
Let and which yields .
51
Parabolic Potential Well
 If the lowest energy level is zero, this violates the uncertainty principle.
 The wave function solutions are where Hn(x) are Hermite
polynomials of order n.
 In contrast to the particle in a box, where the oscillatory wave function is a
sinusoidal curve, in this case the oscillatory behavior is due to the polynomial,
which dominates at small x. The exponential tail is provided by the Gaussian
function, which dominates at large x.
52
Analysis of the Parabolic Potential Well
 The energy levels are given by
 The zero point energy is called the Heisenberg
limit:
 Classically, the probability of finding the mass is
greatest at the ends of motion and smallest at the
center (that is, proportional to the amount of time
the mass spends at each position).
 Contrary to the classical one, the largest probability
for this lowest energy state is for the particle to be
at the center.
53
54
6.7: Barriers and Tunneling
 Consider a particle of energy E approaching a potential barrier of height V0 and the
potential everywhere else is zero.
 We will first consider the case when the energy is greater than the potential
barrier.
 In regions I and III the wave numbers are:
 In the barrier region we have
55
56
Reflection and Transmission
 The wave function will consist of an incident wave, a reflected wave, and a
transmitted wave.
 The potentials and the Schrödinger wave equation for the three regions are
as follows:
 The corresponding solutions are:
 As the wave moves from left to right, we can simplify the wave functions to:
57
Probability of Reflection and Transmission
 The probability of the particles being reflected R or transmitted T is:
 The maximum kinetic energy of the photoelectrons depends on the
value of the light frequency f and not on the intensity.
 Because the particles must be either reflected or transmitted we have:
R + T = 1.
 By applying the boundary conditions x → ±∞, x = 0, and x = L, we arrive
at the transmission probability:
 Notice that there is a situation in which the transmission probability is 1.
58
Potential Well
 Consider a particle passing through a potential well region rather than through a
potential barrier.
 Classically, the particle would speed up passing the well region, because K = mv2
/ 2 =
E + V0.
According to quantum mechanics, reflection and transmission may occur, but the
wavelength inside the potential well is smaller than outside. When the width of the
potential well is precisely equal to half-integral or integral units of the wavelength, the
reflected waves may be out of phase or in phase with the original wave, and
cancellations or resonances may occur. The reflection/cancellation effects can lead to
almost pure transmission or pure reflection for certain wavelengths. For example, at the
second boundary (x = L) for a wave passing to the right, the wave may reflect and be
out of phase with the incident wave. The effect would be a cancellation inside the well.
59
Tunneling
 Now we consider the situation where classically the particle does not have
enough energy to surmount the potential barrier, E < V0.
 The quantum mechanical result, however, is one of the most remarkable features
of modern physics, and there is ample experimental proof of its existence. There
is a small, but finite, probability that the particle can penetrate the barrier and even
emerge on the other side.
 The wave function in region II becomes
 The transmission probability that
describes the phenomenon of tunneling is
60
61
x
where ħ = h/2π, and σx, σp are the standard deviations of position (r) and momentum
Funny Quantum energy bank: you can get a
no interest loan ΔE for a certain time Δt as
long as ΔE Δt < h
62
Uncertainty Explanation
 Consider when κL >> 1 then the transmission probability becomes:
 This violation allowed by the uncertainty principle is equal to the
negative kinetic energy required! The particle is allowed by quantum
mechanics and the uncertainty principle to penetrate into a classically
forbidden region. The minimum such kinetic energy is:
63
64
Analogy with Wave Optics
 If light passing through a glass prism reflects from an
internal surface with an angle greater than the critical
angle, total internal reflection occurs. However, the
electromagnetic field is not exactly zero just outside
the prism. If we bring another prism very close to the
first one, experiments show that the electromagnetic
wave (light) appears in the second prism The situation
is analogous to the tunneling described here. This
effect was observed by Newton and can be
demonstrated with two prisms and a laser. The
intensity of the second light beam decreases
exponentially as the distance between the two prisms
increases.
65
66
My research groups’ work: 1. (a) A 550 by 550 pixel image whose p4-
symmetry is known by design. (b) An image to model what a double-STM-tip
would produce when imaging this “sample,” constructed in Photoshop by
overlaying a second copy of the p4 image, shifting it, and setting the blend
mode to “overlay”, with 70% opacity to model uneven tip heights. (A ~ 12
pixel wide margin of the unobscured image is seen at the upper- and left-
hand edges behind the overlain image.) (c) Crystallographically averaged p4
plane symmetry reconstruction of the overlapping (512 by 512 pixel) portion
of the “sample.”
(c)
(a)
(b)
5 nm
67
68
There is also radioactivity (from 1896 onwards):
electrons and other particles, e.g. alpha
particles, (we now know nuclei of He, two
proton + two neutrons) come out of the atoms of
certain elements
end of the second part of this course, nuclear
physics
69
Alpha-Particle Decay
 The phenomenon of tunneling explains the alpha-particle decay of heavy,
radioactive nuclei.
 Inside the nucleus, an alpha particle feels the strong, short-range attractive
nuclear force as well as the repulsive Coulomb force.
 The nuclear force dominates inside the nuclear radius where the potential is
approximately a square well.
 The Coulomb force dominates
outside the nuclear radius.
 The potential barrier at the nuclear
radius is several times greater than
the energy of an alpha particle.
 According to quantum mechanics,
however, the alpha particle can
“tunnel” through the barrier. Hence
this is observed as radioactive decay.
70
71
72
73
74
75

Contenu connexe

Tendances

Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a briefChaitanya Areti
 
CLASSICAL THEORY OF RAMAN EFFECT.pptx
CLASSICAL THEORY OF RAMAN EFFECT.pptxCLASSICAL THEORY OF RAMAN EFFECT.pptx
CLASSICAL THEORY OF RAMAN EFFECT.pptxSudha durairaj
 
Schrodinger's time independent wave equation
Schrodinger's time independent wave equationSchrodinger's time independent wave equation
Schrodinger's time independent wave equationKhushbooSharma226
 
Fermi dirac distribution
Fermi dirac distributionFermi dirac distribution
Fermi dirac distributionAHSAN HALIMI
 
Introduction to density functional theory
Introduction to density functional theory Introduction to density functional theory
Introduction to density functional theory Sarthak Hajirnis
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationGaurav Singh Gusain
 
Statics presentation ppt(1)
Statics presentation ppt(1)Statics presentation ppt(1)
Statics presentation ppt(1)SrinivasaKalkani
 
Brief introduction to perturbation theory
Brief introduction to perturbation theoryBrief introduction to perturbation theory
Brief introduction to perturbation theoryAnamika Banerjee
 
Basic and fundamental of quantum mechanics (Theory)
Basic and fundamental of quantum mechanics (Theory)Basic and fundamental of quantum mechanics (Theory)
Basic and fundamental of quantum mechanics (Theory)Halavath Ramesh
 
Postulates of quantum mechanics
Postulates of quantum mechanicsPostulates of quantum mechanics
Postulates of quantum mechanicsPradeep Samantaroy
 
Statistical mechanics
Statistical mechanics Statistical mechanics
Statistical mechanics Kumar
 
Non linear optics and SHG
Non linear optics and SHGNon linear optics and SHG
Non linear optics and SHGsahil rajput
 

Tendances (20)

Quantum mechanics a brief
Quantum mechanics a briefQuantum mechanics a brief
Quantum mechanics a brief
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
CLASSICAL THEORY OF RAMAN EFFECT.pptx
CLASSICAL THEORY OF RAMAN EFFECT.pptxCLASSICAL THEORY OF RAMAN EFFECT.pptx
CLASSICAL THEORY OF RAMAN EFFECT.pptx
 
Schrodinger's time independent wave equation
Schrodinger's time independent wave equationSchrodinger's time independent wave equation
Schrodinger's time independent wave equation
 
Fermi dirac distribution
Fermi dirac distributionFermi dirac distribution
Fermi dirac distribution
 
Spectroscopy
SpectroscopySpectroscopy
Spectroscopy
 
Chapter 4 optical properties of phonons
Chapter 4   optical properties of phononsChapter 4   optical properties of phonons
Chapter 4 optical properties of phonons
 
Anamolous zeeman effect
Anamolous zeeman effectAnamolous zeeman effect
Anamolous zeeman effect
 
Perturbation
PerturbationPerturbation
Perturbation
 
Introduction to density functional theory
Introduction to density functional theory Introduction to density functional theory
Introduction to density functional theory
 
Wave functions
Wave functionsWave functions
Wave functions
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equation
 
Particle in 3D box
Particle in 3D boxParticle in 3D box
Particle in 3D box
 
Statics presentation ppt(1)
Statics presentation ppt(1)Statics presentation ppt(1)
Statics presentation ppt(1)
 
Quantum mechanics I
Quantum mechanics IQuantum mechanics I
Quantum mechanics I
 
Brief introduction to perturbation theory
Brief introduction to perturbation theoryBrief introduction to perturbation theory
Brief introduction to perturbation theory
 
Basic and fundamental of quantum mechanics (Theory)
Basic and fundamental of quantum mechanics (Theory)Basic and fundamental of quantum mechanics (Theory)
Basic and fundamental of quantum mechanics (Theory)
 
Postulates of quantum mechanics
Postulates of quantum mechanicsPostulates of quantum mechanics
Postulates of quantum mechanics
 
Statistical mechanics
Statistical mechanics Statistical mechanics
Statistical mechanics
 
Non linear optics and SHG
Non linear optics and SHGNon linear optics and SHG
Non linear optics and SHG
 

En vedette (7)

Trm 7
Trm 7Trm 7
Trm 7
 
บทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะ
บทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะบทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะ
บทที่ 2 ทฤษฎีสัมพัทธภาพเฉพาะ
 
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
บทที่ 1 กำเนิดฟิสิกส์แผนใหม่
 
CHAPTER 10 Molecules and Solids
CHAPTER 10 Molecules and SolidsCHAPTER 10 Molecules and Solids
CHAPTER 10 Molecules and Solids
 
CHAPTER 3 The Experimental Basis of Quantum Theory
CHAPTER 3The Experimental Basis of Quantum TheoryCHAPTER 3The Experimental Basis of Quantum Theory
CHAPTER 3 The Experimental Basis of Quantum Theory
 
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics ICHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
 
CHAPTER 4 Structure of the Atom
CHAPTER 4Structure of the AtomCHAPTER 4Structure of the Atom
CHAPTER 4 Structure of the Atom
 

Similaire à CHAPTER 6 Quantum Mechanics II

Quantum Mechanics II.ppt
Quantum Mechanics II.pptQuantum Mechanics II.ppt
Quantum Mechanics II.pptSKMishra47
 
Unit 1 Quantum Mechanics_230924_162445.pdf
Unit 1 Quantum Mechanics_230924_162445.pdfUnit 1 Quantum Mechanics_230924_162445.pdf
Unit 1 Quantum Mechanics_230924_162445.pdfSwapnil947063
 
Quantum course
Quantum courseQuantum course
Quantum courseFLI
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsRakeshPatil2528
 
Schrödinger wave equation
Schrödinger wave equationSchrödinger wave equation
Schrödinger wave equationHARSHWALIA9
 
Quantum physics the bottom up approach
Quantum physics the bottom up approachQuantum physics the bottom up approach
Quantum physics the bottom up approachSpringer
 
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan DashConcepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan DashManmohan Dash
 
Welcome to the presentation.pptx
Welcome to the presentation.pptxWelcome to the presentation.pptx
Welcome to the presentation.pptxTayebaTakbirOrnila
 
What are free particles in quantum mechanics
What are free particles in quantum mechanicsWhat are free particles in quantum mechanics
What are free particles in quantum mechanicsbhaskar chatterjee
 
Persamaan schroedinger bebas waktu
Persamaan schroedinger bebas waktuPersamaan schroedinger bebas waktu
Persamaan schroedinger bebas waktuFani Diamanti
 
assignment 1 page 1+2.pdf
assignment 1 page 1+2.pdfassignment 1 page 1+2.pdf
assignment 1 page 1+2.pdfSajidNadeem15
 

Similaire à CHAPTER 6 Quantum Mechanics II (20)

TR-6.ppt
TR-6.pptTR-6.ppt
TR-6.ppt
 
Quantum Mechanics II.ppt
Quantum Mechanics II.pptQuantum Mechanics II.ppt
Quantum Mechanics II.ppt
 
Q.M.pptx
Q.M.pptxQ.M.pptx
Q.M.pptx
 
Unit 1 Quantum Mechanics_230924_162445.pdf
Unit 1 Quantum Mechanics_230924_162445.pdfUnit 1 Quantum Mechanics_230924_162445.pdf
Unit 1 Quantum Mechanics_230924_162445.pdf
 
Quantum course
Quantum courseQuantum course
Quantum course
 
Schrodinger eqn
Schrodinger eqnSchrodinger eqn
Schrodinger eqn
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanics
 
Schrödinger wave equation
Schrödinger wave equationSchrödinger wave equation
Schrödinger wave equation
 
Quantum physics the bottom up approach
Quantum physics the bottom up approachQuantum physics the bottom up approach
Quantum physics the bottom up approach
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
Article 1st
Article 1stArticle 1st
Article 1st
 
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan DashConcepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
Concepts and Problems in Quantum Mechanics, Lecture-II By Manmohan Dash
 
Welcome to the presentation.pptx
Welcome to the presentation.pptxWelcome to the presentation.pptx
Welcome to the presentation.pptx
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
What are free particles in quantum mechanics
What are free particles in quantum mechanicsWhat are free particles in quantum mechanics
What are free particles in quantum mechanics
 
Waves_Quantum.ppt and Pdf
Waves_Quantum.ppt and Pdf Waves_Quantum.ppt and Pdf
Waves_Quantum.ppt and Pdf
 
Persamaan schroedinger bebas waktu
Persamaan schroedinger bebas waktuPersamaan schroedinger bebas waktu
Persamaan schroedinger bebas waktu
 
assignment 1 page 1+2.pdf
assignment 1 page 1+2.pdfassignment 1 page 1+2.pdf
assignment 1 page 1+2.pdf
 
Wavemechanics
WavemechanicsWavemechanics
Wavemechanics
 
Lect10.ppt
Lect10.pptLect10.ppt
Lect10.ppt
 

Plus de Thepsatri Rajabhat University

บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]Thepsatri Rajabhat University
 
กฎของ Hamilton และ Lagrange’s Equations
กฎของ Hamilton และ Lagrange’s Equationsกฎของ Hamilton และ Lagrange’s Equations
กฎของ Hamilton และ Lagrange’s EquationsThepsatri Rajabhat University
 
บทที่ 7 การเคลื่อนที่แบบหมุน
บทที่ 7 การเคลื่อนที่แบบหมุนบทที่ 7 การเคลื่อนที่แบบหมุน
บทที่ 7 การเคลื่อนที่แบบหมุนThepsatri Rajabhat University
 
บทที่ 4 งาน พลังงาน และเครื่องกลอย่างง่าย
บทที่ 4 งาน  พลังงาน  และเครื่องกลอย่างง่ายบทที่ 4 งาน  พลังงาน  และเครื่องกลอย่างง่าย
บทที่ 4 งาน พลังงาน และเครื่องกลอย่างง่ายThepsatri Rajabhat University
 
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตันThepsatri Rajabhat University
 
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติบทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติThepsatri Rajabhat University
 
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวันบทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวันThepsatri Rajabhat University
 
บทที่ 6 โมเมนตัมและการชน
บทที่ 6 โมเมนตัมและการชนบทที่ 6 โมเมนตัมและการชน
บทที่ 6 โมเมนตัมและการชนThepsatri Rajabhat University
 
บทที่ 5 งานและพลังงาน
บทที่ 5 งานและพลังงานบทที่ 5 งานและพลังงาน
บทที่ 5 งานและพลังงานThepsatri Rajabhat University
 
บทที่ 8 ความร้อนและอุณหพลศาสตร์
บทที่ 8 ความร้อนและอุณหพลศาสตร์บทที่ 8 ความร้อนและอุณหพลศาสตร์
บทที่ 8 ความร้อนและอุณหพลศาสตร์Thepsatri Rajabhat University
 
บทที่ 7 คลื่นกลและเสียง
บทที่ 7 คลื่นกลและเสียงบทที่ 7 คลื่นกลและเสียง
บทที่ 7 คลื่นกลและเสียงThepsatri Rajabhat University
 
บทที่ 6 สมบัติของสาร
บทที่ 6 สมบัติของสารบทที่ 6 สมบัติของสาร
บทที่ 6 สมบัติของสารThepsatri Rajabhat University
 
บทที่ 4 งาน กำลัง พลังงาน และเครื่องกลอย่างง่าย
บทที่ 4 งาน กำลัง พลังงาน  และเครื่องกลอย่างง่ายบทที่ 4 งาน กำลัง พลังงาน  และเครื่องกลอย่างง่าย
บทที่ 4 งาน กำลัง พลังงาน และเครื่องกลอย่างง่ายThepsatri Rajabhat University
 
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันThepsatri Rajabhat University
 
บทที่ 2 การเคลื่อนที่แบบต่าง ๆ
บทที่ 2 การเคลื่อนที่แบบต่าง ๆบทที่ 2 การเคลื่อนที่แบบต่าง ๆ
บทที่ 2 การเคลื่อนที่แบบต่าง ๆThepsatri Rajabhat University
 
บทที่ 4 การเคลื่อนที่แบบต่าง ๆ
บทที่ 4 การเคลื่อนที่แบบต่าง ๆบทที่ 4 การเคลื่อนที่แบบต่าง ๆ
บทที่ 4 การเคลื่อนที่แบบต่าง ๆThepsatri Rajabhat University
 
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันThepsatri Rajabhat University
 
บทที่ 2 การเคลื่อนที่แนวตรง
บทที่ 2 การเคลื่อนที่แนวตรงบทที่ 2 การเคลื่อนที่แนวตรง
บทที่ 2 การเคลื่อนที่แนวตรงThepsatri Rajabhat University
 

Plus de Thepsatri Rajabhat University (20)

Timeline of atomic models
Timeline of atomic modelsTimeline of atomic models
Timeline of atomic models
 
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
บทที่ 1 หน่วยวัดและปริมาณทางฟิสิกส์ [2 2560]
 
กฎของ Hamilton และ Lagrange’s Equations
กฎของ Hamilton และ Lagrange’s Equationsกฎของ Hamilton และ Lagrange’s Equations
กฎของ Hamilton และ Lagrange’s Equations
 
บทที่ 7 การเคลื่อนที่แบบหมุน
บทที่ 7 การเคลื่อนที่แบบหมุนบทที่ 7 การเคลื่อนที่แบบหมุน
บทที่ 7 การเคลื่อนที่แบบหมุน
 
บทที่ 4 งาน พลังงาน และเครื่องกลอย่างง่าย
บทที่ 4 งาน  พลังงาน  และเครื่องกลอย่างง่ายบทที่ 4 งาน  พลังงาน  และเครื่องกลอย่างง่าย
บทที่ 4 งาน พลังงาน และเครื่องกลอย่างง่าย
 
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง มวล และกฎการเคลื่อนที่ของนิวตัน
 
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติบทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
บทที่ 2 การเคลื่อนที่ในหนึ่งมิติ
 
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวันบทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
บทที่ 1 ฟิสิกส์กับการทำงานของร่างกายและชีวิตประจำวัน
 
บทที่ 6 โมเมนตัมและการชน
บทที่ 6 โมเมนตัมและการชนบทที่ 6 โมเมนตัมและการชน
บทที่ 6 โมเมนตัมและการชน
 
บทที่ 5 งานและพลังงาน
บทที่ 5 งานและพลังงานบทที่ 5 งานและพลังงาน
บทที่ 5 งานและพลังงาน
 
บทที่ 8 ความร้อนและอุณหพลศาสตร์
บทที่ 8 ความร้อนและอุณหพลศาสตร์บทที่ 8 ความร้อนและอุณหพลศาสตร์
บทที่ 8 ความร้อนและอุณหพลศาสตร์
 
บทที่ 7 คลื่นกลและเสียง
บทที่ 7 คลื่นกลและเสียงบทที่ 7 คลื่นกลและเสียง
บทที่ 7 คลื่นกลและเสียง
 
บทที่ 6 สมบัติของสาร
บทที่ 6 สมบัติของสารบทที่ 6 สมบัติของสาร
บทที่ 6 สมบัติของสาร
 
บทที่ 5 โมเมนตัม
บทที่ 5 โมเมนตัมบทที่ 5 โมเมนตัม
บทที่ 5 โมเมนตัม
 
บทที่ 4 งาน กำลัง พลังงาน และเครื่องกลอย่างง่าย
บทที่ 4 งาน กำลัง พลังงาน  และเครื่องกลอย่างง่ายบทที่ 4 งาน กำลัง พลังงาน  และเครื่องกลอย่างง่าย
บทที่ 4 งาน กำลัง พลังงาน และเครื่องกลอย่างง่าย
 
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
 
บทที่ 2 การเคลื่อนที่แบบต่าง ๆ
บทที่ 2 การเคลื่อนที่แบบต่าง ๆบทที่ 2 การเคลื่อนที่แบบต่าง ๆ
บทที่ 2 การเคลื่อนที่แบบต่าง ๆ
 
บทที่ 4 การเคลื่อนที่แบบต่าง ๆ
บทที่ 4 การเคลื่อนที่แบบต่าง ๆบทที่ 4 การเคลื่อนที่แบบต่าง ๆ
บทที่ 4 การเคลื่อนที่แบบต่าง ๆ
 
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตันบทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
บทที่ 3 แรง และ กฎการเคลื่อนที่ของนิวตัน
 
บทที่ 2 การเคลื่อนที่แนวตรง
บทที่ 2 การเคลื่อนที่แนวตรงบทที่ 2 การเคลื่อนที่แนวตรง
บทที่ 2 การเคลื่อนที่แนวตรง
 

Dernier

Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 

Dernier (20)

Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 

CHAPTER 6 Quantum Mechanics II

  • 1. 1  6.0 Partial differentials  6.1 The Schrödinger Wave Equation  6.2 Expectation Values  6.3 Infinite Square-Well Potential  6.4 Finite Square-Well Potential  6.5 Three-Dimensional Infinite-Potential Well  6.6 Simple Harmonic Oscillator  6.7 Barriers and Tunneling in some books an extra chapter due to its technical importance CHAPTER 6 Quantum Mechanics IIQuantum Mechanics II I think it is safe to say that no one understands quantum mechanics. Do not keep saying to yourself, if you can possibly avoid it, “But how can it be like that?” because you will get “down the drain” into a blind alley from which nobody has yet escaped. Nobody knows how it can be like that. - Richard Feynman
  • 2. 2 2 ),( yxyxf = 2 .} ),( { ),( x y yxf y yxf consx = ∂ ∂ = ∂ ∂ = yx x yxf x yxf consy 2} ),( { ),( . = ∂ ∂ = ∂ ∂ = y x yxf xx yxf consy 2} ),( { ),( .2 2 = ∂ ∂ ∂ ∂ = ∂ ∂ = 0} ),( { ),(2 .2 = ∂ ∂ ∂ ∂ = ∂ ∂ =consx y yxf yy yxf yyxf y yxf x yxf 2),((),(),( 2 2 2 2 2 = ∂ ∂ + ∂ ∂ =∇ d→∂ y will often be time t for 1D wave functions axax eae dx d ⋅=)( iaxiax eiae dx d ⋅=)( axaax dx d cos)(sin ⋅= axaax dx d sin)(cos ⋅−= θθθ sincos ie i −=− θθθ sincos iei += 0} ),( { ),( .2 2 = ∂ ∂ ∂ ∂ = ∂ ∂ =consx y yxf yy yxf
  • 3. 3 Modern Physics waves or particles? How come they are characteristic of atoms? How come we can’t derive this from Maxwellian waves? then applications, PH 312 the correct theory of matter at lastJ.J. Thompson (1987) electron
  • 4. 4
  • 5. 5 Plane wave for electric field vector Light “wavicals” are special, obey the time dependent Helmholtz (wave) equation As we also know from special relativity A light wave is its own probability density wave, idea by Einstein fc λ= λ hkp == 
  • 6. 6 Loved his pipe, wine, and many mistresses = a really great physicist, kind of started biophysics with his booklet “What is life?” left the top theoretical physics position in all of Germany (at Berlin University) for Ireland on his own account in 1938 disgruntled by stupid German policies, his mother was English, …Republic of Ireland remained neutral during WWII
  • 7. 7 6.1. The Schrödinger Wave Equation  The Schrödinger wave equation in its time-dependent form for a particle of energy E moving in a potential V in one dimension is  The extension into three dimensions is where is an imaginary number. The statement is in both cases that operators act on the wave function, V = V(x,t) in the first equation for 1D, V = V(x,y,z,t) in the second equation for 3D Equivalent to time dependent Helmholtz (wave) equation, which can be derived from Newton’s force laws, BUT Schrödinger equation cannot be derived from anything else !!! m = mass of electron
  • 8. 8 Comparison of Classical and Quantum Mechanics  Newton’s second law and Schrödinger’s wave equation are both differential equations.  Newton’s second law can be derived from the Schrödinger wave equation, so the latter is the more fundamental – cannot be derived from anything else.  Classical mechanics only appears to be more precise because it deals with macroscopic phenomena. The underlying uncertainties in macroscopic measurements are just too small to be significant, the un-correctable systematic rest error that is due to the uncertainty principle is too small to be noticed for heavy objects am dt xdm dtdt xdm dt vdm dt pdF  ⋅=⋅= ⋅ ⋅=⋅== 2 Non-relativistically, m is constant and taken out of the differential
  • 9. 9 Divide by the wave function, what do you get? Total energy = kinetic energy + potential energy in operator form, i.e. total energy is conserved, we ignore rest energy and special relativity, always need to make sure that particles move with v < 0.01c or better 1 /α ≈ 1 /137 while there can be undetected energy fluctuations within the uncertainty limit, wave particle duality is taken care of by the i, i.e. going complex, into Hilbert space ),( txE Ψ⋅= Eigenfunctions of total energy En solve Schroedienger equation, En are eigenvalues (you may remember algebra of matrices, solving linear systems of equations) ),( txE Ψ⋅=
  • 10. 10 The potential energy function does not vary in space and time, it’s a constant, either zero or any value Free particle wave function solves the Schrödinger equation with a constant potential, can be set zero
  • 11. 11 It’s simply a consequence of the linearity of the Schrödinger equation, if two wave functions are solutions to it, the sum and difference between the two is also a solution. Modern physics is not about cats in boxes, but all kinds of tiny tiny particles in their natural environment, before we look we do not know in which of many allowed states a particle is in, so we do look, i.e. collapse the wave function into a probability density and calculate all that is knowable by expectation values (with the help of operators on the wavefunction)
  • 12. 12 Free particle solution of the Schrödinger wave equation, harmonic/plane matter wave, V = 0 or constant  The wave function for a plane wave which describes a wave moving in the x direction to the right from minus infinity to plus infinity (left it you change the sign). In general the amplitude (A) may also be complex. Out of the sum of infinitely many different plane matter waves, we can create wave packets, just as we did for classical waves earlier  Wave functions are also not restricted to being real. All traveling matter waves are complex. Note that the sin term has an imaginary number in front of it. Only physically measurable quantities must be real. These include the probability of finding the particle someplace (either sometimes or all the time), momentum, energy, anything you want to know If V = 0 and not constant, it is no longer a free particle, then we need to normalize, setting the scale for all measurements by operators
  • 13. 13 Normalization and Probability  The probability P(x) dx of a particle being between x and x + dx was given in the equation  The probability of the particle being between x1 and x2 is given by  The wave function must also be normalized so that the probability of the particle being somewhere on the x axis is 1. Since the only things we are allowed to know are all calculated from the wave function for a particular physical scenario V(x,t) function, normalization sets the scale Compare previous chapter !!!
  • 14. 14 Need to fulfill this condition, Ψ(x,t) and Ψ*(x,t) both needs to have the same prefactor that is the reciprocal value of the integral when multiplied It is going to be 1/Sqrt whatever the integral comes to something finite 1 _ 1* _ 1 =•Ψ•Ψ∫ ∞ ∞− dx finitesomethingfinitesomething since Schrödinger equation is linear, a prefactor on both sides changes nothing
  • 15. 15 try to normalize the wave function for a free particle ∞ No big deal, just a useful model, superposing of infinitely many plane waves with the right properties leads to the wave packet that we need to normalize in order to set the physical scale right What does this mean? Probability of fining the particle is in each finite unit segment identical and finite, adding all of these unit segments together gives infinity – so the particle is everywhere at the same time, better one does not know where it is at all But no longer apply, definite E and p here we have a ∆E again
  • 16. 16 Properties of valid wave functions I. Boundary conditions, to make the mathematics work 1) In order to avoid infinite probabilities, the wave function must be finite everywhere. 2) In order to avoid multiple values of the probability, the wave function must be single valued. 3) For finite potentials, the wave function and its derivative must be continuous. This is required because the second-order derivative term in the wave equation must be single valued. (There are exceptions to this rule when V is infinite.) 4) In order to normalize the wave functions, they must approach zero as x approaches infinity.  Wave functions that do not posses these mathematical properties do not correspond to physically realizable circumstances. = 1 for normalization
  • 17. 17 Properties of valid wave functions II II. Boundary condition, to bring the physics in  Every problem has its specific wave function (that sure needs to get the maths of the Schrödinger equation right)  it all depends on the potential energy function, the physics of the problem to be solved is encoded there  we need a function, not a vector so instead of force we use potential energy Fxk kx dx d  −==) 2 ( 2 2 )()( 2 kx xUxV == e.g. potential energy function of a spring, does not depend on time Hooke’s law in Newton’s formulation V1 can be set zero ∫ ⋅−=−=∆ 2 1 12 xdFVVV  gradient of potential energy function = - force
  • 18. 18 Time-Independent Schrödinger Wave Equation  The potential in many cases will not depend explicitly on time.  The dependence on time and position can then be separated in the Schrödinger wave equation. Let , which yields: Now divide by the wave function:  The left side depends only on time, and the right side depends only on spatial coordinates. Hence each side must be equal to a constant. The time dependent side is What might this B possibly be? given the fact that the Schrödinger equation is a statement on the conservation of total energy, which is constant in a stationary state
  • 19. 19  We integrate both sides and find: where C is an integration constant that we may choose to be 0. Therefore This determines f to be  This is known as the time-independent Schrödinger wave equation, and it is a fundamental equation in quantum mechanics. Time-Independent Schrödinger Wave Equation Continued Dimensional analysis of the exponent leads to E ! What else could B possibly be? given the fact that the Schrödinger equation is a statement on the conservation of total energy In order to do this, f(t) needs to be eigen function
  • 20. 20 Stationary State  The wave function can be written as:  Whenever the potential energy function is not time dependent  The probability density becomes:  The probability distributions are constant in time. This is a standing wave phenomena that is called the stationary state. ω⋅= E So whenever you see circular frequency omega, you can also think total energy divided by h-bar λ hkp ==  So whenever you see the wave number, you can also think linear momentum divided by h-bar Remember when you see E think ω and vice versa
  • 21. 21 6.2: Expectation Values, what one will measure on average is derived from correct wave function for a problem  The expectation value is the expected result of the average of many measurements of a given quantity. The expectation value of x is denoted by <x>  Any measurable quantity for which we can calculate the expectation value is called a physical observable. The expectation values of physical observables (for example, position, linear momentum, angular momentum, and energy) must be real, because the experimental results of measurements are real.  The average value of x is 3 3 4 4
  • 22. 22 Continuous Expectation Values  We can change from discrete to continuous variables by using the probability P(x,t) of observing the particle at a particular x and t.  Using the wave function, the expectation value is:  The expectation value of any function g(x) for a normalized wave function: x and g(x) are operators !!!, x could also have been in the middle of conjugant complex wave function times wave function as it the rule for all operators
  • 23. 23 Momentum Operator  To find the expectation value of p, we first need to represent p in terms of x and t. Consider the derivative of the wave function of a free particle with respect to x: With k = p / ħ we have This yields  This suggests we define the momentum operator as .  The expectation value of the momentum is λ hkp == 
  • 24. 24  The position x is its own operator as seen above.  The time derivative of the free-particle wave function is Substituting ω = E / ħ yields  The energy operator is  The expectation value of the energy is Position and Energy Operators ω⋅= E
  • 25. 25 For anything you want to know, there is an operator, the procedure is always the same to get the information out of the wave function that represents your problem, just let the correct operator loose on it, it’s that simple
  • 26. 26 Only a very few operators are fundamental If you need an operator, make it up from the classical physics equation by replacing x, p, E(t) with their operators The new operator will have the same functional relationship for the x, p, E(t) operators as the classical physics equation, example kinetic energy operator m p mvKE 22 1 2 2 == ][ˆ xxx == 2 222 2 )()( 2 1 2 ˆˆ][ xmx i x i mm p KEEKKE op ∂ ∂ ⋅−= ∂ ∂ −⋅ ∂ ∂ −⋅====  
  • 27. 27 Some expectation values are sharp some others fuzzy Since there is scatter in the actual positions (x), the calculated expectation value will have an uncertainty, fuzziness (Note that x is its own operator.) ][ˆ xxx == ][ˆ xxx =>≠< Normalizing condition, note its effect !
  • 28. 28 Some expectation values are sharp some others fuzzy, continued I For any observable, fuzzy or not If not fuzzy, ΔQ = 0 Because <Q2 >= <Q>2 x may as well stand for any kind of operator Q
  • 29. 29 Some expectation values are sharp some others fuzzy, continued II  Eigen values of operators are always sharp (an actual – physical - measurement may give some variation in the result, but the calculation gives zero fuzziness  Say Q is the Hamiltonian operator A wave function that solves this equation is an eigenfunction of this operator, E is the corresponding eigenvalue, apply this operator twice and you get E2 – which sure is the same as squaring to result of applying it once (E) So if the potential energy operator acts to confine a particle of mass m, we will have a discrete set of stationary states with total energies, E1, E2, … ][ˆ][ˆ)( VVUUxU ====
  • 30. 30
  • 31. 31 6.3: Infinite Square-Well Potential  The simplest such system is that of a particle trapped in a box with infinitely hard walls that the particle cannot penetrate. This potential is called an infinite square well and is given by  Clearly the wave function must be zero where the potential is infinite, there will be infinitely many En eigenvaules with their matching eigenfunctions  Where the potential is zero inside the box, the Schrödinger wave equation becomes where .  The general solution is . Note that this wave function is real because we are considering a standing wave, that is the sum of two moving waves i ee xk xikxik n nn 2 )sin( − − = B = 0, as just the sin term will do λ π2=k n nk λ π2=
  • 32. 32 Physical boundary condition  Boundary conditions of the potential dictate that the wave function must be zero at x = 0 and x = L. This yields valid solutions for integer values of n such that kL = nπ.  The wave function is now  We normalize the wave function  The normalized wave function becomes  These functions are identical to those obtained for a vibrating string with fixed ends.
  • 33. 33 Quantized Energy  The quantized wave number now becomes  Solving for the energy yields  Note that the energy depends on the integer values of n. Hence the energy is quantized and nonzero.  The special case of n = 1 is called the ground state energy. There is an infinite number of energy levels, because the potential barrier is infinitely high Ground state energy, zero point energy, there is no n = 0
  • 34. 34 Some “trajectories” of a particle in a box (infinite square well/ infinitely deep well) according to Newton's laws of classical mechanics (A), and according to the Schrödinger equation of quantum mechanics. In (B-F), the horizontal axis is position, and the vertical axis is the real part (blue) and imaginary part (red) of the wavefunction. The states (B,C,D) are energy eigenstates, but (E,F) are not. http://en.wikipedia.org/wiki/Particle_in_a_box no potential energy in this scenario, there is a discrete set of wave numbers since an integral number of wavelength need to fit into the box for any kind of other calculation normalize i ee xk xikxik n nn 2 )sin( − − =
  • 36. 36 Normalization, to set the scale of a wave function if we had not used a normalized wave function, the probability of finding the particle in the box would not be unity, and we would not have gotten our 81.8% result
  • 38. 38 Given the stationary wave functions i ee xk xikxik n nn 2 )sin( − − = Because square of momentum is related to kinetic energy, momentum has a spread due to uncertainty principle, !!! No surprise, momentum is a vector, goes back and forth with same value but different sign
  • 40. 40 2012 Usages of Particles in a box Bringing photons into a box, releasing them and manipulating them there, including measuring how many are there .. For more download
  • 41. 41 6.4: Finite Square-Well Potential  The finite square-well potential is  The Schrödinger equation outside the finite well in regions I and III is or using yields . Considering that the wave function must be zero at infinity, the solutions for this equation are Note the importance of the sign in the Schroedinger equation
  • 42. 42  Inside the square well, where the potential V is zero, the wave equation becomes where  Instead of a sinusoidal solution we have  The boundary conditions require that and the wave function must be smooth where the regions meet.  Note that the wave function is nonzero outside of the box. Finite Square-Well Solution There is a finite number of energy levels, because the potential barrier is finite in height, however shallow the well, there is at lease one energy level Also the first derivatives with respect to x need to match
  • 43. 43 Penetration Depth  The penetration depth is the distance outside the potential well where the probability significantly decreases. It is given by  It should not be surprising to find that the penetration distance that violates classical physics is proportional to Planck’s constant.
  • 45. 45  The wave function must be a function of all three spatial coordinates. We begin with the conservation of energy  Multiply this by the wave function to get  Now consider momentum as an operator acting on the wave function. In this case, the operator must act twice on each dimension. Given:  The three dimensional Schrödinger wave equation is 6.5: Three-Dimensional Infinite-Potential Well First slide in this chapter
  • 46. 46 Separation of variables, δ d Everything is there three times, three variables, three sin functions, three k, three p
  • 47. 47 Degeneracy  Analysis of the Schrödinger wave equation in three dimensions introduces three quantum numbers that quantize the energy.  A quantum state is degenerate when there is more than one wave function (eigen function) for a given energy (eigen value).  Degeneracy results from particular symmetry properties of the potential energy function that describes the system. A perturbation of the potential energy can remove the degeneracy. For a cubic box
  • 48. 48More next chapter Spherical potential, very high symmetry, a lot of degeneracy
  • 49. 49
  • 50. 50 6.6: Simple Harmonic Oscillator  Simple harmonic oscillators describe many physical situations: springs, diatomic molecules and atomic lattices.  Consider the Taylor expansion of a potential function: Redefining the minimum potential and the zero potential, we have Substituting this into the wave equation: Let and which yields .
  • 51. 51 Parabolic Potential Well  If the lowest energy level is zero, this violates the uncertainty principle.  The wave function solutions are where Hn(x) are Hermite polynomials of order n.  In contrast to the particle in a box, where the oscillatory wave function is a sinusoidal curve, in this case the oscillatory behavior is due to the polynomial, which dominates at small x. The exponential tail is provided by the Gaussian function, which dominates at large x.
  • 52. 52 Analysis of the Parabolic Potential Well  The energy levels are given by  The zero point energy is called the Heisenberg limit:  Classically, the probability of finding the mass is greatest at the ends of motion and smallest at the center (that is, proportional to the amount of time the mass spends at each position).  Contrary to the classical one, the largest probability for this lowest energy state is for the particle to be at the center.
  • 53. 53
  • 54. 54 6.7: Barriers and Tunneling  Consider a particle of energy E approaching a potential barrier of height V0 and the potential everywhere else is zero.  We will first consider the case when the energy is greater than the potential barrier.  In regions I and III the wave numbers are:  In the barrier region we have
  • 55. 55
  • 56. 56 Reflection and Transmission  The wave function will consist of an incident wave, a reflected wave, and a transmitted wave.  The potentials and the Schrödinger wave equation for the three regions are as follows:  The corresponding solutions are:  As the wave moves from left to right, we can simplify the wave functions to:
  • 57. 57 Probability of Reflection and Transmission  The probability of the particles being reflected R or transmitted T is:  The maximum kinetic energy of the photoelectrons depends on the value of the light frequency f and not on the intensity.  Because the particles must be either reflected or transmitted we have: R + T = 1.  By applying the boundary conditions x → ±∞, x = 0, and x = L, we arrive at the transmission probability:  Notice that there is a situation in which the transmission probability is 1.
  • 58. 58 Potential Well  Consider a particle passing through a potential well region rather than through a potential barrier.  Classically, the particle would speed up passing the well region, because K = mv2 / 2 = E + V0. According to quantum mechanics, reflection and transmission may occur, but the wavelength inside the potential well is smaller than outside. When the width of the potential well is precisely equal to half-integral or integral units of the wavelength, the reflected waves may be out of phase or in phase with the original wave, and cancellations or resonances may occur. The reflection/cancellation effects can lead to almost pure transmission or pure reflection for certain wavelengths. For example, at the second boundary (x = L) for a wave passing to the right, the wave may reflect and be out of phase with the incident wave. The effect would be a cancellation inside the well.
  • 59. 59 Tunneling  Now we consider the situation where classically the particle does not have enough energy to surmount the potential barrier, E < V0.  The quantum mechanical result, however, is one of the most remarkable features of modern physics, and there is ample experimental proof of its existence. There is a small, but finite, probability that the particle can penetrate the barrier and even emerge on the other side.  The wave function in region II becomes  The transmission probability that describes the phenomenon of tunneling is
  • 60. 60
  • 61. 61 x where ħ = h/2π, and σx, σp are the standard deviations of position (r) and momentum Funny Quantum energy bank: you can get a no interest loan ΔE for a certain time Δt as long as ΔE Δt < h
  • 62. 62 Uncertainty Explanation  Consider when κL >> 1 then the transmission probability becomes:  This violation allowed by the uncertainty principle is equal to the negative kinetic energy required! The particle is allowed by quantum mechanics and the uncertainty principle to penetrate into a classically forbidden region. The minimum such kinetic energy is:
  • 63. 63
  • 64. 64 Analogy with Wave Optics  If light passing through a glass prism reflects from an internal surface with an angle greater than the critical angle, total internal reflection occurs. However, the electromagnetic field is not exactly zero just outside the prism. If we bring another prism very close to the first one, experiments show that the electromagnetic wave (light) appears in the second prism The situation is analogous to the tunneling described here. This effect was observed by Newton and can be demonstrated with two prisms and a laser. The intensity of the second light beam decreases exponentially as the distance between the two prisms increases.
  • 65. 65
  • 66. 66 My research groups’ work: 1. (a) A 550 by 550 pixel image whose p4- symmetry is known by design. (b) An image to model what a double-STM-tip would produce when imaging this “sample,” constructed in Photoshop by overlaying a second copy of the p4 image, shifting it, and setting the blend mode to “overlay”, with 70% opacity to model uneven tip heights. (A ~ 12 pixel wide margin of the unobscured image is seen at the upper- and left- hand edges behind the overlain image.) (c) Crystallographically averaged p4 plane symmetry reconstruction of the overlapping (512 by 512 pixel) portion of the “sample.” (c) (a) (b) 5 nm
  • 67. 67
  • 68. 68 There is also radioactivity (from 1896 onwards): electrons and other particles, e.g. alpha particles, (we now know nuclei of He, two proton + two neutrons) come out of the atoms of certain elements end of the second part of this course, nuclear physics
  • 69. 69 Alpha-Particle Decay  The phenomenon of tunneling explains the alpha-particle decay of heavy, radioactive nuclei.  Inside the nucleus, an alpha particle feels the strong, short-range attractive nuclear force as well as the repulsive Coulomb force.  The nuclear force dominates inside the nuclear radius where the potential is approximately a square well.  The Coulomb force dominates outside the nuclear radius.  The potential barrier at the nuclear radius is several times greater than the energy of an alpha particle.  According to quantum mechanics, however, the alpha particle can “tunnel” through the barrier. Hence this is observed as radioactive decay.
  • 70. 70
  • 71. 71
  • 72. 72
  • 73. 73
  • 74. 74
  • 75. 75