SlideShare une entreprise Scribd logo
1  sur  40
Télécharger pour lire hors ligne
Humans	
  in	
  a	
  loop:	
  
Jupyter	
  notebooks	
  as	
  a	
  front-­‐end	
  for	
  AI
Paco	
  Nathan	
  	
  @pacoid	
  
Dir,	
  Learning	
  Group	
  @	
  O’Reilly	
  Media	
  
JupyterCon	
  	
  2017-­‐08-­‐24
Framing
2
Imagine	
  having	
  a	
  mostly-­‐automated	
  system	
  where	
  

people	
  and	
  machines	
  collaborate	
  together…	
  
May	
  sound	
  a	
  bit	
  Sci-­‐Fi	
  –	
  though	
  arguably	
  commonplace.	
  

One	
  challenge	
  is	
  whether	
  we	
  can	
  advance	
  beyond	
  rote	
  
tasks.	
  	
  
Instead	
  of	
  simply	
  running	
  code	
  libraries,	
  can	
  machines	
  

make	
  difficult	
  decisions,	
  exercise	
  judgement	
  in	
  complex	
  
situations?	
  	
  
Can	
  we	
  build	
  systems	
  in	
  which	
  people	
  who	
  aren’t	
  

AI	
  experts	
  can	
  “teach”	
  machines	
  to	
  perform	
  complex	
  

work	
  based	
  on	
  examples,	
  not	
  code?
Research	
  questions
▪ How	
  do	
  we	
  personalize	
  learning	
  experiences,	
  across	
  

ebooks,	
  videos,	
  conferences,	
  computable	
  content,	
  live	
  
online	
  courses,	
  case	
  studies,	
  expert	
  AMAs,	
  etc.	
  
▪ How	
  do	
  we	
  help	
  experts	
  —	
  by	
  definition,	
  really	
  busy	
  
people	
  —	
  share	
  knowledge	
  with	
  their	
  peers	
  in	
  industry?	
  
▪ How	
  do	
  we	
  manage	
  the	
  role	
  of	
  editors	
  at	
  human	
  scale,	
  

while	
  technology	
  and	
  delivery	
  media	
  evolve	
  rapidly?	
  
▪ How	
  do	
  we	
  help	
  organizations	
  learn	
  and	
  transform	
  
continuously?
3
4
5
UX	
  for	
  content	
  discovery:	
  
▪ partly	
  generated	
  +	
  curated	
  by	
  humans	
  
▪ partly	
  generated	
  +	
  curated	
  by	
  AI	
  apps
Background:	
  

helping	
  machines	
  learn
6
Machine	
  learning
supervised	
  ML:	
  
▪ take	
  a	
  dataset	
  where	
  each	
  element	
  
has	
  a	
  label	
  
▪ train	
  models	
  on	
  a	
  portion	
  of	
  the	
  
data	
  to	
  predict	
  the	
  labels,	
  test	
  on	
  
the	
  remainder	
  
▪ deep	
  learning	
  is	
  a	
  popular	
  example,	
  

though	
  only	
  if	
  you	
  have	
  lots	
  of	
  
labeled	
  training	
  data	
  available
Machine	
  learning
unsupervised	
  ML:	
  
▪ run	
  lots	
  of	
  unlabeled	
  data	
  through	
  
an	
  algorithm	
  to	
  detect	
  “structure”	
  
or	
  embedding	
  
▪ for	
  example,	
  clustering	
  algorithms	
  
such	
  as	
  K-­‐means	
  
▪ unsupervised	
  approaches	
  for	
  AI	
  

are	
  an	
  open	
  research	
  question
Active	
  learning
special	
  case	
  of	
  semi-­‐supervised	
  ML:	
  
▪ send	
  difficult	
  calls	
  /	
  edge	
  cases	
  to	
  
experts;	
  let	
  algorithms	
  handle	
  
routine	
  decisions	
  
▪ works	
  well	
  in	
  use	
  cases	
  which	
  have	
  
lots	
  of	
  inexpensive,	
  unlabeled	
  data	
  
▪ e.g.,	
  abundance	
  of	
  content	
  to	
  be	
  
classified,	
  where	
  the	
  cost	
  of	
  
labeling	
  is	
  the	
  expense
Active	
  learning
Real-­‐World	
  Active	
  Learning:	
  Applications	
  and	
  
Strategies	
  for	
  Human-­‐in-­‐the-­‐Loop	
  Machine	
  Learning

radar.oreilly.com/2015/02/human-­‐in-­‐the-­‐loop-­‐
machine-­‐learning.html

Ted	
  Cuzzillo

O’Reilly	
  Media,	
  2015-­‐02-­‐05	
  
Develop	
  a	
  policy	
  for	
  how	
  human	
  experts	
  select	
  exemplars:	
  
▪ bias	
  toward	
  labels	
  most	
  likely	
  to	
  influence	
  the	
  classifier	
  
▪ bias	
  toward	
  ensemble	
  disagreement	
  
▪ bias	
  toward	
  denser	
  regions	
  of	
  training	
  data
10
Active	
  learning
Data	
  preparation	
  in	
  the	
  age	
  of	
  deep	
  learning

oreilly.com/ideas/data-­‐preparation-­‐in-­‐the-­‐
age-­‐of-­‐deep-­‐learning

Luke	
  Biewald	
  	
  CrowdFlower

O’Reilly	
  Data	
  Show,	
  2017-­‐05-­‐04	
  
send	
  human	
  workers	
  cases	
  where	
  machine	
  learning	
  
algorithms	
  signal	
  uncertainty	
  (low	
  probability	
  scores)	
  	
  
…or	
  when	
  your	
  ensemble	
  of	
  ML	
  algorithms	
  signals	
  
disagreement
11
Design	
  pattern:	
  Human-­‐in-­‐the-­‐loop
Building	
  a	
  business	
  that	
  combines	
  human	
  experts	
  
and	
  data	
  science

oreilly.com/ideas/building-­‐a-­‐business-­‐that-­‐
combines-­‐human-­‐experts-­‐and-­‐data-­‐science-­‐2

Eric	
  Colson	
  	
  StitchFix

O’Reilly	
  Data	
  Show,	
  2016-­‐01-­‐28	
  
“what	
  machines	
  can’t	
  do	
  are	
  things	
  around	
  cognition,

	
  	
  things	
  that	
  have	
  to	
  do	
  with	
  ambient	
  information,	
  or

	
  	
  appreciation	
  of	
  aesthetics,	
  or	
  even	
  the	
  ability	
  to

	
  	
  relate	
  to	
  another	
  human”



12
Design	
  pattern:	
  Human-­‐in-­‐the-­‐loop
Strategies	
  for	
  integrating	
  people	
  and	
  machine	
  
learning	
  in	
  online	
  systems

safaribooksonline.com/library/view/oreilly-­‐
artificial-­‐intelligence/9781491976289/
video311857.html

Jason	
  Laska	
  	
  Clara	
  Labs

The	
  AI	
  Conf,	
  2017-­‐06-­‐29	
  
how	
  to	
  create	
  a	
  two-­‐sided	
  marketplace	
  where	
  machines	
  
and	
  people	
  compete	
  on	
  a	
  spectrum	
  of	
  relative	
  expertise	
  
and	
  capabilities



13
Design	
  pattern:	
  Human-­‐in-­‐the-­‐loop
Building	
  human-­‐assisted	
  AI	
  applications

oreilly.com/ideas/building-­‐human-­‐
assisted-­‐ai-­‐applications

Adam	
  Marcus	
  	
  B12

O’Reilly	
  Data	
  Show,	
  2016-­‐08-­‐25	
  
Orchestra:	
  a	
  platform	
  for	
  building	
  human-­‐
assisted	
  AI	
  applications,	
  e.g.,	
  to	
  create	
  
business	
  websites

https://github.com/b12io/orchestra	
  
example	
  http://www.coloradopicked.com/
14
Design	
  pattern:	
  Flash	
  teams
Expert	
  Crowdsourcing	
  with	
  Flash	
  Teams

hci.stanford.edu/publications/2014/
flashteams/flashteams-­‐uist2014.pdf

Daniela	
  Retelny,	
  et	
  al.	
  

Stanford	
  HCI	
  
“A	
  flash	
  team	
  is	
  a	
  linked	
  set	
  of	
  modular	
  tasks	
  

	
  	
  that	
  draw	
  upon	
  paid	
  experts	
  from	
  the	
  crowd,	
  

	
  	
  often	
  three	
  to	
  six	
  at	
  a	
  time,	
  on	
  demand”	
  
http://stanfordhci.github.io/flash-­‐teams/
15
Weak	
  supervision	
  /	
  Data	
  programming
Creating	
  large	
  training	
  data	
  sets	
  quickly

oreilly.com/ideas/creating-­‐large-­‐training-­‐
data-­‐sets-­‐quickly

Alex	
  Ratner	
  	
  Stanford

O’Reilly	
  Data	
  Show,	
  2017-­‐06-­‐08	
  
Snorkel:	
  “weak	
  supervision”	
  and	
  “data	
  
programming”	
  as	
  another	
  instance	
  of	
  

human-­‐in-­‐the-­‐loop

github.com/HazyResearch/snorkel	
  
conferences.oreilly.com/strata/strata-­‐ny/public/
schedule/detail/61849
16
Reinforcement	
  learning
Reinforcement	
  learning	
  explained

oreilly.com/ideas/reinforcement-­‐
learning-­‐explained

Junling	
  Hu	
  	
  AI	
  Frontiers

O’Reilly	
  Radar,	
  2016-­‐12-­‐08	
  
learning	
  to	
  act	
  based	
  on	
  long-­‐term	
  
payoffs	
  
often	
  as	
  rewards/punishments	
  of	
  an	
  

actor	
  within	
  a	
  simulation
17
Background:	
  
helping	
  people	
  learn
18
AI	
  in	
  Media
▪ content	
  which	
  can	
  represented	
  as	
  

text	
  can	
  be	
  parsed	
  by	
  NLP,	
  then	
  
manipulated	
  by	
  available	
  AI	
  tooling	
  	
  
▪ labeled	
  images	
  get	
  really	
  interesting	
  
▪ text	
  or	
  images	
  within	
  a	
  context	
  have	
  

inherent	
  structure	
  
▪ representation	
  of	
  that	
  kind	
  of	
  structure	
  
is	
  rare	
  in	
  the	
  Media	
  vertical	
  –	
  so	
  far
19
{"graf": [[21, "let", "let", "VB", 1, 48], [0, "'s", "'s", "PRP", 0, 49],
"take", "take", "VB", 1, 50], [0, "a", "a", "DT", 0, 51], [23, "look", "l
"NN", 1, 52], [0, "at", "at", "IN", 0, 53], [0, "a", "a", "DT", 0, 54], [
"few", "few", "JJ", 1, 55], [25, "examples", "example", "NNS", 1, 56], [0
"often", "often", "RB", 0, 57], [0, "when", "when", "WRB", 0, 58], [11,
"people", "people", "NNS", 1, 59], [2, "are", "be", "VBP", 1, 60], [26, "
"first", "JJ", 1, 61], [27, "learning", "learn", "VBG", 1, 62], [0, "abou
"about", "IN", 0, 63], [28, "Docker", "docker", "NNP", 1, 64], [0, "they"
"they", "PRP", 0, 65], [29, "try", "try", "VBP", 1, 66], [0, "and", "and"
0, 67], [30, "put", "put", "VBP", 1, 68], [0, "it", "it", "PRP", 0, 69],
"in", "in", "IN", 0, 70], [0, "one", "one", "CD", 0, 71], [0, "of", "of",
0, 72], [0, "a", "a", "DT", 0, 73], [24, "few", "few", "JJ", 1, 74], [31,
"existing", "existing", "JJ", 1, 75], [18, "categories", "category", "NNS
76], [0, "sometimes", "sometimes", "RB", 0, 77], [11, "people", "people",
1, 78], [9, "think", "think", "VBP", 1, 79], [0, "it", "it", "PRP", 0, 80
"'s", "be", "VBZ", 1, 81], [0, "a", "a", "DT", 0, 82], [32, "virtualizati
"virtualization", "NN", 1, 83], [19, "tool", "tool", "NN", 1, 84], [0, "l
"like", "IN", 0, 85], [33, "VMware", "vmware", "NNP", 1, 86], [0, "or", "
"CC", 0, 87], [34, "virtualbox", "virtualbox", "NNP", 1, 88], [0, "also",
"also", "RB", 0, 89], [35, "known", "know", "VBN", 1, 90], [0, "as", "as"
0, 91], [0, "a", "a", "DT", 0, 92], [36, "hypervisor", "hypervisor", "NN"
93], [0, "these", "these", "DT", 0, 94], [2, "are", "be", "VBP", 1, 95],
"tools", "tool", "NNS", 1, 96], [0, "which", "which", "WDT", 0, 97], [2,
"be", "VBP", 1, 98], [37, "emulating", "emulate", "VBG", 1, 99], [38,
"hardware", "hardware", "NN", 1, 100], [0, "for", "for", "IN", 0, 101], [
"virtual", "virtual", "JJ", 1, 102], [40, "software", "software", "NN", 1
103]], "id": "001.video197359", "sha1":
"4b69cf60f0497887e3776619b922514f2e5b70a8"}
AI	
  in	
  Media
20
{"count": 2, "ids": [32, 19], "pos": "np", "rank": 0.0194, "text": "virtualization tool"}
{"count": 2, "ids": [40, 69], "pos": "np", "rank": 0.0117, "text": "software applications"}
{"count": 4, "ids": [38], "pos": "np", "rank": 0.0114, "text": "hardware"}
{"count": 2, "ids": [33, 36], "pos": "np", "rank": 0.0099, "text": "vmware hypervisor"}
{"count": 4, "ids": [28], "pos": "np", "rank": 0.0096, "text": "docker"}
{"count": 4, "ids": [34], "pos": "np", "rank": 0.0094, "text": "virtualbox"}
{"count": 10, "ids": [11], "pos": "np", "rank": 0.0049, "text": "people"}
{"count": 4, "ids": [37], "pos": "vbg", "rank": 0.0026, "text": "emulating"}
{"count": 2, "ids": [27], "pos": "vbg", "rank": 0.0016, "text": "learning"}
Transcript: let's take a look at a few examples often when
people are first learning about Docker they try and put it in
one of a few existing categories sometimes people think it's
a virtualization tool like VMware or virtualbox also known as
a hypervisor these are tools which are emulating hardware for
virtual software
Confidence: 0.973419129848
39 KUBERNETES
0.8747 coreos
0.8624 etcd
0.8478 DOCKER CONTAINERS
0.8458 mesos
0.8406 DOCKER
0.8354 DOCKER CONTAINER
0.8260 KUBERNETES CLUSTER
0.8258 docker image
0.8252 EC2
0.8210 docker hub
0.8138 OPENSTACK
orm:Docker a orm:Vendor;
a orm:Container;
a orm:Open_Source;
a orm:Commercial_Software;
owl:sameAs dbr:Docker_%28software%29;
skos:prefLabel "Docker"@en;
Which	
  parts	
  do	
  people	
  or	
  machines	
  do	
  best?
21
team	
  goal:	
  maintain	
  structural	
  correspondence	
  between	
  the	
  layers	
  
big	
  win	
  for	
  AI:	
  inferences	
  across	
  the	
  graph
human	
  scale	
  
primary	
  structure	
  
control	
  points	
  
testability
machine	
  generated	
  data	
  products	
  
~80%	
  of	
  the	
  graph
Ontology
▪ provides	
  context	
  which	
  Deep	
  Learning	
  lacks	
  
▪ aka,	
  “knowledge	
  graph”	
  –	
  a	
  computable	
  thesaurus	
  
▪ maps	
  the	
  semantics	
  of	
  business	
  relationships	
  
▪ S/V/O:	
  “nouns”,	
  some	
  “verbs”,	
  a	
  few	
  “adjectives”	
  
▪ difficult	
  work,	
  a	
  relatively	
  expensive	
  investment,	
  
potentially	
  high	
  ROI	
  
▪ conversational	
  interfaces	
  (e.g.,	
  Google	
  Assistant)	
  
improve	
  UX	
  by	
  importing	
  ontologies
22
Ontology
23
Problem:	
  
disambiguating	
  contexts
24
Disambiguating	
  contexts
Overlapping	
  contexts	
  pose	
  hard	
  problems	
  in	
  natural	
  language	
  understanding.	
  
Not	
  much	
  available	
  tooling.	
  Counter	
  to	
  the	
  correlation	
  emphasis	
  of	
  big	
  data.
Disambiguating	
  contexts
26
Suppose	
  someone	
  publishes	
  a	
  book	
  which	
  uses	
  the	
  term	
  
`IOS`:	
  are	
  they	
  talking	
  about	
  an	
  operating	
  system	
  for	
  an	
  
Apple	
  iPhone,	
  or	
  about	
  an	
  operating	
  system	
  for	
  a	
  Cisco	
  
router?	
  	
  
We	
  handle	
  lots	
  of	
  content	
  about	
  both.	
  Disambiguating	
  those	
  
contexts	
  is	
  important	
  for	
  good	
  UX	
  in	
  personalized	
  learning.	
  
In	
  other	
  words,	
  how	
  do	
  machines	
  help	
  people	
  

distinguish	
  that	
  content	
  within	
  search?	
  
Potentially	
  a	
  good	
  case	
  for	
  deep	
  learning,	
  

except	
  for	
  the	
  lack	
  of	
  labeled	
  data	
  at	
  scale.
Disambiguation	
  in	
  content	
  discovery
27
Consider	
  searching	
  for	
  the	
  term	
  `react`	
  on	
  Google.	
  

The	
  first	
  page	
  of	
  results:	
  
▪ acting	
  coaches	
  
▪ video	
  games	
  
▪ student	
  engagement	
  
▪ children’s	
  charities	
  
▪ UI	
  web	
  components	
  
▪ surveys
Active	
  learning	
  through	
  Jupyter
28
Jupyter	
  notebooks	
  are	
  used	
  to	
  manage	
  ML	
  

pipelines	
  for	
  disambiguation,	
  where	
  machines	
  

and	
  people	
  collaborate:	
  
▪ notebooks	
  as	
  one	
  part	
  configuration	
  file,	
  

one	
  part	
  data	
  sample,	
  one	
  part	
  structured	
  log,	
  

one	
  part	
  data	
  visualization	
  tool	
  
▪ ML	
  based	
  on	
  examples,	
  not	
  feature	
  engineering,	
  
model	
  parameters,	
  etc.
Active	
  learning	
  through	
  Jupyter
1. Experts	
  use	
  notebooks	
  to	
  provide	
  examples	
  of	
  book	
  chapters,	
  video	
  
segments,	
  etc.,	
  for	
  each	
  key	
  phrase	
  that	
  has	
  overlapping	
  contexts	
  
2. Machines	
  build	
  ensemble	
  ML	
  models	
  based	
  on	
  those	
  examples,	
  
updating	
  notebooks	
  with	
  model	
  evaluation	
  
3. Machines	
  attempt	
  to	
  annotate	
  labels	
  for	
  millions	
  of	
  pieces	
  of	
  content,	
  

e.g.,	
  `AlphaGo`,	
  `Golang`,	
  versus	
  a	
  mundane	
  use	
  of	
  the	
  verb	
  `go`	
  
4. Disambiguation	
  can	
  run	
  mostly	
  automated,	
  in	
  parallel	
  at	
  scale	
  –	
  

through	
  integration	
  with	
  Apache	
  Spark	
  
5. In	
  cases	
  where	
  ensembles	
  disagree,	
  ML	
  pipelines	
  defer	
  to	
  human	
  
experts	
  who	
  make	
  judgement	
  calls,	
  providing	
  further	
  examples	
  
6. New	
  examples	
  go	
  into	
  training	
  ML	
  pipelines	
  to	
  build	
  better	
  models	
  
7. Rinse,	
  lather,	
  repeat
Active	
  learning	
  through	
  Jupyter
30
ML#Pipelines
Jupyter#kernel
Browser
SSH#tunnel
Active	
  learning	
  through	
  Jupyter
▪ Jupyter	
  notebooks	
  allow	
  human	
  experts	
  to	
  access	
  the	
  
internals	
  of	
  a	
  mostly	
  automated	
  ML	
  pipeline,	
  rapidly	
  
▪ Stated	
  another	
  way,	
  both	
  the	
  machines	
  and	
  the	
  people	
  
become	
  collaborators	
  on	
  shared	
  documents	
  
▪ Anticipates	
  upcoming	
  collaborative	
  document	
  features	
  
in	
  JupyterLab
Active	
  learning	
  through	
  Jupyter
32
Open	
  source	
  nbtransom	
  package:	
  
▪ https://github.com/ceteri/nbtransom	
  
▪ https://pypi.python.org/pypi/nbtransom	
  
▪ based	
  on	
  use	
  of	
  nbformat	
  and	
  pandas	
  	
  
▪ notebook	
  as	
  both	
  Py	
  data	
  store	
  and	
  analytics	
  
▪ custom	
  “pretty-­‐print”	
  helps	
  with	
  use	
  of	
  Git	
  for	
  
diffs,	
  commits,	
  etc.
Nuances
▪ No	
  Free	
  Lunch	
  theorem:	
  it’s	
  better	
  to	
  err	
  on	
  the	
  side	
  of	
  

less	
  false	
  positives	
  /	
  more	
  false	
  negatives	
  for	
  this	
  use	
  case	
  
▪ Bias	
  toward	
  exemplars	
  most	
  likely	
  to	
  influence	
  the	
  classifier	
  
▪ Potentially,	
  the	
  “experts”	
  may	
  be	
  Customer	
  Service	
  staff	
  who	
  
review	
  edge	
  cases	
  within	
  search	
  results	
  or	
  recommended	
  
content	
  –	
  as	
  an	
  integral	
  part	
  of	
  our	
  UI	
  –	
  then	
  re-­‐train	
  the	
  

ML	
  pipelines	
  through	
  examples	
  
Summary:	
  
people	
  and	
  machines	
  at	
  work
34
Human-­‐in-­‐the-­‐loop	
  as	
  management	
  strategy
personal	
  op-­‐ed:	
  the	
  “game”	
  isn’t	
  to	
  replace	
  people	
  
–	
  instead	
  it’s	
  about	
  leveraging	
  AI	
  to	
  augment	
  staff,	
  

so	
  organizations	
  can	
  retain	
  people	
  with	
  valuable	
  
domain	
  expertise,	
  making	
  their	
  contributions	
  and	
  
expertise	
  even	
  more	
  vital
Why	
  we’ll	
  never	
  run	
  out	
  of	
  jobs
36
Acknowledgements
37
Many	
  thanks	
  to	
  people	
  who’ve	
  helped	
  with	
  this	
  work:	
  
▪ Taylor	
  Martin	
  
▪ Eszti	
  Schoell	
  
▪ Fernando	
  Perez	
  
▪ Andrew	
  Odewahn	
  
▪ Scott	
  Murray	
  
▪ John	
  Allwine	
  
▪ Pascal	
  Honscher	
  
Strata	
  Data	
  
NY,	
  Sep	
  25-­‐28

SG,	
  Dec	
  4-­‐7

SJ,	
  Mar	
  5-­‐8,	
  2018

UK,	
  May	
  21-­‐24,	
  2018	
  
The	
  AI	
  Conf	
  
SF,	
  Sep	
  17-­‐20

NY,	
  Apr	
  29-­‐May	
  2,	
  2018	
  
OSCON	
  (returns	
  to	
  Portland!)	
  
PDX,	
  Jul	
  16-­‐19,	
  2018
38
39
Get	
  Started	
  with	
  
NLP	
  in	
  Python
Just	
  Enough	
  Math Building	
  Data	
  
Science	
  Teams
Hylbert-­‐Speys How	
  Do	
  You	
  Learn?
updates,	
  reviews,	
  conference	
  summaries…	
  
liber118.com/pxn/

@pacoid
Humans in a loop: Jupyter notebooks as a front-end for AI

Contenu connexe

Tendances

Cloudera Breakfast: Advanced Analytics Part II: Do More With Your Data
Cloudera Breakfast: Advanced Analytics Part II: Do More With Your DataCloudera Breakfast: Advanced Analytics Part II: Do More With Your Data
Cloudera Breakfast: Advanced Analytics Part II: Do More With Your DataCloudera, Inc.
 
Three Tools for "Human-in-the-loop" Data Science
Three Tools for "Human-in-the-loop" Data ScienceThree Tools for "Human-in-the-loop" Data Science
Three Tools for "Human-in-the-loop" Data ScienceAditya Parameswaran
 
Big Data and Data Intensive Computing: Use Cases
Big Data and Data Intensive Computing: Use CasesBig Data and Data Intensive Computing: Use Cases
Big Data and Data Intensive Computing: Use CasesJongwook Woo
 
Findability Day 2016 - Augmented intelligence
Findability Day 2016 - Augmented intelligenceFindability Day 2016 - Augmented intelligence
Findability Day 2016 - Augmented intelligenceFindwise
 
Big Data and Data Intensive Computing on Networks
Big Data and Data Intensive Computing on NetworksBig Data and Data Intensive Computing on Networks
Big Data and Data Intensive Computing on NetworksJongwook Woo
 
Crowdsourced Data Processing: Industry and Academic Perspectives
Crowdsourced Data Processing: Industry and Academic PerspectivesCrowdsourced Data Processing: Industry and Academic Perspectives
Crowdsourced Data Processing: Industry and Academic PerspectivesAditya Parameswaran
 
Big Data and Predictive Analysis
Big Data and Predictive AnalysisBig Data and Predictive Analysis
Big Data and Predictive AnalysisJongwook Woo
 
How to Interview a Data Scientist
How to Interview a Data ScientistHow to Interview a Data Scientist
How to Interview a Data ScientistDaniel Tunkelang
 
Full-Stack Data Science: How to be a One-person Data Team
Full-Stack Data Science: How to be a One-person Data TeamFull-Stack Data Science: How to be a One-person Data Team
Full-Stack Data Science: How to be a One-person Data TeamGreg Goltsov
 
Python's Role in the Future of Data Analysis
Python's Role in the Future of Data AnalysisPython's Role in the Future of Data Analysis
Python's Role in the Future of Data AnalysisPeter Wang
 
Intro to Data Science Big Data
Intro to Data Science Big DataIntro to Data Science Big Data
Intro to Data Science Big DataIndu Khemchandani
 
Introduction to Big Data and AI for Business Analytics and Prediction
Introduction to Big Data and AI for Business Analytics and PredictionIntroduction to Big Data and AI for Business Analytics and Prediction
Introduction to Big Data and AI for Business Analytics and PredictionJongwook Woo
 
MIT Deep Learning Basics: Introduction and Overview by Lex Fridman
MIT Deep Learning Basics: Introduction and Overview by Lex FridmanMIT Deep Learning Basics: Introduction and Overview by Lex Fridman
MIT Deep Learning Basics: Introduction and Overview by Lex FridmanPeerasak C.
 
Dealing with uncertainty in fintech using AI
Dealing with uncertainty in fintech using AIDealing with uncertainty in fintech using AI
Dealing with uncertainty in fintech using AIData Products Meetup
 
Introduction to Machine Learning - WeCloudData
Introduction to Machine Learning - WeCloudDataIntroduction to Machine Learning - WeCloudData
Introduction to Machine Learning - WeCloudDataWeCloudData
 
Introduction to Deep Learning and AI at Scale for Managers
Introduction to Deep Learning and AI at Scale for ManagersIntroduction to Deep Learning and AI at Scale for Managers
Introduction to Deep Learning and AI at Scale for ManagersDataWorks Summit
 
Yahoo Microstrategy 2008
Yahoo Microstrategy 2008Yahoo Microstrategy 2008
Yahoo Microstrategy 2008Amr Awadallah
 

Tendances (20)

Cloudera Breakfast: Advanced Analytics Part II: Do More With Your Data
Cloudera Breakfast: Advanced Analytics Part II: Do More With Your DataCloudera Breakfast: Advanced Analytics Part II: Do More With Your Data
Cloudera Breakfast: Advanced Analytics Part II: Do More With Your Data
 
Web Scale Named Entity Mining
Web Scale Named Entity MiningWeb Scale Named Entity Mining
Web Scale Named Entity Mining
 
Data Scientist Enablement roadmap 1.0
Data Scientist Enablement roadmap 1.0Data Scientist Enablement roadmap 1.0
Data Scientist Enablement roadmap 1.0
 
Three Tools for "Human-in-the-loop" Data Science
Three Tools for "Human-in-the-loop" Data ScienceThree Tools for "Human-in-the-loop" Data Science
Three Tools for "Human-in-the-loop" Data Science
 
Big Data and Data Intensive Computing: Use Cases
Big Data and Data Intensive Computing: Use CasesBig Data and Data Intensive Computing: Use Cases
Big Data and Data Intensive Computing: Use Cases
 
Findability Day 2016 - Augmented intelligence
Findability Day 2016 - Augmented intelligenceFindability Day 2016 - Augmented intelligence
Findability Day 2016 - Augmented intelligence
 
Big Data and Data Intensive Computing on Networks
Big Data and Data Intensive Computing on NetworksBig Data and Data Intensive Computing on Networks
Big Data and Data Intensive Computing on Networks
 
AI on Big Data
AI on Big DataAI on Big Data
AI on Big Data
 
Crowdsourced Data Processing: Industry and Academic Perspectives
Crowdsourced Data Processing: Industry and Academic PerspectivesCrowdsourced Data Processing: Industry and Academic Perspectives
Crowdsourced Data Processing: Industry and Academic Perspectives
 
Big Data and Predictive Analysis
Big Data and Predictive AnalysisBig Data and Predictive Analysis
Big Data and Predictive Analysis
 
How to Interview a Data Scientist
How to Interview a Data ScientistHow to Interview a Data Scientist
How to Interview a Data Scientist
 
Full-Stack Data Science: How to be a One-person Data Team
Full-Stack Data Science: How to be a One-person Data TeamFull-Stack Data Science: How to be a One-person Data Team
Full-Stack Data Science: How to be a One-person Data Team
 
Python's Role in the Future of Data Analysis
Python's Role in the Future of Data AnalysisPython's Role in the Future of Data Analysis
Python's Role in the Future of Data Analysis
 
Intro to Data Science Big Data
Intro to Data Science Big DataIntro to Data Science Big Data
Intro to Data Science Big Data
 
Introduction to Big Data and AI for Business Analytics and Prediction
Introduction to Big Data and AI for Business Analytics and PredictionIntroduction to Big Data and AI for Business Analytics and Prediction
Introduction to Big Data and AI for Business Analytics and Prediction
 
MIT Deep Learning Basics: Introduction and Overview by Lex Fridman
MIT Deep Learning Basics: Introduction and Overview by Lex FridmanMIT Deep Learning Basics: Introduction and Overview by Lex Fridman
MIT Deep Learning Basics: Introduction and Overview by Lex Fridman
 
Dealing with uncertainty in fintech using AI
Dealing with uncertainty in fintech using AIDealing with uncertainty in fintech using AI
Dealing with uncertainty in fintech using AI
 
Introduction to Machine Learning - WeCloudData
Introduction to Machine Learning - WeCloudDataIntroduction to Machine Learning - WeCloudData
Introduction to Machine Learning - WeCloudData
 
Introduction to Deep Learning and AI at Scale for Managers
Introduction to Deep Learning and AI at Scale for ManagersIntroduction to Deep Learning and AI at Scale for Managers
Introduction to Deep Learning and AI at Scale for Managers
 
Yahoo Microstrategy 2008
Yahoo Microstrategy 2008Yahoo Microstrategy 2008
Yahoo Microstrategy 2008
 

Similaire à Humans in a loop: Jupyter notebooks as a front-end for AI

Human-in-the-loop: a design pattern for managing teams which leverage ML by P...
Human-in-the-loop: a design pattern for managing teams which leverage ML by P...Human-in-the-loop: a design pattern for managing teams which leverage ML by P...
Human-in-the-loop: a design pattern for managing teams which leverage ML by P...Big Data Spain
 
Data Science - An emerging Stream of Science with its Spreading Reach & Impact
Data Science - An emerging Stream of Science with its Spreading Reach & ImpactData Science - An emerging Stream of Science with its Spreading Reach & Impact
Data Science - An emerging Stream of Science with its Spreading Reach & ImpactDr. Sunil Kr. Pandey
 
Dashboards are Dumb Data - Why Smart Analytics Will Kill Your KPIs
Dashboards are Dumb Data - Why Smart Analytics Will Kill Your KPIsDashboards are Dumb Data - Why Smart Analytics Will Kill Your KPIs
Dashboards are Dumb Data - Why Smart Analytics Will Kill Your KPIsLuciano Pesci, PhD
 
7 ideas on encouraging advanced analytics
7 ideas on encouraging advanced analytics7 ideas on encouraging advanced analytics
7 ideas on encouraging advanced analyticsMark Tabladillo
 
2016 Digital Technology Discussion: Strategies, Trends, Future Visions
2016 Digital Technology Discussion: Strategies, Trends, Future Visions2016 Digital Technology Discussion: Strategies, Trends, Future Visions
2016 Digital Technology Discussion: Strategies, Trends, Future VisionsThe Metropolitan Museum of Art
 
Data fluency for the 21st century
Data fluency for the 21st centuryData fluency for the 21st century
Data fluency for the 21st centuryMartinFrigaard
 
Scaling SlideShare to the World - An Asian Perpective
Scaling SlideShare to the World - An Asian PerpectiveScaling SlideShare to the World - An Asian Perpective
Scaling SlideShare to the World - An Asian PerpectiveAmit Ranjan
 
Data science presentation
Data science presentationData science presentation
Data science presentationMSDEVMTL
 
Odsc machine-learning-guide-v1
Odsc machine-learning-guide-v1Odsc machine-learning-guide-v1
Odsc machine-learning-guide-v1Harsh Khatke
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systemsinovex GmbH
 
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptxISSIP
 
Knowledge Worker 20562
Knowledge Worker 20562Knowledge Worker 20562
Knowledge Worker 20562npasha
 
Career in Data Science (July 2017, DTLA)
Career in Data Science (July 2017, DTLA)Career in Data Science (July 2017, DTLA)
Career in Data Science (July 2017, DTLA)Thinkful
 
The Python ecosystem for data science - Landscape Overview
The Python ecosystem for data science - Landscape OverviewThe Python ecosystem for data science - Landscape Overview
The Python ecosystem for data science - Landscape OverviewDr. Ananth Krishnamoorthy
 
Tutorial helsinki 20180313 v1
Tutorial helsinki 20180313 v1Tutorial helsinki 20180313 v1
Tutorial helsinki 20180313 v1ISSIP
 
How to Prepare for a Career in Data Science
How to Prepare for a Career in Data ScienceHow to Prepare for a Career in Data Science
How to Prepare for a Career in Data ScienceJuuso Parkkinen
 

Similaire à Humans in a loop: Jupyter notebooks as a front-end for AI (20)

Human-in-the-loop: a design pattern for managing teams which leverage ML by P...
Human-in-the-loop: a design pattern for managing teams which leverage ML by P...Human-in-the-loop: a design pattern for managing teams which leverage ML by P...
Human-in-the-loop: a design pattern for managing teams which leverage ML by P...
 
Data Science - An emerging Stream of Science with its Spreading Reach & Impact
Data Science - An emerging Stream of Science with its Spreading Reach & ImpactData Science - An emerging Stream of Science with its Spreading Reach & Impact
Data Science - An emerging Stream of Science with its Spreading Reach & Impact
 
Dashboards are Dumb Data - Why Smart Analytics Will Kill Your KPIs
Dashboards are Dumb Data - Why Smart Analytics Will Kill Your KPIsDashboards are Dumb Data - Why Smart Analytics Will Kill Your KPIs
Dashboards are Dumb Data - Why Smart Analytics Will Kill Your KPIs
 
7 ideas on encouraging advanced analytics
7 ideas on encouraging advanced analytics7 ideas on encouraging advanced analytics
7 ideas on encouraging advanced analytics
 
2016 Digital Technology Discussion: Strategies, Trends, Future Visions
2016 Digital Technology Discussion: Strategies, Trends, Future Visions2016 Digital Technology Discussion: Strategies, Trends, Future Visions
2016 Digital Technology Discussion: Strategies, Trends, Future Visions
 
Data fluency for the 21st century
Data fluency for the 21st centuryData fluency for the 21st century
Data fluency for the 21st century
 
Scaling SlideShare to the World - An Asian Perpective
Scaling SlideShare to the World - An Asian PerpectiveScaling SlideShare to the World - An Asian Perpective
Scaling SlideShare to the World - An Asian Perpective
 
Data science presentation
Data science presentationData science presentation
Data science presentation
 
Steve Knight by Design
Steve Knight by DesignSteve Knight by Design
Steve Knight by Design
 
Odsc machine-learning-guide-v1
Odsc machine-learning-guide-v1Odsc machine-learning-guide-v1
Odsc machine-learning-guide-v1
 
Zarneger "Supporting AI: Best Practices for Content Delivery Platforms"
Zarneger "Supporting AI: Best Practices for Content Delivery Platforms"Zarneger "Supporting AI: Best Practices for Content Delivery Platforms"
Zarneger "Supporting AI: Best Practices for Content Delivery Platforms"
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systems
 
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptx
 
Interview
InterviewInterview
Interview
 
Knowledge Worker 20562
Knowledge Worker 20562Knowledge Worker 20562
Knowledge Worker 20562
 
Career in Data Science (July 2017, DTLA)
Career in Data Science (July 2017, DTLA)Career in Data Science (July 2017, DTLA)
Career in Data Science (July 2017, DTLA)
 
The Python ecosystem for data science - Landscape Overview
The Python ecosystem for data science - Landscape OverviewThe Python ecosystem for data science - Landscape Overview
The Python ecosystem for data science - Landscape Overview
 
Tutorial helsinki 20180313 v1
Tutorial helsinki 20180313 v1Tutorial helsinki 20180313 v1
Tutorial helsinki 20180313 v1
 
Proposed Talk Outline for Pycon2017
Proposed Talk Outline for Pycon2017 Proposed Talk Outline for Pycon2017
Proposed Talk Outline for Pycon2017
 
How to Prepare for a Career in Data Science
How to Prepare for a Career in Data ScienceHow to Prepare for a Career in Data Science
How to Prepare for a Career in Data Science
 

Plus de Paco Nathan

Computable Content
Computable ContentComputable Content
Computable ContentPaco Nathan
 
Computable Content: Lessons Learned
Computable Content: Lessons LearnedComputable Content: Lessons Learned
Computable Content: Lessons LearnedPaco Nathan
 
SF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in PythonSF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in PythonPaco Nathan
 
Use of standards and related issues in predictive analytics
Use of standards and related issues in predictive analyticsUse of standards and related issues in predictive analytics
Use of standards and related issues in predictive analyticsPaco Nathan
 
Data Science in 2016: Moving Up
Data Science in 2016: Moving UpData Science in 2016: Moving Up
Data Science in 2016: Moving UpPaco Nathan
 
Data Science Reinvents Learning?
Data Science Reinvents Learning?Data Science Reinvents Learning?
Data Science Reinvents Learning?Paco Nathan
 
Jupyter for Education: Beyond Gutenberg and Erasmus
Jupyter for Education: Beyond Gutenberg and ErasmusJupyter for Education: Beyond Gutenberg and Erasmus
Jupyter for Education: Beyond Gutenberg and ErasmusPaco Nathan
 
GalvanizeU Seattle: Eleven Almost-Truisms About Data
GalvanizeU Seattle: Eleven Almost-Truisms About DataGalvanizeU Seattle: Eleven Almost-Truisms About Data
GalvanizeU Seattle: Eleven Almost-Truisms About DataPaco Nathan
 
Microservices, containers, and machine learning
Microservices, containers, and machine learningMicroservices, containers, and machine learning
Microservices, containers, and machine learningPaco Nathan
 
GraphX: Graph analytics for insights about developer communities
GraphX: Graph analytics for insights about developer communitiesGraphX: Graph analytics for insights about developer communities
GraphX: Graph analytics for insights about developer communitiesPaco Nathan
 
Graph Analytics in Spark
Graph Analytics in SparkGraph Analytics in Spark
Graph Analytics in SparkPaco Nathan
 
Apache Spark and the Emerging Technology Landscape for Big Data
Apache Spark and the Emerging Technology Landscape for Big DataApache Spark and the Emerging Technology Landscape for Big Data
Apache Spark and the Emerging Technology Landscape for Big DataPaco Nathan
 
QCon São Paulo: Real-Time Analytics with Spark Streaming
QCon São Paulo: Real-Time Analytics with Spark StreamingQCon São Paulo: Real-Time Analytics with Spark Streaming
QCon São Paulo: Real-Time Analytics with Spark StreamingPaco Nathan
 
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and MoreStrata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and MorePaco Nathan
 
A New Year in Data Science: ML Unpaused
A New Year in Data Science: ML UnpausedA New Year in Data Science: ML Unpaused
A New Year in Data Science: ML UnpausedPaco Nathan
 
Microservices, Containers, and Machine Learning
Microservices, Containers, and Machine LearningMicroservices, Containers, and Machine Learning
Microservices, Containers, and Machine LearningPaco Nathan
 
Databricks Meetup @ Los Angeles Apache Spark User Group
Databricks Meetup @ Los Angeles Apache Spark User GroupDatabricks Meetup @ Los Angeles Apache Spark User Group
Databricks Meetup @ Los Angeles Apache Spark User GroupPaco Nathan
 
How Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapeHow Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapePaco Nathan
 
What's new with Apache Spark?
What's new with Apache Spark?What's new with Apache Spark?
What's new with Apache Spark?Paco Nathan
 
How Apache Spark fits in the Big Data landscape
How Apache Spark fits in the Big Data landscapeHow Apache Spark fits in the Big Data landscape
How Apache Spark fits in the Big Data landscapePaco Nathan
 

Plus de Paco Nathan (20)

Computable Content
Computable ContentComputable Content
Computable Content
 
Computable Content: Lessons Learned
Computable Content: Lessons LearnedComputable Content: Lessons Learned
Computable Content: Lessons Learned
 
SF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in PythonSF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in Python
 
Use of standards and related issues in predictive analytics
Use of standards and related issues in predictive analyticsUse of standards and related issues in predictive analytics
Use of standards and related issues in predictive analytics
 
Data Science in 2016: Moving Up
Data Science in 2016: Moving UpData Science in 2016: Moving Up
Data Science in 2016: Moving Up
 
Data Science Reinvents Learning?
Data Science Reinvents Learning?Data Science Reinvents Learning?
Data Science Reinvents Learning?
 
Jupyter for Education: Beyond Gutenberg and Erasmus
Jupyter for Education: Beyond Gutenberg and ErasmusJupyter for Education: Beyond Gutenberg and Erasmus
Jupyter for Education: Beyond Gutenberg and Erasmus
 
GalvanizeU Seattle: Eleven Almost-Truisms About Data
GalvanizeU Seattle: Eleven Almost-Truisms About DataGalvanizeU Seattle: Eleven Almost-Truisms About Data
GalvanizeU Seattle: Eleven Almost-Truisms About Data
 
Microservices, containers, and machine learning
Microservices, containers, and machine learningMicroservices, containers, and machine learning
Microservices, containers, and machine learning
 
GraphX: Graph analytics for insights about developer communities
GraphX: Graph analytics for insights about developer communitiesGraphX: Graph analytics for insights about developer communities
GraphX: Graph analytics for insights about developer communities
 
Graph Analytics in Spark
Graph Analytics in SparkGraph Analytics in Spark
Graph Analytics in Spark
 
Apache Spark and the Emerging Technology Landscape for Big Data
Apache Spark and the Emerging Technology Landscape for Big DataApache Spark and the Emerging Technology Landscape for Big Data
Apache Spark and the Emerging Technology Landscape for Big Data
 
QCon São Paulo: Real-Time Analytics with Spark Streaming
QCon São Paulo: Real-Time Analytics with Spark StreamingQCon São Paulo: Real-Time Analytics with Spark Streaming
QCon São Paulo: Real-Time Analytics with Spark Streaming
 
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and MoreStrata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
 
A New Year in Data Science: ML Unpaused
A New Year in Data Science: ML UnpausedA New Year in Data Science: ML Unpaused
A New Year in Data Science: ML Unpaused
 
Microservices, Containers, and Machine Learning
Microservices, Containers, and Machine LearningMicroservices, Containers, and Machine Learning
Microservices, Containers, and Machine Learning
 
Databricks Meetup @ Los Angeles Apache Spark User Group
Databricks Meetup @ Los Angeles Apache Spark User GroupDatabricks Meetup @ Los Angeles Apache Spark User Group
Databricks Meetup @ Los Angeles Apache Spark User Group
 
How Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapeHow Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscape
 
What's new with Apache Spark?
What's new with Apache Spark?What's new with Apache Spark?
What's new with Apache Spark?
 
How Apache Spark fits in the Big Data landscape
How Apache Spark fits in the Big Data landscapeHow Apache Spark fits in the Big Data landscape
How Apache Spark fits in the Big Data landscape
 

Dernier

"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 

Dernier (20)

"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 

Humans in a loop: Jupyter notebooks as a front-end for AI

  • 1. Humans  in  a  loop:   Jupyter  notebooks  as  a  front-­‐end  for  AI Paco  Nathan    @pacoid   Dir,  Learning  Group  @  O’Reilly  Media   JupyterCon    2017-­‐08-­‐24
  • 2. Framing 2 Imagine  having  a  mostly-­‐automated  system  where  
 people  and  machines  collaborate  together…   May  sound  a  bit  Sci-­‐Fi  –  though  arguably  commonplace.  
 One  challenge  is  whether  we  can  advance  beyond  rote   tasks.     Instead  of  simply  running  code  libraries,  can  machines  
 make  difficult  decisions,  exercise  judgement  in  complex   situations?     Can  we  build  systems  in  which  people  who  aren’t  
 AI  experts  can  “teach”  machines  to  perform  complex  
 work  based  on  examples,  not  code?
  • 3. Research  questions ▪ How  do  we  personalize  learning  experiences,  across  
 ebooks,  videos,  conferences,  computable  content,  live   online  courses,  case  studies,  expert  AMAs,  etc.   ▪ How  do  we  help  experts  —  by  definition,  really  busy   people  —  share  knowledge  with  their  peers  in  industry?   ▪ How  do  we  manage  the  role  of  editors  at  human  scale,  
 while  technology  and  delivery  media  evolve  rapidly?   ▪ How  do  we  help  organizations  learn  and  transform   continuously? 3
  • 4. 4
  • 5. 5 UX  for  content  discovery:   ▪ partly  generated  +  curated  by  humans   ▪ partly  generated  +  curated  by  AI  apps
  • 7. Machine  learning supervised  ML:   ▪ take  a  dataset  where  each  element   has  a  label   ▪ train  models  on  a  portion  of  the   data  to  predict  the  labels,  test  on   the  remainder   ▪ deep  learning  is  a  popular  example,  
 though  only  if  you  have  lots  of   labeled  training  data  available
  • 8. Machine  learning unsupervised  ML:   ▪ run  lots  of  unlabeled  data  through   an  algorithm  to  detect  “structure”   or  embedding   ▪ for  example,  clustering  algorithms   such  as  K-­‐means   ▪ unsupervised  approaches  for  AI  
 are  an  open  research  question
  • 9. Active  learning special  case  of  semi-­‐supervised  ML:   ▪ send  difficult  calls  /  edge  cases  to   experts;  let  algorithms  handle   routine  decisions   ▪ works  well  in  use  cases  which  have   lots  of  inexpensive,  unlabeled  data   ▪ e.g.,  abundance  of  content  to  be   classified,  where  the  cost  of   labeling  is  the  expense
  • 10. Active  learning Real-­‐World  Active  Learning:  Applications  and   Strategies  for  Human-­‐in-­‐the-­‐Loop  Machine  Learning
 radar.oreilly.com/2015/02/human-­‐in-­‐the-­‐loop-­‐ machine-­‐learning.html
 Ted  Cuzzillo
 O’Reilly  Media,  2015-­‐02-­‐05   Develop  a  policy  for  how  human  experts  select  exemplars:   ▪ bias  toward  labels  most  likely  to  influence  the  classifier   ▪ bias  toward  ensemble  disagreement   ▪ bias  toward  denser  regions  of  training  data 10
  • 11. Active  learning Data  preparation  in  the  age  of  deep  learning
 oreilly.com/ideas/data-­‐preparation-­‐in-­‐the-­‐ age-­‐of-­‐deep-­‐learning
 Luke  Biewald    CrowdFlower
 O’Reilly  Data  Show,  2017-­‐05-­‐04   send  human  workers  cases  where  machine  learning   algorithms  signal  uncertainty  (low  probability  scores)     …or  when  your  ensemble  of  ML  algorithms  signals   disagreement 11
  • 12. Design  pattern:  Human-­‐in-­‐the-­‐loop Building  a  business  that  combines  human  experts   and  data  science
 oreilly.com/ideas/building-­‐a-­‐business-­‐that-­‐ combines-­‐human-­‐experts-­‐and-­‐data-­‐science-­‐2
 Eric  Colson    StitchFix
 O’Reilly  Data  Show,  2016-­‐01-­‐28   “what  machines  can’t  do  are  things  around  cognition,
    things  that  have  to  do  with  ambient  information,  or
    appreciation  of  aesthetics,  or  even  the  ability  to
    relate  to  another  human”
 
 12
  • 13. Design  pattern:  Human-­‐in-­‐the-­‐loop Strategies  for  integrating  people  and  machine   learning  in  online  systems
 safaribooksonline.com/library/view/oreilly-­‐ artificial-­‐intelligence/9781491976289/ video311857.html
 Jason  Laska    Clara  Labs
 The  AI  Conf,  2017-­‐06-­‐29   how  to  create  a  two-­‐sided  marketplace  where  machines   and  people  compete  on  a  spectrum  of  relative  expertise   and  capabilities
 
 13
  • 14. Design  pattern:  Human-­‐in-­‐the-­‐loop Building  human-­‐assisted  AI  applications
 oreilly.com/ideas/building-­‐human-­‐ assisted-­‐ai-­‐applications
 Adam  Marcus    B12
 O’Reilly  Data  Show,  2016-­‐08-­‐25   Orchestra:  a  platform  for  building  human-­‐ assisted  AI  applications,  e.g.,  to  create   business  websites
 https://github.com/b12io/orchestra   example  http://www.coloradopicked.com/ 14
  • 15. Design  pattern:  Flash  teams Expert  Crowdsourcing  with  Flash  Teams
 hci.stanford.edu/publications/2014/ flashteams/flashteams-­‐uist2014.pdf
 Daniela  Retelny,  et  al.  
 Stanford  HCI   “A  flash  team  is  a  linked  set  of  modular  tasks  
    that  draw  upon  paid  experts  from  the  crowd,  
    often  three  to  six  at  a  time,  on  demand”   http://stanfordhci.github.io/flash-­‐teams/ 15
  • 16. Weak  supervision  /  Data  programming Creating  large  training  data  sets  quickly
 oreilly.com/ideas/creating-­‐large-­‐training-­‐ data-­‐sets-­‐quickly
 Alex  Ratner    Stanford
 O’Reilly  Data  Show,  2017-­‐06-­‐08   Snorkel:  “weak  supervision”  and  “data   programming”  as  another  instance  of  
 human-­‐in-­‐the-­‐loop
 github.com/HazyResearch/snorkel   conferences.oreilly.com/strata/strata-­‐ny/public/ schedule/detail/61849 16
  • 17. Reinforcement  learning Reinforcement  learning  explained
 oreilly.com/ideas/reinforcement-­‐ learning-­‐explained
 Junling  Hu    AI  Frontiers
 O’Reilly  Radar,  2016-­‐12-­‐08   learning  to  act  based  on  long-­‐term   payoffs   often  as  rewards/punishments  of  an  
 actor  within  a  simulation 17
  • 19. AI  in  Media ▪ content  which  can  represented  as  
 text  can  be  parsed  by  NLP,  then   manipulated  by  available  AI  tooling     ▪ labeled  images  get  really  interesting   ▪ text  or  images  within  a  context  have  
 inherent  structure   ▪ representation  of  that  kind  of  structure   is  rare  in  the  Media  vertical  –  so  far 19
  • 20. {"graf": [[21, "let", "let", "VB", 1, 48], [0, "'s", "'s", "PRP", 0, 49], "take", "take", "VB", 1, 50], [0, "a", "a", "DT", 0, 51], [23, "look", "l "NN", 1, 52], [0, "at", "at", "IN", 0, 53], [0, "a", "a", "DT", 0, 54], [ "few", "few", "JJ", 1, 55], [25, "examples", "example", "NNS", 1, 56], [0 "often", "often", "RB", 0, 57], [0, "when", "when", "WRB", 0, 58], [11, "people", "people", "NNS", 1, 59], [2, "are", "be", "VBP", 1, 60], [26, " "first", "JJ", 1, 61], [27, "learning", "learn", "VBG", 1, 62], [0, "abou "about", "IN", 0, 63], [28, "Docker", "docker", "NNP", 1, 64], [0, "they" "they", "PRP", 0, 65], [29, "try", "try", "VBP", 1, 66], [0, "and", "and" 0, 67], [30, "put", "put", "VBP", 1, 68], [0, "it", "it", "PRP", 0, 69], "in", "in", "IN", 0, 70], [0, "one", "one", "CD", 0, 71], [0, "of", "of", 0, 72], [0, "a", "a", "DT", 0, 73], [24, "few", "few", "JJ", 1, 74], [31, "existing", "existing", "JJ", 1, 75], [18, "categories", "category", "NNS 76], [0, "sometimes", "sometimes", "RB", 0, 77], [11, "people", "people", 1, 78], [9, "think", "think", "VBP", 1, 79], [0, "it", "it", "PRP", 0, 80 "'s", "be", "VBZ", 1, 81], [0, "a", "a", "DT", 0, 82], [32, "virtualizati "virtualization", "NN", 1, 83], [19, "tool", "tool", "NN", 1, 84], [0, "l "like", "IN", 0, 85], [33, "VMware", "vmware", "NNP", 1, 86], [0, "or", " "CC", 0, 87], [34, "virtualbox", "virtualbox", "NNP", 1, 88], [0, "also", "also", "RB", 0, 89], [35, "known", "know", "VBN", 1, 90], [0, "as", "as" 0, 91], [0, "a", "a", "DT", 0, 92], [36, "hypervisor", "hypervisor", "NN" 93], [0, "these", "these", "DT", 0, 94], [2, "are", "be", "VBP", 1, 95], "tools", "tool", "NNS", 1, 96], [0, "which", "which", "WDT", 0, 97], [2, "be", "VBP", 1, 98], [37, "emulating", "emulate", "VBG", 1, 99], [38, "hardware", "hardware", "NN", 1, 100], [0, "for", "for", "IN", 0, 101], [ "virtual", "virtual", "JJ", 1, 102], [40, "software", "software", "NN", 1 103]], "id": "001.video197359", "sha1": "4b69cf60f0497887e3776619b922514f2e5b70a8"} AI  in  Media 20 {"count": 2, "ids": [32, 19], "pos": "np", "rank": 0.0194, "text": "virtualization tool"} {"count": 2, "ids": [40, 69], "pos": "np", "rank": 0.0117, "text": "software applications"} {"count": 4, "ids": [38], "pos": "np", "rank": 0.0114, "text": "hardware"} {"count": 2, "ids": [33, 36], "pos": "np", "rank": 0.0099, "text": "vmware hypervisor"} {"count": 4, "ids": [28], "pos": "np", "rank": 0.0096, "text": "docker"} {"count": 4, "ids": [34], "pos": "np", "rank": 0.0094, "text": "virtualbox"} {"count": 10, "ids": [11], "pos": "np", "rank": 0.0049, "text": "people"} {"count": 4, "ids": [37], "pos": "vbg", "rank": 0.0026, "text": "emulating"} {"count": 2, "ids": [27], "pos": "vbg", "rank": 0.0016, "text": "learning"} Transcript: let's take a look at a few examples often when people are first learning about Docker they try and put it in one of a few existing categories sometimes people think it's a virtualization tool like VMware or virtualbox also known as a hypervisor these are tools which are emulating hardware for virtual software Confidence: 0.973419129848 39 KUBERNETES 0.8747 coreos 0.8624 etcd 0.8478 DOCKER CONTAINERS 0.8458 mesos 0.8406 DOCKER 0.8354 DOCKER CONTAINER 0.8260 KUBERNETES CLUSTER 0.8258 docker image 0.8252 EC2 0.8210 docker hub 0.8138 OPENSTACK orm:Docker a orm:Vendor; a orm:Container; a orm:Open_Source; a orm:Commercial_Software; owl:sameAs dbr:Docker_%28software%29; skos:prefLabel "Docker"@en;
  • 21. Which  parts  do  people  or  machines  do  best? 21 team  goal:  maintain  structural  correspondence  between  the  layers   big  win  for  AI:  inferences  across  the  graph human  scale   primary  structure   control  points   testability machine  generated  data  products   ~80%  of  the  graph
  • 22. Ontology ▪ provides  context  which  Deep  Learning  lacks   ▪ aka,  “knowledge  graph”  –  a  computable  thesaurus   ▪ maps  the  semantics  of  business  relationships   ▪ S/V/O:  “nouns”,  some  “verbs”,  a  few  “adjectives”   ▪ difficult  work,  a  relatively  expensive  investment,   potentially  high  ROI   ▪ conversational  interfaces  (e.g.,  Google  Assistant)   improve  UX  by  importing  ontologies 22
  • 25. Disambiguating  contexts Overlapping  contexts  pose  hard  problems  in  natural  language  understanding.   Not  much  available  tooling.  Counter  to  the  correlation  emphasis  of  big  data.
  • 26. Disambiguating  contexts 26 Suppose  someone  publishes  a  book  which  uses  the  term   `IOS`:  are  they  talking  about  an  operating  system  for  an   Apple  iPhone,  or  about  an  operating  system  for  a  Cisco   router?     We  handle  lots  of  content  about  both.  Disambiguating  those   contexts  is  important  for  good  UX  in  personalized  learning.   In  other  words,  how  do  machines  help  people  
 distinguish  that  content  within  search?   Potentially  a  good  case  for  deep  learning,  
 except  for  the  lack  of  labeled  data  at  scale.
  • 27. Disambiguation  in  content  discovery 27 Consider  searching  for  the  term  `react`  on  Google.  
 The  first  page  of  results:   ▪ acting  coaches   ▪ video  games   ▪ student  engagement   ▪ children’s  charities   ▪ UI  web  components   ▪ surveys
  • 28. Active  learning  through  Jupyter 28 Jupyter  notebooks  are  used  to  manage  ML  
 pipelines  for  disambiguation,  where  machines  
 and  people  collaborate:   ▪ notebooks  as  one  part  configuration  file,  
 one  part  data  sample,  one  part  structured  log,  
 one  part  data  visualization  tool   ▪ ML  based  on  examples,  not  feature  engineering,   model  parameters,  etc.
  • 29. Active  learning  through  Jupyter 1. Experts  use  notebooks  to  provide  examples  of  book  chapters,  video   segments,  etc.,  for  each  key  phrase  that  has  overlapping  contexts   2. Machines  build  ensemble  ML  models  based  on  those  examples,   updating  notebooks  with  model  evaluation   3. Machines  attempt  to  annotate  labels  for  millions  of  pieces  of  content,  
 e.g.,  `AlphaGo`,  `Golang`,  versus  a  mundane  use  of  the  verb  `go`   4. Disambiguation  can  run  mostly  automated,  in  parallel  at  scale  –  
 through  integration  with  Apache  Spark   5. In  cases  where  ensembles  disagree,  ML  pipelines  defer  to  human   experts  who  make  judgement  calls,  providing  further  examples   6. New  examples  go  into  training  ML  pipelines  to  build  better  models   7. Rinse,  lather,  repeat
  • 30. Active  learning  through  Jupyter 30 ML#Pipelines Jupyter#kernel Browser SSH#tunnel
  • 31. Active  learning  through  Jupyter ▪ Jupyter  notebooks  allow  human  experts  to  access  the   internals  of  a  mostly  automated  ML  pipeline,  rapidly   ▪ Stated  another  way,  both  the  machines  and  the  people   become  collaborators  on  shared  documents   ▪ Anticipates  upcoming  collaborative  document  features   in  JupyterLab
  • 32. Active  learning  through  Jupyter 32 Open  source  nbtransom  package:   ▪ https://github.com/ceteri/nbtransom   ▪ https://pypi.python.org/pypi/nbtransom   ▪ based  on  use  of  nbformat  and  pandas     ▪ notebook  as  both  Py  data  store  and  analytics   ▪ custom  “pretty-­‐print”  helps  with  use  of  Git  for   diffs,  commits,  etc.
  • 33. Nuances ▪ No  Free  Lunch  theorem:  it’s  better  to  err  on  the  side  of  
 less  false  positives  /  more  false  negatives  for  this  use  case   ▪ Bias  toward  exemplars  most  likely  to  influence  the  classifier   ▪ Potentially,  the  “experts”  may  be  Customer  Service  staff  who   review  edge  cases  within  search  results  or  recommended   content  –  as  an  integral  part  of  our  UI  –  then  re-­‐train  the  
 ML  pipelines  through  examples  
  • 34. Summary:   people  and  machines  at  work 34
  • 35. Human-­‐in-­‐the-­‐loop  as  management  strategy personal  op-­‐ed:  the  “game”  isn’t  to  replace  people   –  instead  it’s  about  leveraging  AI  to  augment  staff,  
 so  organizations  can  retain  people  with  valuable   domain  expertise,  making  their  contributions  and   expertise  even  more  vital
  • 36. Why  we’ll  never  run  out  of  jobs 36
  • 37. Acknowledgements 37 Many  thanks  to  people  who’ve  helped  with  this  work:   ▪ Taylor  Martin   ▪ Eszti  Schoell   ▪ Fernando  Perez   ▪ Andrew  Odewahn   ▪ Scott  Murray   ▪ John  Allwine   ▪ Pascal  Honscher  
  • 38. Strata  Data   NY,  Sep  25-­‐28
 SG,  Dec  4-­‐7
 SJ,  Mar  5-­‐8,  2018
 UK,  May  21-­‐24,  2018   The  AI  Conf   SF,  Sep  17-­‐20
 NY,  Apr  29-­‐May  2,  2018   OSCON  (returns  to  Portland!)   PDX,  Jul  16-­‐19,  2018 38
  • 39. 39 Get  Started  with   NLP  in  Python Just  Enough  Math Building  Data   Science  Teams Hylbert-­‐Speys How  Do  You  Learn? updates,  reviews,  conference  summaries…   liber118.com/pxn/
 @pacoid