SlideShare une entreprise Scribd logo
1  sur  195
최윤섭 디지털헬스케어 연구소
소장 최윤섭, PhD
Global Trends of Digital Healthcare Industry
The first half of 2017
The Convergence of IT, BT and Medicine
http://www.yoonsupchoi.com
Disclaimer: Conflict of Interest
Digital Healthcare Partners (DHP) 는
국내 유일의 디지털 헬스케어 전문 스타트업 엑셀러레이터입니다.
글로벌 한국
일반
의료/
헬스케어
DHP는 디지털 헬스케어 전문 엑셀러레이터로서, 

디지털 헬스케어/의료 스타트업을 발굴, 육성, 연결하고 투자합니다.
발굴 • 세상을 바꿀 수 있는 혁신적인 헬스케어 스타트업 및 예비 창업팀을 발굴합니다.
• 발굴을 위해 DHP Office Hour, 해커톤, 자체 행사 개최 등의 다방면의 채널을 활용합니다.
육성 • 의료/헬스케어 전문가들로 이루어진 파트너 및 자문가들이 초기 스타트업을 멘토링합니다.
• 사업 개발, 아이템 검증, 임상 연구, 인허가 관련 자문 등 전방위적으로 지원합니다.
투자 • 초기 스타트업 및 예비 창업팀에게 정해진 원칙에 따라 지분 투자를 집행합니다.
• 스타트업을 성장시켜 지분 가치의 상승에 따라서 재무적 수익을 추구합니다.
연결 • 초기 스타트업을 병원, 규제기관, 보험사, VC, 대학 등 다양한 이해관계자들과 연결합니다.
• 파트너와 자문가들의 네트워크를 적극 활용하여 스타트업을 의료계 이너서클로 끌어들입니다.
DHP는 최고의 의료 전문가들이 초기 헬스케어 스타트업에
의학 자문, 의료 기관 연계, 임상 검증, 투자 유치 등을 지원합니다.
최윤섭 대표파트너 정지훈 파트너 김치원 파트너
• 성균관대학교 디지털헬스학과 교수
• 최윤섭 디지털 헬스케어 연구소 소장
• VUNO, Zikto, 녹십자홀딩스 등 자문
• 저서: ‘헬스케어 이노베이션’
• 전) 서울대학교 의과대학 암연구소 교수
• 전) 서울대학교병원 의생명연구원 교수
• 포항공대 전산생물학 이학박사
• 포항공대 컴퓨터공학/생명과학 학사
• 경희사이버대학 미디어커뮤니케이션학과 교수
• 빅뱅엔젤스 파트너
• Lunit, 매직에코, 휴레이포지티브 등 자문
• 저서: ‘제 4의 불', ‘거의 모든 IT의 역사’ 등
• 전) 명지병원 IT융합연구소장
• 한양대학교 의과대학 의학사
• 서울대학교 보건정책관리학 석사
• USC 의공학박사
• 내과전문의, 서울와이즈요양병원 원장
• 성균관대학교 디지털 헬스학과 교수
• Noom, Zikto, Future Play 등 자문
• 저서: ‘의료, 미래를 만나다’
• 전) 맥킨지 서울사무소 경영컨설턴트
• 전) 삼성서울병원 의료관리학과 교수
• 서울대학교 의과대학 졸업
• 연세대학교 보건대학원 석사
많은 언론들에서 디지털 헬스케어 파트너스를 주목해주셨습니다.
DHP는 유전체 분석 기반의 희귀질환 진단 서비스를 개발하는
3billion에 시드 투자 및 엑셀러레이션을 시작하였습니다.
• 마크로젠의 유전체 분석 전문가들이 2016년 11월 스핀오프
• 대표 이사 금창원은 유전체 분석 전문가이자 연쇄 창업가
• 유전체 분석으로 4,000여개 희귀 유전 질환을 한 번에 진단
• 해외 시장 타겟, 2,000불의 비용으로 2-3주 내 진단
• 2017년 2월 시제품 출시
• http://3billion.io
Contents
• 2017 1Q 미국 VC 투자 동향
• ‘Liquid Biopsy’: Illumina and Grail
• 23andMe의 DTC 서비스 FDA 인허가 확대
• IBM Watson for Oncology 도입 광풍(?)
• 의사를 능가하는 Deep Learning 연구 결과들
• 의학적 효용을 증명한 헬스케어 스타트업의 증가
2017 1Q 미국 VC 투자 동향
http://rockhealth.com/2015/01/digital-health-funding-tops-4-1b-2014-year-review/
https://rockhealth.com/reports/2016-year-end-funding-report-a-reality-check-for-digital-health
•2016년 디지털 헬스케어 스타트업 펀딩 규모는 $4.2b 으로 전년도에 비해서 8% 감소
•반면 투자를 받은 기업의 수는 273개에서 296개로 약 10% 증가
•총 451개 VC 및 CVC가 투자를 집행
•그 중 237개는 디지털 헬스케어 기업에 '처음' 투자한 곳 (화이자 포함)
https://rockhealth.com/reports/2016-year-end-funding-report-a-reality-check-for-digital-health
• The six largest deals of 2016 made up 19% of all digital health funding.
• Despite laying off 15% of its global workforce, Jawbone raised $165M in 2016.
• The most funded digital health company of all time at nearly a billion dollars
•펀딩을 가장 많이 받은 분야는 Genomics and Sequencing 분야
•Human Longevity ($220M), Color Genomics ($45M), Seven Bridges Genomics ($45M)
•Pathway Genomics ($40M), Emulate ($28M)
https://rockhealth.com/reports/2016-year-end-funding-report-a-reality-check-for-digital-health
https://rockhealth.com/reports/digital-health-funding-2015-year-in-review/
•총 451개 VC 및 CVC가 투자를 집행
•3개 이상의 deal 을 한 곳은 40개 투자자
•총 투자자 중 1/3 정도는 ‘하나의’ deal 만 진행
•237개는 디지털 헬스케어 기업에 '처음' 투자한 곳 (화이자 포함)
https://rockhealth.com/reports/2016-year-end-funding-report-a-reality-check-for-digital-health
•최근 3년 동안 Merk, J&J, GSK 등의 제약사들의 디지털 헬스케어 분야 투자 급증
•2015-2016년 총 22건의 deal (=2010-2014년의 5년간 투자 건수와 동일)
•Merck 가 가장 활발: 2009년부터 Global Health Innovation Fund 를 통해 24건 투자 ($5-7M)
•GSK 의 경우 2014년부터 6건 (via VC arm, SR One): including Propeller Health
•Grail: cancer diagnostic spin-off from Illumina (Liquid biopsy)
•$900m Series B, in March 2017
•가장 많은 제약사가 참여한 투자: J&J, Merck, Bristol-Myers-Squibb
•2017 1Q에 총 71건의 deal; $1B funding 으로 strong start
•트럼프 정부의 의료 및 규제 정책의 불확실성이 리스크로 보였으나, 크게 영향을 미치지는 않은 것으로 보임
•Rock Health의 경우,
•Digital Healthcare 분야의 정의가 보수적 (ie. 진단회사인 Grail은 누락)
•미국 내의 $20m 이상의 deal 만을 조사
•Startup Health의 분석
•Digital Healthcare 분야의 정의가 더 넓고 (Grail 포함), $20m 이하의 deal 도 포함
•총 124 deal 에 $2.5B 가 투자
•2011년 이후 1분기 투자 횟수는 최하이지만,
•개별 deal의 규모는 상승: $500m-900m
startuphealth.com/reports
2010 2011 2012 2013 2014 2015 2016 2017
YTD
Q1 Q2 Q3 Q4
158
300
499
668
589
526
606
124
Deal Count
$1.1B
$2.0B
$1.5B
$629M$572M$391M$192M
$8.2B
$6.0B
$7.1B
$2.9B
$2.4B
$2.0B
$1.1B
DIGITAL HEALTH FUNDING SNAPSHOT: YEAR OVER YEAR
5Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data on seed, venture, corporate venture and private equity funding only. © 2017 StartUp Health LLC
$2.5B
$2.5B
GRAIL’s $914 million Series B may be an outlier and skewed the overall funding numbers this quarter keeping it on track
for another strong year overall, and turning an otherwise modest first quarter into a record-breaker.
While Q1 2017 had the lowest deal volume since 2011 -
with only 124 deals this quarter - we’re seeing more and
more $500-900M deals. What do less deals and more
money mean? Even though VCs are betting less, they’re
betting bigger. Also, the lines are blurring quickly as
expected between “digital” and all other categories of
health and healthcare.
“AI, virtual reality, mobile connectivity,
genomics, and analytics are coming to
change healthcare, and that is creating a
wave of innovation like we’ve never seen.”
-Unity Stoakes, President, StartUp Health
•Grail 이 $900M Series B funding으로 압도적인 1위
•이외에 상위권은 Rock Health - Startup Health 가 거의 비슷
•Alignment Healthcare: Population Health Management (병원, 보험사 대상)
•PatientsLikeMe: Patients Community (제약회사 대상)
•Nuna: Big Data Analytics (정부, 보험사 대상)
startuphealth.com/reports
Company $ Invested Subsector Notable Investor
1 $914M Big Data/Analytics
2 $115M Population Health
3 $100M Patient/Consumer Experience
4 $90M Big Data/Analytics
5 $85M EHR
6 $65M Research
7 $55M E-Commerce
8 $52M Population Health
9 $50M Medical Device
10 $41M Research
THE TOP 10 LARGEST DEALS OF 2017
8Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data on seed, venture, corporate venture and private equity funding only. © 2017 StartUp Health LLC
The top 10 deals of Q1 2017 included companies working in sectors in which big deals have been rare. What does this
suggest? 2017 might be a breakout year in terms of funding for solutions focusing on population health, EHR innovation, and
e-commerce.
‘Liquid Biopsy’, and Grail
Tumor Heterogeneity
Meric-Bernstam F, Mills GB. Nat Rev Clin Oncol. 2012 Sep;9(9):542-8.
in the understanding of tumour heterogeneity; second,
the role of surgery as a therapeutic modality in the era of
targeted therapy; third, the use of personalized therapy
in the perioperative period and, finally, the possibilities
of personalization of surgical procedures according to
lung cancer subtypes.
VATS lobectomy showed that intraoperative blood loss
was significantly reduced in the VATS group compared
with open lobectomy in nine studies; however, no differ-
ence was observed in five studies and the values were not
reported in seven studies.12
Hospital stay was also signifi-
cantly shorter in VATS group in five studies. Park et al.,13
Heterogeneity in patients
with adenocarcinoma
of the lung according
to driver oncogenes
Heterogeneity within
patients with
EGFR mutation
Heterogeneity in
resistance mechanisms
in one patient
HER2
3%
EGFR
~40% in Asians
~15% in Caucasians
ALK
~5%
KRAS
~15% in Asians
~30% in Caucasians
RET
~1%
ROS1
~1%
BRAF
~1%
PIK3CA
~1%
NRAS
~1%
MET
<5%
Others?
Exon 19del
~50%
L858R
~40%
Sensitive
Inherent resistance
CRKL
~3%
BIM
20–40%
IκB
~30%
Inherent T790M
~2% by sequencing
~30% by sensitive
method
Further
heterogeneity
EGFR-TKI
Drug X
T790M
MET
a cb
T790M
Heterogeneity in patients
with adenocarcinoma
of the lung according
to driver oncogenes
Heterogeneity within
patients with
EGFR mutation
Heterogeneity
resistance mecha
in one patien
HER2
3%
EGFR
~40% in Asians
~15% in Caucasians
ALK
~5%
KRAS
~15% in Asians
~30% in Caucasians
RET
~1%
ROS1
~1%
BRAF
~1%
PIK3CA
~1%
NRAS
~1%
MET
<5%
Others?
Exon 19del
~50%
L858R
~40%
Sensitive
Inherent resistance
CRKL
~3%
BIM
20–40%
IκB
~30%
Inherent T790M
~2% by sequencing
~30% by sensitive
method
Further
heterogeneity
EGFR-TKI
Drug
T790M
ME
a cb
T790M
Figure 1 | Various classes of tumour heterogeneity in adenocarcinoma of the lung. a | Heterogeneity in patients with
adenocarcinoma of the lung according to driver oncogenes that are crucial for selecting targeted drugs for treatment.2,76
Number of people reflects approximate incidence.2,76
b | Heterogeneity in patients with EGFR mutations, resulting in
MitsudomiT, Suda K,YatabeY. Nat Rev Clin Oncol. 2013 Apr;10(4):235-44.
Heterogeneity in Lung Adenocarcinoma
Tumor Heterogeneity
Meric-Bernstam F, Mills GB. Nat Rev Clin Oncol. 2012 Sep;9(9):542-8.
Intratumor Heterogeneity Revealed by multiregion Sequencing
B Regional Distribution of Mutations
C Phylogenetic Relationships of Tumor Regions D Ploidy Profiling
A Biopsy Sites
R2 R4
R9 R8
R5
R1
R3
R2
PreP
PreM
R1
R2
R3
R5
R8
R9
R4
M1
M2a
M2b
C2orf85
WDR7
SUPT6H
CDH19
LAMA3
DIXDC1
HPS5
NRAP
KIAA1524
SETD2
PLCL1
BCL11A
IFNAR1
DAMTS10
C3
KIAA1267
RT4
CD44
ANKRD26
TM7SF4
SLC2A1
DACH2
MMAB
ZNF521
HMG20A
DNMT3A
RLF
MAMLD1
MAP3K6
HDAC6
PHF21B
FAM129B
RPS8
CIB2
RAB27A
SLC2A12
DUSP12
ADAMTSL4
NAP1L3
USP51
KDM5C
SBF1
TOM1
MYH8
WDR24
ITIH5
AKAP9
FBXO1
LIAS
TNIK
SETD2
C3orf20
MR1
PIAS3
DIO1
ERCC5
KL
ALKBH8
DAPK1
DDX58
SPATA21
ZNF493
NGEF
DIRAS3
LATS2
ITGB3
FLNA
SATL1
KDM5C
KDM5C
RBFOX2
NPHS1
SOX9
CENPN
PSMD7
RIMBP2
GALNT11
ABHD11
UGT2A1
MTOR
PPP6R2
ZNF780A
WSCD2
CDKN1B
PPFIA1
TH
SSNA1
CASP2
PLRG1
SETD2
CCBL2
SESN2
MAGEB16
NLRP7
IGLON5
KLK4
WDR62
KIAA0355
CYP4F3
AKAP8
ZNF519
DDX52
ZC3H18
TCF12
NUSAP1
X4
KDM2B
MRPL51
C11orf68
ANO5
EIF4G2
MSRB2
RALGDS
EXT1
ZC3HC1
PTPRZ1
INTS1
CCR6
DOPEY1
ATXN1
WHSC1
CLCN2
SSR3
KLHL18
SGOL1
VHL
C2orf21
ALS2CR12
PLB1
FCAMR
IFI16
BCAS2
IL12RB2
PrivateUbiquitous Shared primary Shared metastasis
Ubiquitous
Lung
metastases
Chest-wall
metastasis
Perinephric
metastasis
M1
10 cm
R7 (G4)
R5 (G4)
R9
R3 (G4)
R1 (G3) R2 (G3)
R4 (G1)
R6 (G1)
Hilum
R8 (G4)
Primary
tumor
Shared primary
Shared metastasis
M2b
M2a
Intratumor Heterogeneity Revealed
by Multiregion Sequencing
Gerlinger M et al. N Engl J Med. 2012 Mar 8;366(10):883-92
Nat Genet. 2014 Feb 26;46(3):214-5.
Intratumoral heterogeneity in kidney cancer
Nat Genet. 2014 Mar;46(3):225-33.
E S
226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G
Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat map
indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p
driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutation
tumor. An asterisk indicates where VHL methylation was included in the analysis.
226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G
Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat ma
indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p
driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutatio
tumor. An asterisk indicates where VHL methylation was included in the analysis.
Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat map
indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p
driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutation
tumor. An asterisk indicates where VHL methylation was included in the analysis.
226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G
Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat ma
indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p
driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutatio
tumor. An asterisk indicates where VHL methylation was included in the analysis.
226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE
Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat m
indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2
driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutati
tumor. An asterisk indicates where VHL methylation was included in the analysis.
Regional distribution of nonsynonymous mutations
in ten ccRCC tumors
Heat maps indicate the presence of a mutation (yellow) or its absence (blue) in each region.
Category 1 high-confidence driver mutations and category 2 probable driver mutations are highlighted in magenta.
E S
226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G
Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat map
indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p
driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutation
tumor. An asterisk indicates where VHL methylation was included in the analysis.
226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G
Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat ma
indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p
driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutatio
tumor. An asterisk indicates where VHL methylation was included in the analysis.
Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat map
indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p
driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutation
tumor. An asterisk indicates where VHL methylation was included in the analysis.
226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G
Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat ma
indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p
driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutatio
tumor. An asterisk indicates where VHL methylation was included in the analysis.
226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE
Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat m
indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2
driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutati
tumor. An asterisk indicates where VHL methylation was included in the analysis.
Regional distribution of nonsynonymous mutations
in ten ccRCC tumors
Heat maps indicate the presence of a mutation (yellow) or its absence (blue) in each region.
Category 1 high-confidence driver mutations and category 2 probable driver mutations are highlighted in magenta.
Nat Genet. 2014 Mar;46(3):225-33.
A RT I C L E S
We determined the regional distribution
f nonsynonymous mutations on the basis of
ata from ultra-deep amplicon sequencing.
We called a mutation as being present in a
umor region if a nucleotide substitution was
etected in 0.5% of reads or an indel was
etected in 1% of reads. We chose these
hresholds on the basis of the error rate of
he sequencing platform13. The regional
istribution of 28 mutations for which
ltra-deep sequencing data were not avail-
ble was inferred from the exome sequenc-
ng data. Exome sequencing of EV001 and
EV002 has previously been reported2 and was
ncluded in this analysis. On average, 67%
range of 28–92%) of the nonsynonymous
omatic mutations were heterogeneous and
ot detectable across all sampled regions of
n individual tumor (Fig. 1). The presence
f somatic mutational heterogeneity in all
10/10) treatment-naive or pretreated cases indicates that ITH, char-
cterized by the spatial separation of subclones, is a common feature
n stage T2–T4 ccRCCs.
To identify the optimal number of biopsies that can reliably detect
he majority of nonsynonymous somatic mutations in a tumor, we
alculated the number of mutations that would have been detected
heterogeneity specifically in EV003 and EV006. No other clinical or
pathological characteristic seemed to correlate with mutational ITH,
and larger series will be required to determine the biological basis for
the diversity in ccRCC phylogenetic structures.
Identification of intraregional subclones
R4b
GL
VHL
SETD2
SETD2
KDM5C
MTOR
R8
KDM5C
R4a
R5
R3
R2
R1
R9
M1
M2a
M2b
SETD2
EV001 EV003
R6 R7
R1
R5
GL
R9
VHL
(methylation)
PBRM1
EV005
R6dom
R7
R1R5
R3
R4, R6min
R2
GL
VHL
PBRM1
PIK3CA
PIK3CA
SF3B1
EV006 EV007 RMH002
R6
R7
R1
R2
R3
PBRM1
BAP1
TP53
RMH004
R8
R10
R2
GL
VT
R4
VHL
PBRM1
ATM
PTEN
SMARCA4
R3
MSH6
PBRM1
ARID1A
RMH008
R4min
R5, R7
R6min
R8
GL
R1
R2
R3
VHL
BAP1 TSC2
BAP1 BAP1
R6dom
R4dom
RK26
PBRM1
TP53 BAP1
R3, R4
R11
R9
GL
R1
R2
VHL
R5min
R10
R7
R5dom
R8
R6
10 non
synonymous
mutations
Trunk
Internal branch
Terminal branch
EV002
R7
R1
R3
R6
GL
R9
VHL
PBRM1
SETD2
TP53
R4
M
PTEN
PTEN
SETD2
R3
GL
GL GL
R4 R7
VHL
VHL
VHL
LN1a, LN1b
R2R6
R1
R1
R15
R9min
R9dom
R3min
BAP1
SETD2
R5,R7
R2, R3dom
R6
PIK3CA
SETD2
TP53
R4
R3R4
R2
igure 3 Phylogenetic trees generated by
maximum parsimony from M-seq data for ten
cRCC tumors. Trees for EV001 and EV002
re adapted from Gerlinger et al.2. Branch
nd trunk lengths are proportional to the
umber of nonsynonymous mutations acquired
n the corresponding branch or trunk. Driver
mutations were acquired by the indicated
enes in the branches the arrows indicate.
river mutations defining parallel evolution
vents are highlighted by color. Trees are
ooted at the germline (GL) DNA sequence,
etermined by exome sequencing of DNA from
eripheral blood.
Phylogenetic trees generated for ten ccRCC tumors
Mutational processes change during tumor evolution
ccRCCs can traverse different evolutionary routes simultaneously
Br J Cancer. 2010 Oct 12;103(8):1139-43.
resistance develops. A further obstacle for the interpretation of
large-scale somatic mutation analyses is that fitness effects of the
vast majority of mutations are unknown. The RNA interference-
based functional genomic screening approaches can experimen-
tally test the phenotypic effect of silencing large numbers of genes
individually and may support the interpretation of mutation
data sets by identifying genes that influence cellular fitness or drug
sensitivity.
cells in vitro (Duesberg et al
recurrence after drug treatmen
2010). The clinically importan
geneity could accelerate evolu
enhance biological fitness to
pressures could in turn favour t
unstable cancer cells by can
advantages conferred by genom
must be balanced against the s
result from the generation o
deleterious mutations or tumou
chromosomal instability in anim
Importantly, evolutionary mod
instability can be positively selec
advantage in environments
(e.g. during chemotherapy) in
cycle arrest after DNA damage
cells that are negatively selected
cell cycle arrest and have a lower
Wodarz, 2003).
Thus, it is conceivable that the
instability required to accelerate
of cancers and that excessive
tumour. Results from animal tu
excessive chromosomal instabili
role leads to the tantalising prop
genome instability provides
intervention (Weaver et al, 2007
EVIDENCE FOR DRUG RE
EVOLUTION
The harsh clinical reality is th
almost invariably occurs in adva
leading to disease progression an
examples highlight how Darwi
tumoural genetic heterogeneity
pressure of systemic cancer t
resistance from a Darwinian
Genetic heterogeneity
Time
Bottleneck
Drug treatment
Cancercellpopulation
Figure 1 Schematic view of tumour heterogeneity during tumour
progression and treatment. Acquired mutations in daughter cells of a single
founder cell (left) promote diversion into subclones (different colours
reflect different clones). Some new mutations lead to accelerated growth
(for example yellow and orange clones). Fitness reducing mutations lead
to negative selection (cells with brown cytoplasm). Drug treatment leads to
selective survival of a drug resistant clone (pink) and generates an
evolutionary bottleneck that reduces genetic heterogeneity transiently.
Heterogeneity is re-established rapidly through acquisition of mutations
by daughter cells of the resistant clone.
Darwinian evolution of tumor elucidate clonal heterogeneity
• Acquired mutations in daughter cells of a single founder cell (left) promote diversion into subclones
• Drug treatment leads to selective survival of a drug resistant clone (pink) and generates an evolutionary bottleneck
that reduces genetic heterogeneity transiently.
• Heterogeneity is re-established rapidly through acquisition of mutations by daughter cells of the resistant clone.
P E R S P E C T I V E
Fig. 1. A trunk-branch model of intratumor heterogeneity. (A) The development of intratumor heterogeneity is analogous to a growing tree. The
trunk harbors the founding ubiquitous driver mutations of a cancer present in every tumor subclone and region. The sprouting branches represent
different geographically separated regions of the tumor or subclones present within single biopsies that carry heterogeneous mutations that are
not present in every tumor cell or tumor region. Such mutations may distinguish the biological behavior of subclones and harbor the potential to
become driver mutations under distinct selection pressures. Ubiquitous genetic events present in the trunk may provide more tractable biomarkers
and therapeutic targets than heterogeneous events in the branches. We describe three levels of complexity: level 1, the trunk carries driver events,
whereas the branches carry neutral mutations; level 2, the trunk carries driver events, whereas the branches carry neutral or additional driver events
that may harbor convergent phenotypes (for example, distinct mutations in SETD2 or PTEN occur in different regions of the same renal cancer and
converge on the same pathway resulting in its inactivation) (4); level 3, level 1, and level 2 events plus neutral mutations in the branches (or trunk) that
become driver events under selection pressures (11, 17–20). With level 1 complexity, one biomarker can be developed against one target; with level
2 and 3 complexity, a single biomarker is unlikely to be sufficient. The risk of drug resistance may increase with each level of complexity. (B) Clonal ar-
chitecture as a biomarker.The polygenic nature of drug resistance and intratumor heterogeneity may exacerbate difficulties in predicting therapeutic
outcome. Consideration of tumor growth within a Darwinian evolutionary tree framework may support the identification of new predictive biomark-
Level 1
complexity
Level 2
complexity
Level 3
complexity
Clonal architecture
as a biomarker
A BTrunk-branch
hypothesis
onApril4,2012stm.sciencemag.org
A trunk-branch model of intratumor heterogeneity
• The trunk harbors the founding ubiquitous driver mutations of a cancer present in every tumor subclone and region.
• The sprouting branches represent different geographically separated regions of the tumor or subclones present within
single biopsies that carry heterogeneous mutations that are not present in every tumor cell or tumor region.
Sci Transl Med. 2012 Mar 28;4(127):127
biopsy
Release and extraction of cfDNA from the blood
•cfDNA 는 건강한 세포가 사멸할 때뿐만 아니라, 암 세포가 사멸할 때도 혈액 속으로 나온다.
•Liquid biopsy (액체 생검)
•혈액 속에서 cfDNA를 추출하여 암세포에서 나온 DNA를 detection 하고 분석
•암의 재발 유무 조기 발견, 항암제의 약효 파악, 암 세포의 유전 변이 파악 등에 활용
http://www.nature.com/nrclinonc/journal/v10/n8/full/nrclinonc.2013.110.html
http://www.nature.com/nrclinonc/journal/v10/n8/full/nrclinonc.2013.110.html
Monitoring tumour-specific aberrations to detect
recurrence and resistance
•a. 암이 수술 이후에 조기 재발했는지에 대한 모니터링
•b. 표적 항암제 투여 이후에 내성이 있는 새로운 암세포(clone)가 자라는지 검사
•Red: 새로운 clone 이 생성하여 재발
•blue: 기저에 줄어들었던 원래 clone이 새로운 mutation 을 얻어서 재발
Importantly, the data provided by these
tests indicate that these genotypes are
not common in the plasma of individuals
that are presumably cancer-free (Thress
et al., 2015). It is worth noting that tu-
mor-derived RNA and DNA methylation
patterns can also be detected in the
with highly conserved biology, a popula-
tion of cancer patients behaves as a het-
erogeneous collection of many diseases,
each of which carries additional heteroge-
neity in its own right. Therefore, identifying
a finite number of protein or nucleic acid
biomarkers that are highly sensitive and
ctDNA molecules to reliably measure
them in a background of mostly non-tu-
mor-derived cfDNA. We estimate that
such a broad and deep sequencing
approach could require orders of magni-
tude more sequence data than liquid bi-
opsy assays currently use (Table 1). To
Table 1. Comparison of ctDNA Liquid Biopsy Test to Potential Cancer Screening Test
Indication Tumor Liquid Biopsy (Genotyping, Monitoring) Early Cancer Detection
Target population Patients with known diagnosis of cancer Asymptomatic individuals
Tissue reference Can be informed by tissue analyses No prior knowledge of tissue
Key performance characteristics Sensitivity and specificity for specific
actionable genotypes
d Sensitivity and specificity for clinically
detectable cancer
d Premium on specificity in individuals
without detectable cancer
d Tissue of origin needed to guide workup
Clinical Endpoint for Utility Therapeutic benefit with specific therapies Net outcome improvement with early detection
and local treatment of cancer
Genes Covered 10-50 100-1000s
ctDNA Limit of Detection 0.1% <0.01%
Importance of Novel Variant Detection Low High
Amount of Sequencing 1x 100X
Study Size for Clinical Validity and Utility 100’s 10,000 - 100,000 s
Next-Generation Sequencing of Circulating Tumor DNA
for Early Cancer Detection
Cell 168, February 9, 2017
C A N C E R
Circulating tumor DNA analysis detects minimal
residual disease and predicts recurrence in patients
with stage II colon cancer
Jeanne Tie,1,2,3,4
*†
Yuxuan Wang,5†
Cristian Tomasetti,6,7
Lu Li,6
Simeon Springer,5
Isaac Kinde,8
Natalie Silliman,5
Mark Tacey,9
Hui-Li Wong,1,3,4
Michael Christie,1,3,10
Suzanne Kosmider,2
Iain Skinner,2
Rachel Wong,1,11,12
Malcolm Steel,11
Ben Tran,1,2,3,4
Jayesh Desai,1,3,4
Ian Jones,4,13
Andrew Haydon,14
Theresa Hayes,15
Tim J. Price,16
Robert L. Strausberg,17
Luis A. Diaz Jr.,5
Nickolas Papadopoulos,5
Kenneth W. Kinzler,5
Bert Vogelstein,5
*†
Peter Gibbs1,2,3,4,17
*†
Detection of circulating tumor DNA (ctDNA) after resection of stage II colon cancer may identify patients at the highest
risk of recurrence and help inform adjuvant treatment decisions. We used massively parallel sequencing–based
assays to evaluate the ability of ctDNA to detect minimal residual disease in 1046 plasma samples from a prospective
cohort of 230 patients with resected stage II colon cancer. In patients not treated with adjuvant chemotherapy, ctDNA
was detected postoperatively in 14 of 178 (7.9%) patients, 11 (79%) of whom had recurred at a median follow-up
of 27 months; recurrence occurred in only 16 (9.8 %) of 164 patients with negative ctDNA [hazard ratio (HR), 18;
95% confidence interval (CI), 7.9 to 40; P < 0.001]. In patients treated with chemotherapy, the presence of ctDNA
after completion of chemotherapy was also associated with an inferior recurrence-free survival (HR, 11; 95% CI,
1.8 to 68; P = 0.001). ctDNA detection after stage II colon cancer resection provides direct evidence of residual
disease and identifies patients at very high risk of recurrence.
INTRODUCTION
About 1.3 million cases of colorectal cancer are diagnosed annually
worldwide (1). In patients with stage II colon cancer (~25% of all
colorectal cancer), management after surgical resection remains a
clinical dilemma, with about 80% cured by surgery alone (2). The cur-
rent approach to defining recurrence risk for patients with early-
tus in the tumor defines a low-risk group in which adjuvant chemo-
therapy is not beneficial (6, 7). Most recently, multiple tissue-based
gene signatures have been shown to have prognostic significance,
but again with modest hazard ratios (HRs) of 1.4 to 3.7 (8–11).
In practice, adjuvant chemotherapy is more frequently offered
to high-risk stage II patients, with the justification that high-risk
R E S E A R C H A R T I C L E
http://stm.sciencemag.orgDownloadedfrom
Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
Circulating tumor DNA analysis detects minimal residual disease
and predicts recurrence in patients with stage II colon cancer
postoperative adjuvant chemotherapy 를 받지 않은 환자군에 대해서,
ctDNA 양성/음성 기반으로 RFS 을 효과적으로 구분할 수 있음
Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
Circulating tumor DNA analysis detects minimal residual disease
and predicts recurrence in patients with stage II colon cancer
RFS를 ctDNA 여부에 의해서 판단하는 것이 (A)
기존의 T stage, LN yield, LVI 등 기반의 (clinicopathogic) 위험군 분류(B)보다
더욱 효과적일 가능성이 있음
Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
Circulating tumor DNA analysis detects minimal residual disease
and predicts recurrence in patients with stage II colon cancer
기존의 위험군 분류 기준에 의해서 저위험군(C)과 고위험군(D)을 따로 나눠서 ctDNA의 검출 여부로 보게 되더라도,
그 중에서도 RFS 예후 예측을 효과적으로 할 수 있음
Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
Circulating tumor DNA analysis detects minimal residual disease
and predicts recurrence in patients with stage II colon cancer
postoperative adjuvant chemo therapy 를 받은 환자의
항암제 치료 도중과 이후의 ctDNA 변화와 이후 재발여부의 관계
A, B의 경우
•chemo 시작시에는 ctDNA가 positive였다가,
•chemo 받는 동안에는 negative가 되고,
•chemo 끝난 후에는 증가해서 결국 재발
•이 과정에서 기존의 표준 바이오마커인 CEA는 detection 에 실패
Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
Circulating tumor DNA analysis detects minimal residual disease
and predicts recurrence in patients with stage II colon cancer
C, D 환자는 chemo 받는 동안 ctDNA가 negative가 되고
이후에도 유지되어서, 이후 f/u 에서도 재발하지 않음
이 환자들의 경우에는 CEA도 결과는 동일
Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
Circulating tumor DNA analysis detects minimal residual disease
and predicts recurrence in patients with stage II colon cancer
E, F 환자의 경우에는 ctDNA가 각각 false negative, false polisive 결과
•E 환자: 수술 후 10개월 경에 재발하였으나, ctDNA 수치는 negative
•F 환자: ctDNA는 계속 들쭉날쭉 했는데 36개월까지 재발을 하지 않음
Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
Circulating tumor DNA analysis detects minimal residual disease
and predicts recurrence in patients with stage II colon cancer
Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
pointing to cancers th
by R (i.e., those with t
account for cancer in
seem particularly we
miologic investigation
appear unavoidable n
they will become avo
are at least four sourc
cells: quantum effects o
made by polymerase
tion of bases (32), and
produced reactive oxy
olites (33). The last o
be reduced by the
dant drugs (34). The
principle, be reduced
cient repair genes int
or through other crea
As a result of the
ulation, cancer is tod
of death in the world
the best way to reduc
of a third contributo
does not diminish t
prevention but emph
can be prevented by a
factors (Figs. 2 and 3
vention is not the on
exists or can be im
ondary prevention, i.e
vention, can also be
which all mutations a
Fig. 3. Etiology of driver gene mutations in women with cancer. For each of 18 representative
cancer types, the schematic depicts the proportion of mutations that are inherited, due to environmental
factors, or due to errors in DNA replication (i.e., not attributable to either heredity or environment).The sum
of these three proportions is 100%. The color codes for hereditary, replicative, and environmental factors
are identical and span white (0%) to brightest red (100%). The numerical values used to construct this
figure, as well as the values for 14 other cancer types not shown in the figure, are provided in table S6. B,
brain; Bl, bladder; Br, breast; C, cervical; CR, colorectal; E, esophagus; HN, head and neck; K, kidney; Li, liver;
Lk, leukemia; Lu, lung; M, melanoma; NHL, non-Hodgkin lymphoma; O, ovarian; P, pancreas; S, stomach;
RESEARCH | REPORTEtiology of driver gene mutations in women with cancer
Cristian Tomasetti , Science 2017
유전적 요인(Hereditary), 환경적 요인(Environmental)에 비해서, 

DNA replication에 의한 driver mutation (Replicative)의 비율이 암종의 구분 없이 매우 높다.
따라서, 암의 조기 발견의 중요성이 더욱 높아지고 있음.
https://www.illumina.com/content/dam/illumina-marketing/documents/company/investor-relations/investor_presentations/illumina_investor_presentation.pdf
Product MiniSeq
™
MiSeq
®
NextSeq HiSeq
®
HiSeq
®
X
4000 Five Ten
Output per run 7.5 Gb 15 Gb 120 Gb 1.5 Tb 1.8 Tb 1.8 Tb
Instrument price $49.5K $99K $275K $900K $6M1 $10M1
Utilization2 $20K–$25K $40K–$45K $100K–$150K $300K–$350K $625K–$725K
Installed base3 370 ~5,300 ~1,800 ~1,900 ~400
Sequencing Power for Every Scale
The broadest portfolio offering available
1. Based on purchase of 5 and 10 units for HiSeq X Five and HiSeq X Ten, respectively
2. Company’s projected annual instrument utilization per installed instrument; HiSeq and HiSeq X utilization to be combined later in
• 2014년 1월 출시
• 기기 하나에 약 10억원
• 10개 번들 판매로 최소 구입 단위는 100억원
• 미국의 브로드 연구소, 호주의 가반의학연구소, 한국의 마크로젠
6
Shipping
Q1 2017
$985K
Shipping
Early 2018
$850K
NovaSeq 6000NovaSeq 5000
NovaSeq 5000 Flow Cells
NovaSeq 6000 Flow Cells
1 Tb* 2 Tb 4 Tb* 6 Tb*Output/Run:
NovaSeq System
Scalable throughput to complete studies faster and more economically
*S1 and S4 flow cells expected to begin shipping in Q3 2017; S3 flow cell expected to
begin shipping in early 2018
https://www.illumina.com/content/dam/illumina-marketing/documents/company/investor-relations/investor_presentations/illumina_investor_presentation.pdf
• 2017년 1월 NovaSeq 5000, 6000 발표
• 몇년 내로 $100로 WES 를 실현하겠다고 공언
• 2일에 60명의 WES 가능 (한 명당 한 시간 이하)
http://privateoffice.investec.co.uk/research-and-insights/insights/vision_next_generation_sequencing.html
Next Generation Sequencing (NGS)
Market Share
http://privateoffice.investec.co.uk/research-and-insights/insights/vision_next_generation_sequencing.html
Next Generation Sequencing (NGS)
Market Share
• 일루미나는 현재 전세계 DNA의 90%를 생산
• 전세계 인구의 0.01% 밖에 아직 DNA 서열 분석을 하지 않았음
Value Chain of Sequencing Industry
Sequencing Analysis
Diagnosis Treatment
Consumer Service
Illumina tries to eat everything in sequencing market
Sequencing Analysis
Diagnosis Treatment
Consumer Service
개인유전정보 앱스토어$100 m funding, co-founding (2015)
NIPT(비침습 태아 산전진단)
$350m 인수 (2013)
Analysis
Liquid Biopsy (액체 생검)
Spin-off (2016.1)/ $100m
빌게이츠, 제프 베조스 등 투자
• 일루미나는 NGS 기기를 만드는 하드웨어 기업으로 시작
• 시퀀싱 시장 점유를 기반으로 value chain 후반의 진단, 소비자 서비스 시장으로 진출 중
• (via 인수, 투자, 공동 설립)

• 과거 인터넷 산업에 비유하자면,
• 초기에는 Cisco 같은 네트워크 인프라를 구축하는 기업이 수익
• 나중에는 인프라를 활용한 서비스 제공 기업이 성장 (구글, 페이스북…)
• 일루미나는 그 둘을 모두 하겠다는 것
Illumina tries to eat everything in sequencing market
Sequencing Analysis
Diagnosis Treatment
Consumer Service
개인유전정보 앱스토어$100 m funding, co-founding (2015)
NIPT(비침습 태아 산전진단)
$350m 인수 (2013)
Analysis
Liquid Biopsy (액체 생검)
Spin-off (2016.1)/ $100m
빌게이츠, 제프 베조스 등 투자
•Series A: $100m
•Series B: $900m
•Biotech funding round 사상 최고액으로 평가
•ARCH Venture Partners led the round



with participation from J&J, Amazon, BMS, Celgene, Varian, and Merck.
•Liquid Biopsy의 임상 연구에 활용할 계획
• Grail 이 발표한 최초의 대규모 임상 연구 (2016년 12월): Mayo Clinic, MSKCC 등 50여개 병원 참여
• 10,000명의 환자의 혈액을 분석으로 시작 (추후 확대 예정)
• 7,000명의 암 환자
• 3,000명의 정상인
• 정상인 혈액과 암 환자의 cell free genome profile 을 파악하기 위한 연구
• 정상인의 cf genome의 heterogeneity 역시 연구: 정상인 - 암환자 구분에 도움
• ‘high intensitiy’ sequencing: ultra-deep sequencing & ultra-wide sequencing 을 사용하게 될 것
• 2017년 4월 대규모 유방암 환자 임상시험 STRIVE를 개시한다고 공표
• 유방암 조기 발견을 위한 blood test 의 개발 목적
• 120,000명 규모
• Mayo Clinic 과 Sutter Health 에서 유방암 정기검사 (mammography)를 받는 환자들 대상
• ultra-deep sequencing & ultra-wide sequencing 을 사용하게 될 것
• 이 임상 결과를 바탕으로 pan-cancer test 의 개발에도 사용하게 될 것
Leading Edge
Commentary
Next-Generation Sequencing
of Circulating Tumor DNA
for Early Cancer Detection
Alexander M. Aravanis,1,2 Mark Lee,1,2 and Richard D. Klausner1,*
1GRAIL, Menlo Park, CA 94402, USA
2Co-first author
*Correspondence: klausner.rick@gmail.com
http://dx.doi.org/10.1016/j.cell.2017.01.030
Curative therapies are most successful when cancer is diagnosed and treated at an early stage. We
advocate that technological advances in next-generation sequencing of circulating, tumor-derived
nucleic acids hold promise for addressing the challenge of developing safe and effective cancer
screening tests.
Cancer-specific mortality from most
types of solid tumors has barely
decreased in decades, despite an expo-
nential increase in our knowledge about
cancer pathogenesis and significant in-
vestments in the development of effective
treatments. The past few years have
witnessed a dramatic success of immu-
notherapies in treating a subgroup of
patients with a variety of tumor types,
including lung, bladder, and kidney, as
well as Hodgkin’s lymphoma and mela-
noma. While such breakthroughs offer
the hope of prolonged survival for some
patients with advanced cancers, finding
cancers earlier would still afford the great-
est chance for cure, given that the survival
rates for patients with early diagnoses are
five to ten times higher compared with late
stage disease (Cho et al., 2014). By
tion algorithms that either miss a large
number of invasive cancers or make the
costly trade-off of over-diagnosing and
consequently over treating. For instance,
high false-positive rates from mammog-
raphy in breast cancer screening, low-
dose CT in lung cancer screening, and
prostate-specific antigen (PSA) screening
(Nelson et al., 2016a; Aberle et al., 2011;
Chou et al., 2011) represent a significant
cost to the healthcare system, with result-
ing mental and physical morbidity, and
even mortality in some cases (Nelson
et al., 2016b).
Even where cancer screening has pro-
duced significant stage shifts, as with
breast and prostate cancer screening,
the impact on cancer-specific mortality
has not been a predictable outcome
(Berry, 2014). Multiple explanations may
cancers are in a pre-metastatic state and
thus still curable. This kinetic aspect of
cancer progression is poorly understood,
but it is essential to informing effective
screening intervals. It is worth noting
that mammography and PSA are only sur-
rogate measures of cancer, which have
poor specificity and provide little insight
into tumor biology. We would argue that
for successful screening, we need a
platform that provides direct, sensitive,
and specific measures of cancer and its
attributes, which have bearing on clinical
behavior.
Circulating Tumor DNA
Profiling of a tumor’s somatic alterations
has become routine, and many clinical
tests are now available that interrogate
anywhere from a few genes to the whole
•국내에서도 삼성유전체연구소를 비롯한 몇몇 그룹이 Liquid Biopsy 를 연구
•삼성유전체연구소에서 LiquidScan을 개발했다고 발표 (2017.4)
•(기사 제목처럼) 피 한 방울은 아니고, 20ml 정도 필요
•현재 췌장암 및 유방암 연구 중
•췌장암의 경우 LiquidScan을 통해 기존 방식보다 2-3개월 미리 재발 여부파악 가능
23andMe의 DTC 서비스 FDA 인허가 확대
Results within 6-8 weeksA little spit is all it takes!
DTC Genetic TestingDirect-To-Consumer
• Direct-to-Consumer 방식의 서비스를 고집
• 데이터 소유권 이슈: “환자 본인에게 raw data 를 주겠다”
120 Disease Risk
21 Drug Response
49 Carrier Status
57Traits
$99
• 질병 위험도 검사: BRCA로 유방암 위험도 예측
• 보인자 검사: 부모가 블룸증후군 유전자 보인자인지 판별
• 약물 민감도 검사: 와파린 등에 대한 민감도 검사
• 일반적 특징 검사: 곱슬머리, 카페인 대사, 유당 분해 능력 등
• 조상 분석: 내 조상이 어느 대륙에서 왔는가
Tests of 23andMe
Health Risks
Health Risks
Health Risks
Drug Response
Inherited Conditions
혈색소증은 유전적 원인으로 철에 대한 체내 대사에 이상이 생겨 음식을 통
해 섭취한 철이 너무 많이 흡수되는 질환입니다. 너무 많이 흡수된 철은 우
리 몸의 여러 장기, 특히 간, 심장 및 췌장에 과다하게 축적되며 이들 장기
를 손상시킴으로써 간질환, 심장질환 및 악성종양을 유발합니다.
Traits
음주 후 얼굴이 붉어지는가
쓴 맛을 감지할 수 있나
귀지 유형
눈 색깔
곱슬머리 여부
유당 분해 능력
말라리아 저항성
대머리가 될 가능성
근육 퍼포먼스
혈액형
노로바이러스 저항성
HIV 저항성
흡연 중독 가능성
Ancestry Composition
Neanderthal Ancestry
• 질병 위험도 검사: BRCA로 유방암 위험도 예측
• 보인자 검사: 부모가 블룸증후군 유전자 보인자인지 판별
• 약물 민감도 검사: 와파린 등에 대한 민감도 검사
• 일반적 특징 검사: 곱슬머리, 카페인 대사, 유당 분해 능력 등
• 조상 분석: 내 조상이 어느 대륙에서 왔는가
Tests of 23andMe
(until Nov 2013)
• 제한적 유전정보: 일부분의 유전정보 (SNP) 만을 분석
• 환경적 요인 고려 불가: 대부분의 질병은 환경+유전 요인 작용
• So What? : 유전적 위험도를 알아도 대비책이 없거나 불분명
Personal Genome Service 의 한계
1,200,000
1,000,000
900,000
850,000
650,000
500,000
400,000
300,000
250,000
180,000
100,000
2007-11
2011-06
2011-10
2012-04
2012-10
2013-04
2013-06
2013-09
2013-12
2014-10
2015-02
2015-05
2015-06
2016-02
0
Customer growth of 23andMe
by Changwon Keum (Macrogen)

http://goldbio.blogspot.kr/2014/12/pg-100.html
• 의사를 통하지 않는 DTC 방식에 대한 우려
• 이러한 서비스의 정확성 및 안정성에 대한 우려
• 결과를 받은 사용자들이 제대로 이해할 수 있을지, 오남용에 대한 우려
• 특히, BRCA 유전자에 대한 검사
• Analytic & clinical validation data 제출 지연
• 질병 위험도 검사: BRCA로 유방암 위험도 예측
• 보인자 검사: 부모가 블룸증후군 유전자 보인자인지 판별
• 약물 민감도 검사: 와파린 등에 대한 민감도 검사
• 일반적 특징 검사: 곱슬머리, 카페인 대사, 유당 분해 능력 등
• 조상 분석: 내 조상이 어느 대륙에서 왔는가
Tests of 23andMe
(Nov 2013 - Oc 2015)
2015.2.19
http://www.fastcompany.com/3051973/behind-the-brand/23andme-and-the-fda-reached-a-pivotal-genetic-testing-agreement
• 질병 위험도 검사: BRCA로 유방암 위험도 예측
• 보인자 검사: 부모가 블룸증후군 유전자 보인자인지 판별
• 약물 민감도 검사: 와파린 등에 대한 민감도 검사
• 일반적 특징 검사: 곱슬머리, 카페인 대사, 유당 분해 능력 등
• 조상 분석: 내 조상이 어느 대륙에서 왔는가
Tests of 23andMe
(Oct 2015 - April 2017)
2017년 4월 6일 FDA가 23andMe의 질병 위험도 예측 서비스의 

DTC (Direct-to-Consumer) 판매를 허가
FDA의 23andMe 질병 위험도 예측 DTC 서비스 허가
•아래와 같은 10가지 질병의 위험도 예측에 대해서 DTC 허가
•파킨슨병 (Parkinson’s disease)
•알츠하이머 (Late-onset Alzheimer’s disease)
•셀리악병(Celiac disease)
•알파-1 항트립신 결핍증 (Alpha-1 antitrypsin deficiency)
•조발성 1차성 근긴장이상증 (Early-onset primary dystonia)
•XI 혈액응고인자 결핍증 (혈우병C) (Factor XI deficiency, a blood clotting disorder)
•제 1형 고셔병 (Gaucher disease type 1)
•포도당-6-인산탈수소효소(G6PD) 결핍증 (Glucose-6-Phosphate Dehydrogenase deficiency)
•유전성 혈색소침착증(Hereditary hemochromatosis)
•유전적 혈전 기호증(Hereditary thrombophilia)
•FDA는 향후 다른 질병 위험도 예측 검사에 대해서 시장 출시 전 심사(premarket review)를 면제
FDA의 23andMe 질병 위험도 예측 DTC 서비스 허가
•임상 연구를 통하여 인허가를 위한 근거 자료 마련
•분석적 타당성(analytical validity)
•임상적 타당성(clinical validity)
•임상적 유용성(clinical utility)



•23andMe의 타액 키트를 통해서 정확하고 일관적으로 유전 변이를 발견할 수 있다는 것을 증명
•검사하는 유전적 변이가 개별 질병의 위험도에 영향을 준다는 명확한 연구 결과.
•환자의 DTC 결과 오남용에 대한 반박
•영국에서 25,000명에게 질병 위험도 예측 서비스를 DTC로 제공한 결과, 



자해 등 위험한 결과가 한 건도 발생하지 않았음
•사용자들이 질병 위험도 예측의 결과 레포트의 90% 이상을 이해
• 질병 위험도 검사
• 보인자 검사: 부모가 블룸증후군 유전자 보인자인지 판별
• 약물 민감도 검사: 와파린 등에 대한 민감도 검사
• 일반적 특징 검사: 곱슬머리, 카페인 대사, 유당 분해 능력 등
• 조상 분석: 내 조상이 어느 대륙에서 왔는가
Tests of 23andMe
(April 2017- 현재)
$115m 펀딩
100만 명 돌파
2006
23andMe 창업
20162007 2012 2013 2014 2015
구글 벤처스
360만 달러 투자
2008
$99 로
가격 인하
FDA 판매 중지 명령
영국에서
DTC 서비스 시작
FDA 블룸증후군
DTC 서비스 허가
FDA에 블룸증후군
테스트 승인 요청
FDA에 510(k) 제출
FDA 510(k) 철회
보인자 등 DTC
서비스 재개 ($199)
캐나다에서
DTC 서비스 시작
Genetech, pFizer가
23andMe 데이터 구입
자체 신약 개발
계획 발표
120만 명 돌파
$399 로
가격 인하
23andMe Chronicle
Business
Regulation
애플 리서치키트와
데이터 수집 협력
50만 명 돌파30만 명 돌파
TV 광고 시작
2017
FDA의
질병위험도 검사
DTC 서비스 허가
+
관련 규제 면제
프로세스 확립
Digital Healthcare Institute
Director,Yoon Sup Choi, PhD
yoonsup.choi@gmail.com
1,200,000
1,000,000
900,000
850,000
650,000
500,000
400,000
300,000
250,000
180,000
100,000
2007-11
2011-06
2011-10
2012-04
2012-10
2013-04
2013-06
2013-09
2013-12
2014-10
2015-02
2015-05
2015-06
2016-02
0
Customer growth of 23andMe
2017-04
2,000,000
Digital Healthcare Institute
Director,Yoon Sup Choi, PhD
yoonsup.choi@gmail.com
생명윤리법 개정안 및 DTC 허용 계획
•2015년 12월 9일, 국회에서 ‘생명윤리법 개정안’ 의결
•‘비의료기관은 보건복지부장관이 정하는 경우에만 의료기관의 의뢰 없이도 

질병 예방 목적의 유전자 검사를 제한적으로 직접할 수 있도록 허용한다'
•보건복지부 2016년 업무보고: 유전자 검사 제도 개선
•질병 예방 목적의 일부 유전자/유전체 검사를 비의료기관에서 직접 실시 (2016년 6월)
•최적 치료법에 필요한 유전자/유전체 검사의 경우 건강보험 적용 (2016년 11월)
•표적치료제 선택 검사 확대
•약물반응예측검사 추가
11
Category 분류기준
I
건강보험 요양급여 등재 혹은 신의료기술평가를 통해 안정성 및 유효성이 인정된 유전자 검사
로 임상적 사용목적(Intended use)이 동일한 경우
II
아직까지 건강보험 요양급여의 등재 혹은 신의료기술평가를 통해 안정성 및 유효성이 인정되
지 않았지만, 임상적 유효성 근거가 있는 검사로 임상적 사용 목적이 동일한 경우
III
건강보험 요양급여 등재 혹은 신의료기술평가를 통해 안정성, 유효성이 인정 받은 검사 및 임
상적 유효성의 근거가 있는 유전자 검사를 건강인에게 시행하는 경우
IV
건강보험 요양급여 등재 혹은 신의료기술평가를 통해 안정성, 유효성이 인정 받은 검사 및 임
상적 유효성의 근거가 있는 유전자 검사를 적절한 임상적 사용 목적 외에 의학적 근거가 부족
한 용도로 사용하는 경우
V
건강보험 요양급여 미등재 혹은 안정성 유효성에 관한 신의료기술평가를 받지 않은 검사로 과
학적 타당성의 입증이 불확실하거나, 검사대상자를 오도할 우려가 있는 신체 외관, 성격 등의
형질에 관한 검사
VI
건강보험 요양급여 미등재 혹은 안정성, 유효성에 관한 신의료기술평가를 받지 않은 검사로
임상적 유효성에 대한 근거가 부족한 검사
유전자 검사평가원에서 제안한 유전자 검사 분류표
한국 DTC 유전정보 분석 제한적 허용
(2016.6.30)
• 「비의료기관 직접 유전자검사 실시 허용 관련 고시 제정, 6.30일시행」
• 2015년 12월「생명윤리 및 안전에 관한 법률」개정(‘15.12.29개정, ’16.6.30시행)과
제9차 무역투자진흥회의(’16.2월) 시 발표한 규제 개선의 후속조치 일환으로 추진
• 민간 유전자검사 업체에서는 혈당, 혈압, 피부노화, 체질량지수 등 12개 검사항목과
관련된 46개 유전자를 직접 검사 가능
http://www.mohw.go.kr/m/noticeView.jsp?MENU_ID=0403&cont_seq=333112&page=1
검사항목 (유전자수) 유전자명
1 체질량지수(3) FTO, MC4R, BDNF
2 중성지방농도(8) GCKR, DOCK7, ANGPTL3, BAZ1B, TBL2, MLXIPL, LOC105375745, TRIB1
3 콜레스테롤(8) CELSR2, SORT1, HMGCR, ABO, ABCA1, MYL2, LIPG, CETP
4 혈 당(8) CDKN2A/B, G6PC2, GCK, GCKR, GLIS3, MTNR1B, DGKB-TMEM195, SLC30A8
5 혈 압(8) NPR3, ATP2B1, NT5C2, CSK, HECTD4, GUCY1A3, CYP17A1, FGF5
6 색소 침착(2) OCA2, MC1R
7 탈 모(3) chr20p11(rs1160312, rs2180439), IL2RA, HLA-DQB1
8 모발 굵기(1) EDAR
9 피부 노화(1) AGER
10 피부 탄력(1) MMP1
11 비타민C농도(1) SLC23A1(SVCT1)
12 카페인대사(2) AHR, CYP1A1-CYP1A2
DTC 유전정보 분석 서비스
미국 vs. 한국
Table 1
분석 항목 분석 항목 예시 DTC (미국) DTC (한국)
개인유전정보 분석
질병 위험도 유방암(안젤리나 졸리) O 불가
약물 민감도 와파린 민감도 X X
열성유전질환 보인자 블룸 증후군 O X
웰니스 카페인 분해, 대머리 O 12개만 가능
조상 분석 O 불명확
•미국에서 허용된 보인자 검사, 질병 위험도 예측 검사 DTC 서비스는 여전히 한국에서 불법
•더 큰 문제는 잣대 자체가 FDA 등 글로벌 규제 기조나 산업계에서 통용되는 기준과 다름. 

질병/약물/보인자/웰니스/조상 분석 등의 업계에서 받아들여지는 분류를 무시하고 있음.
•글로벌 수준에 발맞추기는 커녕, 한국에서만 통용되는 자체적인 별도 규제 분류 체계를 

갈수록 더 만들어가면서, 국내 산업의 갈라파고스화를 심화 시키고 있음
IBM Watson for Oncology 도입 광풍(?)
600,000 pieces of medical evidence
2 million pages of text from 42 medical journals and clinical trials
69 guidelines, 61,540 clinical trials
IBM Watson on Medicine
Watson learned...
+
1,500 lung cancer cases
physician notes, lab results and clinical research
+
14,700 hours of hands-on training
Empowering the Oncology Community for Cancer Care
Genomics
Oncology
Clinical
Trial
Matching
Watson Health’s oncology clients span more than 35 hospital systems
“Empowering the Oncology Community
for Cancer Care”
Andrew Norden, KOTRA Conference, March 2017, “The Future of Health is Cognitive”
IBM Watson Health
Watson for Clinical Trial Matching (CTM)
18
1. According to the National Comprehensive Cancer Network (NCCN)
2. http://csdd.tufts.edu/files/uploads/02_-_jan_15,_2013_-_recruitment-retention.pdf© 2015 International Business Machines Corporation
Searching across
eligibility criteria of clinical
trials is time consuming
and labor intensive
Current
Challenges
Fewer than 5% of
adult cancer patients
participate in clinical
trials1
37% of sites fail to meet
minimum enrollment
targets. 11% of sites fail
to enroll a single patient 2
The Watson solution
• Uses structured and unstructured
patient data to quickly check
eligibility across relevant clinical
trials
• Provides eligible trial
considerations ranked by
relevance
• Increases speed to qualify
patients
Clinical Investigators
(Opportunity)
• Trials to Patient: Perform
feasibility analysis for a trial
• Identify sites with most
potential for patient enrollment
• Optimize inclusion/exclusion
criteria in protocols
Faster, more efficient
recruitment strategies,
better designed protocols
Point of Care
(Offering)
• Patient to Trials:
Quickly find the
right trial that a
patient might be
eligible for
amongst 100s of
open trials
available
Improve patient care
quality, consistency,
increased efficiencyIBM Confidential
Watson Genomics Overview
20
Watson Genomics Content
• 20+ Content Sources Including:
• Medical Articles (23Million)
• Drug Information
• Clinical Trial Information
• Genomic Information
Case Sequenced
VCF / MAF, Log2, Dge
Encryption
Molecular Profile
Analysis
Pathway Analysis
Drug Analysis
Service Analysis, Reports, & Visualizations
At HIMSS 2017, provided Hye Jin Kam of Asan Medical Center
At HIMSS 2017, provided Hye Jin Kam of Asan Medical Center
식약처 인공지능
가이드라인 초안
Medtronic과
혈당관리 앱 시연
2011 2012 2013 2014 2015
Jeopardy! 우승
뉴욕 MSK암센터 협력
(Lung cancer)
MD앤더슨 협력
(Leukemia)
MD앤더슨
Pilot 결과 발표
@ASCO
Watson Fund,
WellTok 에 투자
($22m)
The NewYork
Genome Center 협력
(Glioblastoma 분석)
GeneMD,
Watson Mobile Developer
Challenge의 winner 선정
Watson Fund,
Pathway Genomics 투자
Cleveland Clinic 협력
(Cancer Genome Analysis)
한국 IBM
Watson 사업부 신설
Watson Health 출범
Phytel & Explorys 인수
J&J,Apple, Medtronic 협력
Epic & Mayo Clinic 제휴
(EHR data 분석)
동경대 도입
(oncology)
14 Cancer Center 제휴
(Cancer Genome Analysis)
Mayo Clinic 협력
(clinical trail matching)
Watson Fund,
Modernizing Medicine
투자
Academia
Business
Pathway Genomics OME
closed alpha 시작
TurvenHealth
인수
Apple ResearchKit
통한 수면 연구 시작
2017
가천대 길병원
Watson 도입
(oncology)
Medtronic
Sugar.IQ 출시
제약사
Teva와 제휴
인도 Manipal Hospital
Watson 도입
태국 Bumrungrad 
International Hospital,
Watson 도입
최윤섭 디지털헬스케어 연구소, 소장
(주)디지털 헬스케어 파트너스, 대표파트너
최윤섭, Ph.D.
yoonsup.choi@gmail.com
IBM Watson in Healthcare
Merge
Healthcare
인수
2016
Under Amour
제휴
Broad 연구소 협력 발표
(유전체 분석-항암제 내성)
Manipal Hospital의
WFO 정확성 발표
대구가톨릭병원
대구동산병원
WFO 도입
건양대병원
Watson 도입
(oncology)
부산대학병원
Watson 도입
(oncology/
genomics)
식약처 인공지능
가이드라인 초안
Medtronic과
혈당관리 앱 시연
2011 2012 2013 2014 2015
Jeopardy! 우승
뉴욕 MSK암센터 협력
(Lung cancer)
MD앤더슨 협력
(Leukemia)
MD앤더슨
Pilot 결과 발표
@ASCO
Watson Fund,
WellTok 에 투자
($22m)
The NewYork
Genome Center 협력
(Glioblastoma 분석)
GeneMD,
Watson Mobile Developer
Challenge의 winner 선정
Watson Fund,
Pathway Genomics 투자
Cleveland Clinic 협력
(Cancer Genome Analysis)
한국 IBM
Watson 사업부 신설
Watson Health 출범
Phytel & Explorys 인수
J&J,Apple, Medtronic 협력
Epic & Mayo Clinic 제휴
(EHR data 분석)
동경대 도입
(oncology)
14 Cancer Center 제휴
(Cancer Genome Analysis)
Mayo Clinic 협력
(clinical trail matching)
Watson Fund,
Modernizing Medicine
투자
Academia
Business
Pathway Genomics OME
closed alpha 시작
TurvenHealth
인수
Apple ResearchKit
통한 수면 연구 시작
2017
가천대 길병원
Watson 도입
(oncology)
Medtronic
Sugar.IQ 출시
제약사
Teva와 제휴
인도 Manipal Hospital
Watson 도입
태국 Bumrungrad 
International Hospital,
Watson 도입
최윤섭 디지털헬스케어 연구소, 소장
(주)디지털 헬스케어 파트너스, 대표파트너
최윤섭, Ph.D.
yoonsup.choi@gmail.com
IBM Watson in Healthcare
Merge
Healthcare
인수
2016
Under Amour
제휴
Broad 연구소 협력 발표
(유전체 분석-항암제 내성)
Manipal Hospital의
WFO 정확성 발표
대구가톨릭병원
대구동산병원
WFO 도입
건양대병원
Watson 도입
(oncology)
부산대학병원
Watson 도입
(oncology/
genomics)
한국에서도 Watson을 볼 수 있을까?
2015.7.9. 서울대학병원
• 부산대학병원 (2017년 1월)
• Watson의 솔루션 두 가지를 도입
• Watson for Oncology
• Watson for Genomics
• 건양대학병원 Watson for Oncology 도입
• 2017년 3월
• “최원준 건양대병원장은 "지역 환자들은 수도권의
여러 병원을 찾아다닐 필요가 없어질 것"이라며 "병
원의 우수한 협진 팀과 인공지능 의료 시스템의 시
너지를 바탕으로 암 환자에게 최상의 의료 서비스를
제공하겠다"고 약속했다."
IBM Watson Health
Organizations Leveraging Watson
Watson for Oncology
Best Doctors (second opinion)
Bumrungrad International Hospital
Confidential client (Bangladesh and Nepal)
Gachon University Gil Medical Center (Korea)
Hangzhou Cognitive Care – 50+ Chinese hospitals
Jupiter Medical Center
Manipal Hospitals – 16 Indian Hospitals
MD Anderson (**Oncology Expert Advisor)
Memorial Sloan Kettering Cancer Center
MRDM - Zorg (Netherlands)
Pusan National University Hospital
Clinical Trial Matching
Best Doctors (second opinion)
Confidential – Major Academic Center
Highlands Oncology Group
Froedtert & Medical College of Wisconsin
Mayo Clinic
Multiple Life Sciences pilots
24
Watson Genomic Analytics
Ann & Robert H Lurie Children’s Hospital of Chicago
BC Cancer Agency
City of Hope
Cleveland Clinic
Columbia University, Irwing Cancer Center
Duke Cancer Institute
Fred & Pamela Buffett Cancer Center
Fleury (Brazil)
Illumina 170 Gene Panel
NIH Japan
McDonnell Institute at Washington University in St. Louis
New York Genome Center
Pusan National University Hospital
Quest Diagnostics
Stanford Health
University of Kansas Cancer Center
University of North Carolina Lineberger Cancer Center
University of Southern California
University of Washington Medical Center
University of Tokyo
Yale Cancer Center
Andrew Norden, KOTRA Conference, March 2017, “The Future of Health is Cognitive”
Watson for Oncology 는 현재 전세계 70여개 병원에 도입
• 인공지능으로 인한 인간 의사의 권위 약화
• 환자의 자기 결정권 및 권익 증대
• 의사의 진료 방식 및 교육 방식의 변화 필요
http://news.donga.com/3/all/20170320/83400087/1
• 의사와 Watson의 판단이 다른 경우?
• NCCN 가이드라인과 다른 판단을 주기는 것으로 보임
• 100 여명 중에 5 case. 

• 환자의 판단이 합리적이라고 볼 수 있는가?
• Watson의 정확도는 검증되지 않았음
• ‘제 4차 산업혁명’ 등의 buzz word의 영향으로 보임
• 임상 시험이 필요하지 않은가?
• 환자들의 선호는 인공지능의 adoption rate 에 영향
• 병원 도입에 영향을 미치는 요인들
• analytical validity
• clinical validity/utility
• 의사들의 인식/심리적 요인
• 환자들의 인식/심리적 요인
• 규제 환경 (인허가, 수가 등등)
• 결국 환자가 원하면 (그것이 의학적으로 타당한지를 떠나서)
병원 도입은 더욱 늘어날 수 밖에 없음
• Watson에 대한 환자 반응이 생각보다 매우 좋음
• 도입 2개월만에 85명 암 환자 진료
• 기존의 길병원 예측보다는 더 빠른 수치일 듯
• Big5 에서도 길병원으로 전원 문의 증가 한다는 후문
• 교수들이 더 열심히 상의하고 환자 본다고 함
• Trained by 400 cases of historical patients cases
• Assessed accuracy OEA treatment suggestions 

using MD Anderson’s physicians’ decision as benchmark
• When 200 leukemia cases were tested,
• False positive rate=2.9%
• False negative rate=0.4%
• Overall accuracy of treatment recommendation=82.6%
• Conclusion: Suggested personalized treatment option
showed reasonably high accuracy
MDAnderson’s Oncology ExpertAdvisor Powered by IBM Watson
:AWeb-Based Cognitive Clinical Decision Support Tool
Koichi Takahashi, MD (ASCO 2014)
Annals of Oncology (2016) 27 (suppl_9): ix179-ix180. 10.1093/annonc/mdw601
Validation study to assess performance of IBM cognitive
computing system Watson for oncology with Manipal
multidisciplinary tumour board for 1000 consecutive cases: 

An Indian experience
• MMDT(Manipal multidisciplinary tumour board) treatment recommendation and
data of 1000 cases of 4 different cancers breast (638), colon (126), rectum (124)
and lung (112) which were treated in last 3 years was collected.
• Of the treatment recommendations given by MMDT, WFO provided 



50% in REC, 28% in FC, 17% in NREC
• Nearly 80% of the recommendations were in WFO REC and FC group
• 5% of the treatment provided by MMDT was not available with WFO
• The degree of concordance varied depending on the type of cancer
• WFO-REC was high in Rectum (85%) and least in Lung (17.8%)
• high with TNBC (67.9%); HER2 negative (35%)

• WFO took a median of 40 sec to capture, analyze and give the treatment.



(vs MMDT took the median time of 15 min)
Sung Won Park,APFCP, 2017
Assessing the performance of Watson for Oncology using colon
cancer cases treated with surgery and adjuvant chemotherapy 

at Gachon University Gil Medical Center
• Stage II with high risk and stage III colon cancer patients (N=162)
• Retrospective study: From September 1, 2014 to August 31, 2016
• Gachon University Gil Medical Center (GMC)
• Generally accepted by GMC-recommendation in 83.3%
• Concordant with
• WFO-Rec: 53.1%
• WFO-FC: 30.2%
• WFO-NREC: 13.0%
• Not included: 3.7%
WHY?
• 국가별 가이드라인의 차이
• WFO는 기본적으로 MSKCC 기준
• 인종적 차이, 인허가 약물의 차이, 보험 제도의 차이
• NCCN 가이드라인의 업데이트
• 암종별 치료 가능한 옵션의 다양성 차이
• 폐암: 다양함 vs 직장암: 다양하지 않음
• TNBC: 다양하지 않음 vs HER2 (-): 다양함
원칙이 필요하다
•어떤 환자의 경우, 왓슨에게 의견을 물을 것인가?
•왓슨을 (암종별로) 얼마나 신뢰할 것인가?
•왓슨의 의견을 환자에게 공개할 것인가?
•왓슨과 의료진의 판단이 다른 경우 어떻게 할 것인가?
•왓슨에게 보험 급여를 매길 수 있는가?
이러한 기준에 따라 의료의 질/치료효과가 달라질 수 있으나,
현재 개별 병원이 개별적인 기준으로 활용하게 됨
의사를 능가하는 Deep Learning 연구 결과들
Deep Learning
http://theanalyticsstore.ie/deep-learning/
Detection of Diabetic Retinopathy
당뇨성 망막병증
• 당뇨병의 대표적 합병증: 당뇨병력이 30년 이상 환자 90% 발병
• 안과 전문의들이 안저(안구의 안쪽)를 사진으로 찍어서 판독
• 망막 내 미세혈관 생성, 출혈, 삼출물 정도를 파악하여 진단
Copyright 2016 American Medical Association. All rights reserved.
Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy
in Retinal Fundus Photographs
Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD;
Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB;
Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD
IMPORTANCE Deep learning is a family of computational methods that allow an algorithm to
program itself by learning from a large set of examples that demonstrate the desired
behavior, removing the need to specify rules explicitly. Application of these methods to
medical imaging requires further assessment and validation.
OBJECTIVE To apply deep learning to create an algorithm for automated detection of diabetic
retinopathy and diabetic macular edema in retinal fundus photographs.
DESIGN AND SETTING A specific type of neural network optimized for image classification
called a deep convolutional neural network was trained using a retrospective development
data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy,
diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists
and ophthalmology senior residents between May and December 2015. The resultant
algorithm was validated in January and February 2016 using 2 separate data sets, both
graded by at least 7 US board-certified ophthalmologists with high intragrader consistency.
EXPOSURE Deep learning–trained algorithm.
MAIN OUTCOMES AND MEASURES The sensitivity and specificity of the algorithm for detecting
referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy,
referable diabetic macular edema, or both, were generated based on the reference standard
of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2
operating points selected from the development set, one selected for high specificity and
another for high sensitivity.
RESULTS TheEyePACS-1datasetconsistedof9963imagesfrom4997patients(meanage,54.4
years;62.2%women;prevalenceofRDR,683/8878fullygradableimages[7.8%]);the
Messidor-2datasethad1748imagesfrom874patients(meanage,57.6years;42.6%women;
prevalenceofRDR,254/1745fullygradableimages[14.6%]).FordetectingRDR,thealgorithm
hadanareaunderthereceiveroperatingcurveof0.991(95%CI,0.988-0.993)forEyePACS-1and
0.990(95%CI,0.986-0.995)forMessidor-2.Usingthefirstoperatingcutpointwithhigh
specificity,forEyePACS-1,thesensitivitywas90.3%(95%CI,87.5%-92.7%)andthespecificity
was98.1%(95%CI,97.8%-98.5%).ForMessidor-2,thesensitivitywas87.0%(95%CI,81.1%-
91.0%)andthespecificitywas98.5%(95%CI,97.7%-99.1%).Usingasecondoperatingpoint
withhighsensitivityinthedevelopmentset,forEyePACS-1thesensitivitywas97.5%and
specificitywas93.4%andforMessidor-2thesensitivitywas96.1%andspecificitywas93.9%.
CONCLUSIONS AND RELEVANCE In this evaluation of retinal fundus photographs from adults
with diabetes, an algorithm based on deep machine learning had high sensitivity and
specificity for detecting referable diabetic retinopathy. Further research is necessary to
determine the feasibility of applying this algorithm in the clinical setting and to determine
whether use of the algorithm could lead to improved care and outcomes compared with
current ophthalmologic assessment.
JAMA. doi:10.1001/jama.2016.17216
Published online November 29, 2016.
Editorial
Supplemental content
Author Affiliations: Google Inc,
Mountain View, California (Gulshan,
Peng, Coram, Stumpe, Wu,
Narayanaswamy, Venugopalan,
Widner, Madams, Nelson, Webster);
Department of Computer Science,
University of Texas, Austin
(Venugopalan); EyePACS LLC,
San Jose, California (Cuadros); School
of Optometry, Vision Science
Graduate Group, University of
California, Berkeley (Cuadros);
Aravind Medical Research
Foundation, Aravind Eye Care
System, Madurai, India (Kim); Shri
Bhagwan Mahavir Vitreoretinal
Services, Sankara Nethralaya,
Chennai, Tamil Nadu, India (Raman);
Verily Life Sciences, Mountain View,
California (Mega); Cardiovascular
Division, Department of Medicine,
Brigham and Women’s Hospital and
Harvard Medical School, Boston,
Massachusetts (Mega).
Corresponding Author: Lily Peng,
MD, PhD, Google Research, 1600
Amphitheatre Way, Mountain View,
CA 94043 (lhpeng@google.com).
Research
JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY
(Reprinted) E1
Copyright 2016 American Medical Association. All rights reserved.
Training Set / Test Set
• CNN으로 후향적으로 128,175개의 안저 이미지 학습
• 미국의 안과전문의 54명이 3-7회 판독한 데이터
• 우수한 안과전문의들 7-8명의 판독 결과와 인공지능의 판독 결과 비교
• EyePACS-1 (9,963 개), Messidor-2 (1,748 개)a) Fullscreen mode
b) Hit reset to reload this image. This will reset all of the grading.
c) Comment box for other pathologies you see
eFigure 2. Screenshot of the Second Screen of the Grading Tool, Which Asks Graders to Assess the
Image for DR, DME and Other Notable Conditions or Findings
Inception-v3 (aka GoogleNet)
https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html
https://arxiv.org/abs/1512.00567
• EyePACS-1 과 Messidor-2 의 AUC = 0.991, 0.990
• 7-8명의 안과 전문의와 sensitivity, specificity 가 동일한 수준
• F-score: 0.95 (vs. 인간 의사는 0.91)
Additional sensitivity analyses were conducted for sev-
eralsubcategories:(1)detectingmoderateorworsediabeticreti-
effects of data set size on algorithm performance were exam-
ined and shown to plateau at around 60 000 images (or ap-
Figure 2. Validation Set Performance for Referable Diabetic Retinopathy
100
80
60
40
20
0
0
70
80
85
95
90
75
0 5 10 15 20 25 30
100806040
Sensitivity,%
1 – Specificity, %
20
EyePACS-1: AUC, 99.1%; 95% CI, 98.8%-99.3%A
100
High-sensitivity operating point
High-specificity operating point
100
80
60
40
20
0
0
70
80
85
95
90
75
0 5 10 15 20 25 30
100806040
Sensitivity,%
1 – Specificity, %
20
Messidor-2: AUC, 99.0%; 95% CI, 98.6%-99.5%B
100
High-specificity operating point
High-sensitivity operating point
Performance of the algorithm (black curve) and ophthalmologists (colored
circles) for the presence of referable diabetic retinopathy (moderate or worse
diabetic retinopathy or referable diabetic macular edema) on A, EyePACS-1
(8788 fully gradable images) and B, Messidor-2 (1745 fully gradable images).
The black diamonds on the graph correspond to the sensitivity and specificity of
the algorithm at the high-sensitivity and high-specificity operating points.
In A, for the high-sensitivity operating point, specificity was 93.4% (95% CI,
92.8%-94.0%) and sensitivity was 97.5% (95% CI, 95.8%-98.7%); for the
high-specificity operating point, specificity was 98.1% (95% CI, 97.8%-98.5%)
and sensitivity was 90.3% (95% CI, 87.5%-92.7%). In B, for the high-sensitivity
operating point, specificity was 93.9% (95% CI, 92.4%-95.3%) and sensitivity
was 96.1% (95% CI, 92.4%-98.3%); for the high-specificity operating point,
specificity was 98.5% (95% CI, 97.7%-99.1%) and sensitivity was 87.0% (95%
CI, 81.1%-91.0%). There were 8 ophthalmologists who graded EyePACS-1 and 7
ophthalmologists who graded Messidor-2. AUC indicates area under the
receiver operating characteristic curve.
Research Original Investigation Accuracy of a Deep Learning Algorithm for Detection of Diabetic Retinopathy
Results
Skin Cancer
ABCDE check-list
0 0 M O N T H 2 0 1 7 | V O L 0 0 0 | N A T U R E | 1
LETTER doi:10.1038/nature21056
Dermatologist-level classification of skin cancer
with deep neural networks
Andre Esteva1
*, Brett Kuprel1
*, Roberto A. Novoa2,3
, Justin Ko2
, Susan M. Swetter2,4
, Helen M. Blau5
& Sebastian Thrun6
Skin cancer, the most common human malignancy1–3
, is primarily
diagnosed visually, beginning with an initial clinical screening
and followed potentially by dermoscopic analysis, a biopsy and
histopathological examination. Automated classification of skin
lesions using images is a challenging task owing to the fine-grained
variability in the appearance of skin lesions. Deep convolutional
neural networks (CNNs)4,5
show potential for general and highly
variable tasks across many fine-grained object categories6–11
.
Here we demonstrate classification of skin lesions using a single
CNN, trained end-to-end from images directly, using only pixels
and disease labels as inputs. We train a CNN using a dataset of
129,450 clinical images—two orders of magnitude larger than
previous datasets12
—consisting of 2,032 different diseases. We
test its performance against 21 board-certified dermatologists on
biopsy-proven clinical images with two critical binary classification
use cases: keratinocyte carcinomas versus benign seborrheic
keratoses; and malignant melanomas versus benign nevi. The first
case represents the identification of the most common cancers, the
second represents the identification of the deadliest skin cancer.
The CNN achieves performance on par with all tested experts
across both tasks, demonstrating an artificial intelligence capable
of classifying skin cancer with a level of competence comparable to
dermatologists. Outfitted with deep neural networks, mobile devices
can potentially extend the reach of dermatologists outside of the
clinic. It is projected that 6.3 billion smartphone subscriptions will
exist by the year 2021 (ref. 13) and can therefore potentially provide
low-cost universal access to vital diagnostic care.
There are 5.4 million new cases of skin cancer in the United States2
every year. One in five Americans will be diagnosed with a cutaneous
malignancy in their lifetime. Although melanomas represent fewer than
5% of all skin cancers in the United States, they account for approxi-
mately 75% of all skin-cancer-related deaths, and are responsible for
over 10,000 deaths annually in the United States alone. Early detection
is critical, as the estimated 5-year survival rate for melanoma drops
from over 99% if detected in its earliest stages to about 14% if detected
in its latest stages. We developed a computational method which may
allow medical practitioners and patients to proactively track skin
lesions and detect cancer earlier. By creating a novel disease taxonomy,
and a disease-partitioning algorithm that maps individual diseases into
training classes, we are able to build a deep learning system for auto-
mated dermatology.
Previous work in dermatological computer-aided classification12,14,15
has lacked the generalization capability of medical practitioners
owing to insufficient data and a focus on standardized tasks such as
dermoscopy16–18
and histological image classification19–22
. Dermoscopy
images are acquired via a specialized instrument and histological
images are acquired via invasive biopsy and microscopy; whereby
both modalities yield highly standardized images. Photographic
images (for example, smartphone images) exhibit variability in factors
such as zoom, angle and lighting, making classification substantially
more challenging23,24
. We overcome this challenge by using a data-
driven approach—1.41 million pre-training and training images
make classification robust to photographic variability. Many previous
techniques require extensive preprocessing, lesion segmentation and
extraction of domain-specific visual features before classification. By
contrast, our system requires no hand-crafted features; it is trained
end-to-end directly from image labels and raw pixels, with a single
network for both photographic and dermoscopic images. The existing
body of work uses small datasets of typically less than a thousand
images of skin lesions16,18,19
, which, as a result, do not generalize well
to new images. We demonstrate generalizable classification with a new
dermatologist-labelled dataset of 129,450 clinical images, including
3,374 dermoscopy images.
Deep learning algorithms, powered by advances in computation
and very large datasets25
, have recently been shown to exceed human
performance in visual tasks such as playing Atari games26
, strategic
board games like Go27
and object recognition6
. In this paper we
outline the development of a CNN that matches the performance of
dermatologists at three key diagnostic tasks: melanoma classification,
melanoma classification using dermoscopy and carcinoma
classification. We restrict the comparisons to image-based classification.
We utilize a GoogleNet Inception v3 CNN architecture9
that was pre-
trained on approximately 1.28 million images (1,000 object categories)
from the 2014 ImageNet Large Scale Visual Recognition Challenge6
,
and train it on our dataset using transfer learning28
. Figure 1 shows the
working system. The CNN is trained using 757 disease classes. Our
dataset is composed of dermatologist-labelled images organized in a
tree-structured taxonomy of 2,032 diseases, in which the individual
diseases form the leaf nodes. The images come from 18 different
clinician-curated, open-access online repositories, as well as from
clinical data from Stanford University Medical Center. Figure 2a shows
a subset of the full taxonomy, which has been organized clinically and
visually by medical experts. We split our dataset into 127,463 training
and validation images and 1,942 biopsy-labelled test images.
To take advantage of fine-grained information contained within the
taxonomy structure, we develop an algorithm (Extended Data Table 1)
to partition diseases into fine-grained training classes (for example,
amelanotic melanoma and acrolentiginous melanoma). During
inference, the CNN outputs a probability distribution over these fine
classes. To recover the probabilities for coarser-level classes of interest
(for example, melanoma) we sum the probabilities of their descendants
(see Methods and Extended Data Fig. 1 for more details).
We validate the effectiveness of the algorithm in two ways, using
nine-fold cross-validation. First, we validate the algorithm using a
three-class disease partition—the first-level nodes of the taxonomy,
which represent benign lesions, malignant lesions and non-neoplastic
1
Department of Electrical Engineering, Stanford University, Stanford, California, USA. 2
Department of Dermatology, Stanford University, Stanford, California, USA. 3
Department of Pathology,
Stanford University, Stanford, California, USA. 4
Dermatology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. 5
Baxter Laboratory for Stem Cell Biology, Department
of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA. 6
Department of Computer Science, Stanford University,
Stanford, California, USA.
*These authors contributed equally to this work.
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
LETTERH
his task, the CNN achieves 72.1±0.9% (mean±s.d.) overall
he average of individual inference class accuracies) and two
gists attain 65.56% and 66.0% accuracy on a subset of the
set. Second, we validate the algorithm using a nine-class
rtition—the second-level nodes—so that the diseases of
have similar medical treatment plans. The CNN achieves
two trials, one using standard images and the other using
images, which reflect the two steps that a dermatologist m
to obtain a clinical impression. The same CNN is used for a
Figure 2b shows a few example images, demonstrating th
distinguishing between malignant and benign lesions, whic
visual features. Our comparison metrics are sensitivity an
Acral-lentiginous melanoma
Amelanotic melanoma
Lentigo melanoma
…
Blue nevus
Halo nevus
Mongolian spot
…
Training classes (757)Deep convolutional neural network (Inception v3) Inference classes (varies by task)
92% malignant melanocytic lesion
8% benign melanocytic lesion
Skin lesion image
Convolution
AvgPool
MaxPool
Concat
Dropout
Fully connected
Softmax
Deep CNN layout. Our classification technique is a
Data flow is from left to right: an image of a skin lesion
e, melanoma) is sequentially warped into a probability
over clinical classes of skin disease using Google Inception
hitecture pretrained on the ImageNet dataset (1.28 million
1,000 generic object classes) and fine-tuned on our own
29,450 skin lesions comprising 2,032 different diseases.
ning classes are defined using a novel taxonomy of skin disease
oning algorithm that maps diseases into training classes
(for example, acrolentiginous melanoma, amelanotic melano
melanoma). Inference classes are more general and are comp
or more training classes (for example, malignant melanocytic
class of melanomas). The probability of an inference class is c
summing the probabilities of the training classes according to
structure (see Methods). Inception v3 CNN architecture repr
from https://research.googleblog.com/2016/03/train-your-ow
classifier-with.html
GoogleNet Inception v3
• 129,450개의 피부과 병변 이미지 데이터를 자체 제작
• 미국의 피부과 전문의 18명이 데이터 curation
• CNN (Inception v3)으로 이미지를 학습
• 피부과 전문의들 21명과 인공지능의 판독 결과 비교
• 표피세포 암 (keratinocyte carcinoma)과 지루각화증(benign seborrheic keratosis)의 구분
• 악성 흑색종과 양성 병변 구분 (표준 이미지 데이터 기반)
• 악성 흑색종과 양성 병변 구분 (더마토스코프로 찍은 이미지 기반)
Skin cancer classification performance of
the CNN and dermatologists. LETT
a
b
0 1
Sensitivity
0
1
Specificity
Melanoma: 130 images
0 1
Sensitivity
0
1
Specificity
Melanoma: 225 images
Algorithm: AUC = 0.96
0 1
Sensitivity
0
1
Specificity
Melanoma: 111 dermoscopy images
0 1
Sensitivity
0
1
Specificity
Carcinoma: 707 images
Algorithm: AUC = 0.96
0 1
Sensitivity
0
1
Specificity
Melanoma: 1,010 dermoscopy images
Algorithm: AUC = 0.94
0 1
Sensitivity
0
1
Specificity
Carcinoma: 135 images
Algorithm: AUC = 0.96
Dermatologists (25)
Average dermatologist
Algorithm: AUC = 0.94
Dermatologists (22)
Average dermatologist
Algorithm: AUC = 0.91
Dermatologists (21)
Average dermatologist
cancer classification performance of the CNN and
21명 중에 인공지능보다 정확성이 떨어지는 피부과 전문의들이 상당수 있었음
피부과 전문의들의 평균 성적도 인공지능보다 좋지 않았음
Skin cancer classification performance of
the CNN and dermatologists. LETT
a
b
0 1
Sensitivity
0
1
Specificity
Melanoma: 130 images
0 1
Sensitivity
0
1
Specificity
Melanoma: 225 images
Algorithm: AUC = 0.96
0 1
Sensitivity
0
1
Specificity
Melanoma: 111 dermoscopy images
0 1
Sensitivity
0
1
Specificity
Carcinoma: 707 images
Algorithm: AUC = 0.96
0 1
Sensitivity
0
1
Specificity
Melanoma: 1,010 dermoscopy images
Algorithm: AUC = 0.94
0 1
Sensitivity
0
1
Specificity
Carcinoma: 135 images
Algorithm: AUC = 0.96
Dermatologists (25)
Average dermatologist
Algorithm: AUC = 0.94
Dermatologists (22)
Average dermatologist
Algorithm: AUC = 0.91
Dermatologists (21)
Average dermatologist
cancer classification performance of the CNN and
Digital Pathologist
Figure 4. Participating Pathologists’ Interpretations of Each of the 240 Breast Biopsy Test Cases
0 25 50 75 100
Interpretations, %
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
Case
Benign without atypia
72 Cases
2070 Total interpretations
A
0 25 50 75 100
Interpretations, %
218
220
222
224
226
228
230
232
234
236
238
240
Case
Invasive carcinoma
23 Cases
663 Total interpretations
D
0 25 50 75 100
Interpretations, %
147
145
149
151
153
155
157
159
161
163
165
167
169
171
173
175
177
179
181
183
185
187
189
191
193
195
197
199
201
203
205
207
209
211
213
215
217
Case
DCIS
73 Cases
2097 Total interpretations
C
0 25 50 75 100
Interpretations, %
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
Case
Atypia
72 Cases
2070 Total interpretations
B
Benign without atypia
Atypia
DCIS
Invasive carcinoma
Pathologist interpretation
DCIS indicates ductal carcinoma in situ.
Diagnostic Concordance in Interpreting Breast Biopsies Original Investigation Research
Elmore etl al. JAMA 2015
Diagnostic Concordance Among Pathologists
Interpreting Breast Biopsy Specimens
The overall agreement between the individual pathologists’
interpretations and the expert consensus–derived reference
diagnoses was 75.3% (total 240 cases)
Elmore etl al. JAMA 2015
Diagnostic Concordance Among Pathologists
Interpreting Breast Biopsy Specimens
• Concordance noted in 5194 of 6900 case interpretations or 75.3%.
• Reference diagnosis was obtained from consensus of 3 experienced breast pathologists.
spentonthisactivitywas16(95%CI,15-17);43participantswere
awarded the maximum 20 hours.
Pathologists’ Diagnoses Compared With Consensus-Derived
Reference Diagnoses
The 115 participants each interpreted 60 cases, providing 6900
total individual interpretations for comparison with the con-
sensus-derived reference diagnoses (Figure 3). Participants
agreed with the consensus-derived reference diagnosis for
75.3% of the interpretations (95% CI, 73.4%-77.0%). Partici-
pants (n = 94) who completed the CME activity reported that
Patient and Pathologist Characteristics Associated With
Overinterpretation and Underinterpretation
The association of breast density with overall pathologists’
concordance (as well as both overinterpretation and under-
interpretation rates) was statistically significant, as shown
in Table 3 when comparing mammographic density grouped
into 2 categories (low density vs high density). The overall
concordance estimates also decreased consistently with
increasing breast density across all 4 Breast Imaging-
Reporting and Data System (BI-RADS) density categories:
BI-RADS A, 81% (95% CI, 75%-86%); BI-RADS B, 77% (95%
Figure 3. Comparison of 115 Participating Pathologists’ Interpretations vs the Consensus-Derived Reference
Diagnosis for 6900 Total Case Interpretationsa
Participating Pathologists’ Interpretation
ConsensusReference
Diagnosisb
Benign
without atypia Atypia DCIS
Invasive
carcinoma Total
Benign without atypia 1803 200 46 21 2070
Atypia 719 990 353 8 2070
DCIS 133 146 1764 54 2097
Invasive carcinoma 3 0 23 637 663
Total 2658 1336 2186 720 6900
DCIS indicates ductal carcinoma
in situ.
a
Concordance noted in 5194 of
6900 case interpretations or
75.3%.
b
Reference diagnosis was obtained
from consensus of 3 experienced
breast pathologists.
Diagnostic Concordance in Interpreting Breast Biopsies Original Investigation Research
Comparison of 115 Participating Pathologists’ Interpretations vs 

the Consensus-Derived Reference Diagnosis for 6900 Total Case Interpretations
Constructing higher-level
contextual/relational features:
Relationships between epithelial
nuclear neighbors
Relationships between morphologically
regular and irregular nuclei
Relationships between epithelial
and stromal objects
Relationships between epithelial
nuclei and cytoplasm
Characteristics of
stromal nuclei
and stromal matrix
Characteristics of
epithelial nuclei and
epithelial cytoplasm
Building an epithelial/stromal classifier:
Epithelial vs.stroma
classifier
Epithelial vs.stroma
classifier
B
Basic image processing and feature construction:
H&E image Image broken into superpixels Nuclei identified within
each superpixel
A
Relationships of contiguous epithelial
regions with underlying nuclear objects
Learning an image-based model to predict survival
Processed images from patients Processed images from patients
C
D
onNovember17,2011stm.sciencemag.orgwnloadedfrom
TMAs contain 0.6-mm-diameter cores (median
of two cores per case) that represent only a small
sample of the full tumor. We acquired data from
two separate and independent cohorts: Nether-
lands Cancer Institute (NKI; 248 patients) and
Vancouver General Hospital (VGH; 328 patients).
Unlike previous work in cancer morphom-
etry (18–21), our image analysis pipeline was
not limited to a predefined set of morphometric
features selected by pathologists. Rather, C-Path
measures an extensive, quantitative feature set
from the breast cancer epithelium and the stro-
ma (Fig. 1). Our image processing system first
performed an automated, hierarchical scene seg-
mentation that generated thousands of measure-
ments, including both standard morphometric
descriptors of image objects and higher-level
contextual, relational, and global image features.
The pipeline consisted of three stages (Fig. 1, A
to C, and tables S8 and S9). First, we used a set of
processing steps to separate the tissue from the
background, partition the image into small regions
of coherent appearance known as superpixels,
find nuclei within the superpixels, and construct
Constructing higher-level
contextual/relational features:
Relationships between epithelial
nuclear neighbors
Relationships between morphologically
regular and irregular nuclei
Relationships between epithelial
and stromal objects
Relationships between epithelial
nuclei and cytoplasm
Characteristics of
stromal nuclei
and stromal matrix
Characteristics of
epithelial nuclei and
epithelial cytoplasm
Epithelial vs.stroma
classifier
Epithelial vs.stroma
classifier
Relationships of contiguous epithelial
regions with underlying nuclear objects
Learning an image-based model to predict survival
Processed images from patients
alive at 5 years
Processed images from patients
deceased at 5 years
L1-regularized
logisticregression
modelbuilding
5YS predictive model
Unlabeled images
Time
P(survival)
C
D
Identification of novel prognostically
important morphologic features
basic cellular morphologic properties (epithelial reg-
ular nuclei = red; epithelial atypical nuclei = pale blue;
epithelial cytoplasm = purple; stromal matrix = green;
stromal round nuclei = dark green; stromal spindled
nuclei = teal blue; unclassified regions = dark gray;
spindled nuclei in unclassified regions = yellow; round
nuclei in unclassified regions = gray; background =
white). (Left panel) After the classification of each
image object, a rich feature set is constructed. (D)
Learning an image-based model to predict survival.
Processed images from patients alive at 5 years after
surgery and from patients deceased at 5 years after
surgery were used to construct an image-based prog-
nostic model. After construction of the model, it was
applied to a test set of breast cancer images (not
used in model building) to classify patients as high
or low risk of death by 5 years.
www.ScienceTranslationalMedicine.org 9 November 2011 Vol 3 Issue 108 108ra113 2
onNovember17,2011stm.sciencemag.orgDownloadedfrom
Digital Pathologist
Sci Transl Med. 2011 Nov 9;3(108):108ra113
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017
Global Trends of Digital Healthcare Industry in 2017

Contenu connexe

Tendances

マークシート読み込みプログラムを作ってみた@2018-04-04
マークシート読み込みプログラムを作ってみた@2018-04-04マークシート読み込みプログラムを作ってみた@2018-04-04
マークシート読み込みプログラムを作ってみた@2018-04-04Katsuhiro Morishita
 
運用してわかったLookerの本質的メリット : Data Engineering Study #8
運用してわかったLookerの本質的メリット : Data Engineering Study #8運用してわかったLookerの本質的メリット : Data Engineering Study #8
運用してわかったLookerの本質的メリット : Data Engineering Study #8Masatoshi Abe
 
ChatGPT and OpenAI.pdf
ChatGPT and OpenAI.pdfChatGPT and OpenAI.pdf
ChatGPT and OpenAI.pdfSonal Tiwari
 
いまできるデータ分析を Power BI ではじめよう
いまできるデータ分析を Power BI ではじめよういまできるデータ分析を Power BI ではじめよう
いまできるデータ分析を Power BI ではじめようYugo Shimizu
 
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA)
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA) 오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA)
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA) Yongho Ha
 
LLM 모델 기반 서비스 실전 가이드
LLM 모델 기반 서비스 실전 가이드LLM 모델 기반 서비스 실전 가이드
LLM 모델 기반 서비스 실전 가이드Tae Young Lee
 
アンケートを即可視化!~MS Forms ⇒ MS Flow ⇒ Power BI~
アンケートを即可視化!~MS Forms ⇒ MS Flow ⇒ Power BI~アンケートを即可視化!~MS Forms ⇒ MS Flow ⇒ Power BI~
アンケートを即可視化!~MS Forms ⇒ MS Flow ⇒ Power BI~Yugo Shimizu
 
[포트폴리오] 배달의 민족 - 반찬 서비스
[포트폴리오] 배달의 민족 - 반찬 서비스[포트폴리오] 배달의 민족 - 반찬 서비스
[포트폴리오] 배달의 민족 - 반찬 서비스석현 장
 
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표Dylan Ko
 
[창업&예비창업자] 사업계획서 작성
[창업&예비창업자] 사업계획서 작성[창업&예비창업자] 사업계획서 작성
[창업&예비창업자] 사업계획서 작성더게임체인저스
 
데이터는 차트가 아니라 돈이 되어야 한다.
데이터는 차트가 아니라 돈이 되어야 한다.데이터는 차트가 아니라 돈이 되어야 한다.
데이터는 차트가 아니라 돈이 되어야 한다.Yongho Ha
 
Generative AI for the rest of us
Generative AI for the rest of usGenerative AI for the rest of us
Generative AI for the rest of usMassimo Ferre'
 
人流データ解析プラットフォーム Mobmap
人流データ解析プラットフォーム Mobmap人流データ解析プラットフォーム Mobmap
人流データ解析プラットフォーム MobmapHiroaki Sengoku
 
ふくしまプログラミング推進協会_生成AIの使いこなし202311.pdf
ふくしまプログラミング推進協会_生成AIの使いこなし202311.pdfふくしまプログラミング推進協会_生成AIの使いこなし202311.pdf
ふくしまプログラミング推進協会_生成AIの使いこなし202311.pdfAyako Omori
 
ChatGPT-Template-slidesppt.net_.pptx
ChatGPT-Template-slidesppt.net_.pptxChatGPT-Template-slidesppt.net_.pptx
ChatGPT-Template-slidesppt.net_.pptxRameshBabu161437
 
グラフ構造のデータモデルをPower BIで可視化してみた
グラフ構造のデータモデルをPower BIで可視化してみたグラフ構造のデータモデルをPower BIで可視化してみた
グラフ構造のデータモデルをPower BIで可視化してみたCData Software Japan
 
2021 메조미디어 트렌드 리포트
2021 메조미디어 트렌드 리포트2021 메조미디어 트렌드 리포트
2021 메조미디어 트렌드 리포트MezzoMedia
 

Tendances (20)

マークシート読み込みプログラムを作ってみた@2018-04-04
マークシート読み込みプログラムを作ってみた@2018-04-04マークシート読み込みプログラムを作ってみた@2018-04-04
マークシート読み込みプログラムを作ってみた@2018-04-04
 
運用してわかったLookerの本質的メリット : Data Engineering Study #8
運用してわかったLookerの本質的メリット : Data Engineering Study #8運用してわかったLookerの本質的メリット : Data Engineering Study #8
運用してわかったLookerの本質的メリット : Data Engineering Study #8
 
ChatGPT and OpenAI.pdf
ChatGPT and OpenAI.pdfChatGPT and OpenAI.pdf
ChatGPT and OpenAI.pdf
 
AI in healthcare - Use Cases
AI in healthcare - Use Cases AI in healthcare - Use Cases
AI in healthcare - Use Cases
 
Evolution of AI in workplace.pptx
Evolution of AI in workplace.pptxEvolution of AI in workplace.pptx
Evolution of AI in workplace.pptx
 
いまできるデータ分析を Power BI ではじめよう
いまできるデータ分析を Power BI ではじめよういまできるデータ分析を Power BI ではじめよう
いまできるデータ分析を Power BI ではじめよう
 
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA)
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA) 오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA)
오늘 밤부터 쓰는 google analytics (구글 애널리틱스, GA)
 
LLM 모델 기반 서비스 실전 가이드
LLM 모델 기반 서비스 실전 가이드LLM 모델 기반 서비스 실전 가이드
LLM 모델 기반 서비스 실전 가이드
 
アンケートを即可視化!~MS Forms ⇒ MS Flow ⇒ Power BI~
アンケートを即可視化!~MS Forms ⇒ MS Flow ⇒ Power BI~アンケートを即可視化!~MS Forms ⇒ MS Flow ⇒ Power BI~
アンケートを即可視化!~MS Forms ⇒ MS Flow ⇒ Power BI~
 
[포트폴리오] 배달의 민족 - 반찬 서비스
[포트폴리오] 배달의 민족 - 반찬 서비스[포트폴리오] 배달의 민족 - 반찬 서비스
[포트폴리오] 배달의 민족 - 반찬 서비스
 
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표
[우리가 데이터를 쓰는 법] 좋다는 건 알겠는데 좀 써보고 싶소. 데이터! - 넘버웍스 하용호 대표
 
[창업&예비창업자] 사업계획서 작성
[창업&예비창업자] 사업계획서 작성[창업&예비창업자] 사업계획서 작성
[창업&예비창업자] 사업계획서 작성
 
セマンティックWebとオントロジー:現状と将来展望
セマンティックWebとオントロジー:現状と将来展望 セマンティックWebとオントロジー:現状と将来展望
セマンティックWebとオントロジー:現状と将来展望
 
데이터는 차트가 아니라 돈이 되어야 한다.
데이터는 차트가 아니라 돈이 되어야 한다.데이터는 차트가 아니라 돈이 되어야 한다.
데이터는 차트가 아니라 돈이 되어야 한다.
 
Generative AI for the rest of us
Generative AI for the rest of usGenerative AI for the rest of us
Generative AI for the rest of us
 
人流データ解析プラットフォーム Mobmap
人流データ解析プラットフォーム Mobmap人流データ解析プラットフォーム Mobmap
人流データ解析プラットフォーム Mobmap
 
ふくしまプログラミング推進協会_生成AIの使いこなし202311.pdf
ふくしまプログラミング推進協会_生成AIの使いこなし202311.pdfふくしまプログラミング推進協会_生成AIの使いこなし202311.pdf
ふくしまプログラミング推進協会_生成AIの使いこなし202311.pdf
 
ChatGPT-Template-slidesppt.net_.pptx
ChatGPT-Template-slidesppt.net_.pptxChatGPT-Template-slidesppt.net_.pptx
ChatGPT-Template-slidesppt.net_.pptx
 
グラフ構造のデータモデルをPower BIで可視化してみた
グラフ構造のデータモデルをPower BIで可視化してみたグラフ構造のデータモデルをPower BIで可視化してみた
グラフ構造のデータモデルをPower BIで可視化してみた
 
2021 메조미디어 트렌드 리포트
2021 메조미디어 트렌드 리포트2021 메조미디어 트렌드 리포트
2021 메조미디어 트렌드 리포트
 

En vedette

그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다Yoon Sup Choi
 
Connected Health Conference 2016 Review by DHP
Connected Health Conference 2016 Review by DHPConnected Health Conference 2016 Review by DHP
Connected Health Conference 2016 Review by DHPYoon Sup Choi
 
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭Yoon Sup Choi
 
디지털 헬스케어 파트너스 (DHP) 소개
디지털 헬스케어 파트너스 (DHP) 소개디지털 헬스케어 파트너스 (DHP) 소개
디지털 헬스케어 파트너스 (DHP) 소개Yoon Sup Choi
 
그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다Yoon Sup Choi
 
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언Yoon Sup Choi
 
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가Yoon Sup Choi
 
Digital health in diabetes: a global perspective
Digital health in diabetes: a global perspectiveDigital health in diabetes: a global perspective
Digital health in diabetes: a global perspectiveYoon Sup Choi
 
How to implement digital medicine in the future
How to implement digital medicine in the futureHow to implement digital medicine in the future
How to implement digital medicine in the futureYoon Sup Choi
 
디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로
디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로
디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로Yoon Sup Choi
 
Recent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcareRecent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcareYoon Sup Choi
 
원격 의료 산업의 글로벌 동향 및 주요 이슈
원격 의료 산업의 글로벌 동향 및 주요 이슈원격 의료 산업의 글로벌 동향 및 주요 이슈
원격 의료 산업의 글로벌 동향 및 주요 이슈Yoon Sup Choi
 
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)Yoon Sup Choi
 

En vedette (13)

그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다
 
Connected Health Conference 2016 Review by DHP
Connected Health Conference 2016 Review by DHPConnected Health Conference 2016 Review by DHP
Connected Health Conference 2016 Review by DHP
 
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭
 
디지털 헬스케어 파트너스 (DHP) 소개
디지털 헬스케어 파트너스 (DHP) 소개디지털 헬스케어 파트너스 (DHP) 소개
디지털 헬스케어 파트너스 (DHP) 소개
 
그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다
 
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
 
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가
 
Digital health in diabetes: a global perspective
Digital health in diabetes: a global perspectiveDigital health in diabetes: a global perspective
Digital health in diabetes: a global perspective
 
How to implement digital medicine in the future
How to implement digital medicine in the futureHow to implement digital medicine in the future
How to implement digital medicine in the future
 
디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로
디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로
디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로
 
Recent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcareRecent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcare
 
원격 의료 산업의 글로벌 동향 및 주요 이슈
원격 의료 산업의 글로벌 동향 및 주요 이슈원격 의료 산업의 글로벌 동향 및 주요 이슈
원격 의료 산업의 글로벌 동향 및 주요 이슈
 
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
 

Similaire à Global Trends of Digital Healthcare Industry in 2017

글로벌 디지털 헬스케어 산업 및 규제 동향
글로벌 디지털 헬스케어 산업 및 규제 동향 글로벌 디지털 헬스케어 산업 및 규제 동향
글로벌 디지털 헬스케어 산업 및 규제 동향 Yoon Sup Choi
 
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면Yoon Sup Choi
 
디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들Yoon Sup Choi
 
The impact of innovation on the future of IVD
The impact of innovation on the future of IVDThe impact of innovation on the future of IVD
The impact of innovation on the future of IVDEY
 
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성Yoon Sup Choi
 
The Propell Group - ESSEC Business School - Digital Health Innovation
The Propell Group - ESSEC Business School - Digital Health InnovationThe Propell Group - ESSEC Business School - Digital Health Innovation
The Propell Group - ESSEC Business School - Digital Health InnovationJulien de Salaberry
 
Consumerism, Innovation and Best Practices to Thrive in the Future of Health
Consumerism, Innovation and Best Practices to Thrive in the Future of HealthConsumerism, Innovation and Best Practices to Thrive in the Future of Health
Consumerism, Innovation and Best Practices to Thrive in the Future of HealthJustin Barnes
 
Real World Evidence Industry Snapshot
Real World Evidence Industry SnapshotReal World Evidence Industry Snapshot
Real World Evidence Industry SnapshotEnka Birce
 
Real World Data - The New Currency in Healthcare
Real World Data - The New Currency in HealthcareReal World Data - The New Currency in Healthcare
Real World Data - The New Currency in HealthcareJohn Reites
 
mHealthPharma Pitch Deck - 2016-06-01
mHealthPharma Pitch Deck - 2016-06-01mHealthPharma Pitch Deck - 2016-06-01
mHealthPharma Pitch Deck - 2016-06-01Judson Lamphere
 
The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.Merry D'souza
 
Preparing for Healthcare Transformation - John Reza
Preparing for Healthcare Transformation - John RezaPreparing for Healthcare Transformation - John Reza
Preparing for Healthcare Transformation - John RezaJohn Reza, MBA
 
Digital_Health_Zug_Event_04-04-2016
Digital_Health_Zug_Event_04-04-2016Digital_Health_Zug_Event_04-04-2016
Digital_Health_Zug_Event_04-04-2016Michael Dillhyon
 
의료의 미래, 디지털 헬스케어: 제약산업을 중심으로
의료의 미래, 디지털 헬스케어: 제약산업을 중심으로의료의 미래, 디지털 헬스케어: 제약산업을 중심으로
의료의 미래, 디지털 헬스케어: 제약산업을 중심으로Yoon Sup Choi
 
디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)Yoon Sup Choi
 
The Future of Personalized Health Care: Predictive Analytics by @Rock_Health
The Future of Personalized Health Care: Predictive Analytics by @Rock_HealthThe Future of Personalized Health Care: Predictive Analytics by @Rock_Health
The Future of Personalized Health Care: Predictive Analytics by @Rock_HealthRock Health
 
The 10 best medical &amp; clinical laboratories to watch for 2019
The 10 best medical &amp; clinical laboratories to watch for 2019The 10 best medical &amp; clinical laboratories to watch for 2019
The 10 best medical &amp; clinical laboratories to watch for 2019insightscare
 
StartUp Health - Private Market Perspectives - Digital Healthcare Innovation ...
StartUp Health - Private Market Perspectives - Digital Healthcare Innovation ...StartUp Health - Private Market Perspectives - Digital Healthcare Innovation ...
StartUp Health - Private Market Perspectives - Digital Healthcare Innovation ...Healthegy
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약Yoon Sup Choi
 

Similaire à Global Trends of Digital Healthcare Industry in 2017 (20)

글로벌 디지털 헬스케어 산업 및 규제 동향
글로벌 디지털 헬스케어 산업 및 규제 동향 글로벌 디지털 헬스케어 산업 및 규제 동향
글로벌 디지털 헬스케어 산업 및 규제 동향
 
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
 
디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들
 
The impact of innovation on the future of IVD
The impact of innovation on the future of IVDThe impact of innovation on the future of IVD
The impact of innovation on the future of IVD
 
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
 
The Propell Group - ESSEC Business School - Digital Health Innovation
The Propell Group - ESSEC Business School - Digital Health InnovationThe Propell Group - ESSEC Business School - Digital Health Innovation
The Propell Group - ESSEC Business School - Digital Health Innovation
 
Consumerism, Innovation and Best Practices to Thrive in the Future of Health
Consumerism, Innovation and Best Practices to Thrive in the Future of HealthConsumerism, Innovation and Best Practices to Thrive in the Future of Health
Consumerism, Innovation and Best Practices to Thrive in the Future of Health
 
Real World Evidence Industry Snapshot
Real World Evidence Industry SnapshotReal World Evidence Industry Snapshot
Real World Evidence Industry Snapshot
 
Real World Data - The New Currency in Healthcare
Real World Data - The New Currency in HealthcareReal World Data - The New Currency in Healthcare
Real World Data - The New Currency in Healthcare
 
mHealthPharma Pitch Deck - 2016-06-01
mHealthPharma Pitch Deck - 2016-06-01mHealthPharma Pitch Deck - 2016-06-01
mHealthPharma Pitch Deck - 2016-06-01
 
The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.
 
Preparing for Healthcare Transformation - John Reza
Preparing for Healthcare Transformation - John RezaPreparing for Healthcare Transformation - John Reza
Preparing for Healthcare Transformation - John Reza
 
Digital_Health_Zug_Event_04-04-2016
Digital_Health_Zug_Event_04-04-2016Digital_Health_Zug_Event_04-04-2016
Digital_Health_Zug_Event_04-04-2016
 
의료의 미래, 디지털 헬스케어: 제약산업을 중심으로
의료의 미래, 디지털 헬스케어: 제약산업을 중심으로의료의 미래, 디지털 헬스케어: 제약산업을 중심으로
의료의 미래, 디지털 헬스케어: 제약산업을 중심으로
 
디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)
 
The Future of Personalized Health Care: Predictive Analytics by @Rock_Health
The Future of Personalized Health Care: Predictive Analytics by @Rock_HealthThe Future of Personalized Health Care: Predictive Analytics by @Rock_Health
The Future of Personalized Health Care: Predictive Analytics by @Rock_Health
 
The 10 best medical &amp; clinical laboratories to watch for 2019
The 10 best medical &amp; clinical laboratories to watch for 2019The 10 best medical &amp; clinical laboratories to watch for 2019
The 10 best medical &amp; clinical laboratories to watch for 2019
 
StartUp Health - Private Market Perspectives - Digital Healthcare Innovation ...
StartUp Health - Private Market Perspectives - Digital Healthcare Innovation ...StartUp Health - Private Market Perspectives - Digital Healthcare Innovation ...
StartUp Health - Private Market Perspectives - Digital Healthcare Innovation ...
 
Strand genomics features in CIO review
Strand genomics features in CIO reviewStrand genomics features in CIO review
Strand genomics features in CIO review
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약
 

Plus de Yoon Sup Choi

한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈Yoon Sup Choi
 
원격의료 시대의 디지털 치료제
원격의료 시대의 디지털 치료제원격의료 시대의 디지털 치료제
원격의료 시대의 디지털 치료제Yoon Sup Choi
 
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어Yoon Sup Choi
 
디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료Yoon Sup Choi
 
[대한병리학회] 의료 인공지능 101: 병리를 중심으로
[대한병리학회] 의료 인공지능 101: 병리를 중심으로[대한병리학회] 의료 인공지능 101: 병리를 중심으로
[대한병리학회] 의료 인공지능 101: 병리를 중심으로Yoon Sup Choi
 
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언Yoon Sup Choi
 
원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각Yoon Sup Choi
 
[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어Yoon Sup Choi
 
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건Yoon Sup Choi
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약Yoon Sup Choi
 
[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래Yoon Sup Choi
 
[ASGO 2019] Artificial Intelligence in Medicine
[ASGO 2019] Artificial Intelligence in Medicine[ASGO 2019] Artificial Intelligence in Medicine
[ASGO 2019] Artificial Intelligence in MedicineYoon Sup Choi
 
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가Yoon Sup Choi
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)Yoon Sup Choi
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)Yoon Sup Choi
 
디지털 의료가 '의료'가 될 때 (1/2)
디지털 의료가 '의료'가 될 때 (1/2)디지털 의료가 '의료'가 될 때 (1/2)
디지털 의료가 '의료'가 될 때 (1/2)Yoon Sup Choi
 
디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)Yoon Sup Choi
 
의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어Yoon Sup Choi
 
성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언Yoon Sup Choi
 
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019Yoon Sup Choi
 

Plus de Yoon Sup Choi (20)

한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈
 
원격의료 시대의 디지털 치료제
원격의료 시대의 디지털 치료제원격의료 시대의 디지털 치료제
원격의료 시대의 디지털 치료제
 
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
 
디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료
 
[대한병리학회] 의료 인공지능 101: 병리를 중심으로
[대한병리학회] 의료 인공지능 101: 병리를 중심으로[대한병리학회] 의료 인공지능 101: 병리를 중심으로
[대한병리학회] 의료 인공지능 101: 병리를 중심으로
 
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
 
원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각
 
[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어
 
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약
 
[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래
 
[ASGO 2019] Artificial Intelligence in Medicine
[ASGO 2019] Artificial Intelligence in Medicine[ASGO 2019] Artificial Intelligence in Medicine
[ASGO 2019] Artificial Intelligence in Medicine
 
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)
 
디지털 의료가 '의료'가 될 때 (1/2)
디지털 의료가 '의료'가 될 때 (1/2)디지털 의료가 '의료'가 될 때 (1/2)
디지털 의료가 '의료'가 될 때 (1/2)
 
디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)
 
의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어
 
성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언
 
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
 

Dernier

Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionMintel Group
 
Annual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesAnnual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesKeppelCorporation
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607dollysharma2066
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCRashishs7044
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncrdollysharma2066
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy Verified Accounts
 
Islamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in IslamabadIslamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in IslamabadAyesha Khan
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCRashishs7044
 
Innovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdfInnovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdfrichard876048
 
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCRashishs7044
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessSeta Wicaksana
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxMarkAnthonyAurellano
 
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deckPitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deckHajeJanKamps
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Kirill Klimov
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfpollardmorgan
 
8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCRashishs7044
 
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...ShrutiBose4
 

Dernier (20)

Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted Version
 
Annual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesAnnual General Meeting Presentation Slides
Annual General Meeting Presentation Slides
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail Accounts
 
Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)Japan IT Week 2024 Brochure by 47Billion (English)
Japan IT Week 2024 Brochure by 47Billion (English)
 
Islamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in IslamabadIslamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in Islamabad
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
 
Innovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdfInnovation Conference 5th March 2024.pdf
Innovation Conference 5th March 2024.pdf
 
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful Business
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
 
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCREnjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
 
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deckPitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
Pitch Deck Teardown: Geodesic.Life's $500k Pre-seed deck
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024
 
Call Us ➥9319373153▻Call Girls In North Goa
Call Us ➥9319373153▻Call Girls In North GoaCall Us ➥9319373153▻Call Girls In North Goa
Call Us ➥9319373153▻Call Girls In North Goa
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
 
8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR8447779800, Low rate Call girls in Rohini Delhi NCR
8447779800, Low rate Call girls in Rohini Delhi NCR
 
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
Ms Motilal Padampat Sugar Mills vs. State of Uttar Pradesh & Ors. - A Milesto...
 

Global Trends of Digital Healthcare Industry in 2017

  • 1. 최윤섭 디지털헬스케어 연구소 소장 최윤섭, PhD Global Trends of Digital Healthcare Industry The first half of 2017
  • 2. The Convergence of IT, BT and Medicine
  • 4.
  • 6.
  • 7. Digital Healthcare Partners (DHP) 는 국내 유일의 디지털 헬스케어 전문 스타트업 엑셀러레이터입니다. 글로벌 한국 일반 의료/ 헬스케어
  • 8. DHP는 디지털 헬스케어 전문 엑셀러레이터로서, 
 디지털 헬스케어/의료 스타트업을 발굴, 육성, 연결하고 투자합니다. 발굴 • 세상을 바꿀 수 있는 혁신적인 헬스케어 스타트업 및 예비 창업팀을 발굴합니다. • 발굴을 위해 DHP Office Hour, 해커톤, 자체 행사 개최 등의 다방면의 채널을 활용합니다. 육성 • 의료/헬스케어 전문가들로 이루어진 파트너 및 자문가들이 초기 스타트업을 멘토링합니다. • 사업 개발, 아이템 검증, 임상 연구, 인허가 관련 자문 등 전방위적으로 지원합니다. 투자 • 초기 스타트업 및 예비 창업팀에게 정해진 원칙에 따라 지분 투자를 집행합니다. • 스타트업을 성장시켜 지분 가치의 상승에 따라서 재무적 수익을 추구합니다. 연결 • 초기 스타트업을 병원, 규제기관, 보험사, VC, 대학 등 다양한 이해관계자들과 연결합니다. • 파트너와 자문가들의 네트워크를 적극 활용하여 스타트업을 의료계 이너서클로 끌어들입니다.
  • 9. DHP는 최고의 의료 전문가들이 초기 헬스케어 스타트업에 의학 자문, 의료 기관 연계, 임상 검증, 투자 유치 등을 지원합니다. 최윤섭 대표파트너 정지훈 파트너 김치원 파트너 • 성균관대학교 디지털헬스학과 교수 • 최윤섭 디지털 헬스케어 연구소 소장 • VUNO, Zikto, 녹십자홀딩스 등 자문 • 저서: ‘헬스케어 이노베이션’ • 전) 서울대학교 의과대학 암연구소 교수 • 전) 서울대학교병원 의생명연구원 교수 • 포항공대 전산생물학 이학박사 • 포항공대 컴퓨터공학/생명과학 학사 • 경희사이버대학 미디어커뮤니케이션학과 교수 • 빅뱅엔젤스 파트너 • Lunit, 매직에코, 휴레이포지티브 등 자문 • 저서: ‘제 4의 불', ‘거의 모든 IT의 역사’ 등 • 전) 명지병원 IT융합연구소장 • 한양대학교 의과대학 의학사 • 서울대학교 보건정책관리학 석사 • USC 의공학박사 • 내과전문의, 서울와이즈요양병원 원장 • 성균관대학교 디지털 헬스학과 교수 • Noom, Zikto, Future Play 등 자문 • 저서: ‘의료, 미래를 만나다’ • 전) 맥킨지 서울사무소 경영컨설턴트 • 전) 삼성서울병원 의료관리학과 교수 • 서울대학교 의과대학 졸업 • 연세대학교 보건대학원 석사
  • 10. 많은 언론들에서 디지털 헬스케어 파트너스를 주목해주셨습니다.
  • 11. DHP는 유전체 분석 기반의 희귀질환 진단 서비스를 개발하는 3billion에 시드 투자 및 엑셀러레이션을 시작하였습니다. • 마크로젠의 유전체 분석 전문가들이 2016년 11월 스핀오프 • 대표 이사 금창원은 유전체 분석 전문가이자 연쇄 창업가 • 유전체 분석으로 4,000여개 희귀 유전 질환을 한 번에 진단 • 해외 시장 타겟, 2,000불의 비용으로 2-3주 내 진단 • 2017년 2월 시제품 출시 • http://3billion.io
  • 12. Contents • 2017 1Q 미국 VC 투자 동향 • ‘Liquid Biopsy’: Illumina and Grail • 23andMe의 DTC 서비스 FDA 인허가 확대 • IBM Watson for Oncology 도입 광풍(?) • 의사를 능가하는 Deep Learning 연구 결과들 • 의학적 효용을 증명한 헬스케어 스타트업의 증가
  • 13. 2017 1Q 미국 VC 투자 동향
  • 15. https://rockhealth.com/reports/2016-year-end-funding-report-a-reality-check-for-digital-health •2016년 디지털 헬스케어 스타트업 펀딩 규모는 $4.2b 으로 전년도에 비해서 8% 감소 •반면 투자를 받은 기업의 수는 273개에서 296개로 약 10% 증가 •총 451개 VC 및 CVC가 투자를 집행 •그 중 237개는 디지털 헬스케어 기업에 '처음' 투자한 곳 (화이자 포함)
  • 16. https://rockhealth.com/reports/2016-year-end-funding-report-a-reality-check-for-digital-health • The six largest deals of 2016 made up 19% of all digital health funding. • Despite laying off 15% of its global workforce, Jawbone raised $165M in 2016. • The most funded digital health company of all time at nearly a billion dollars
  • 17.
  • 18. •펀딩을 가장 많이 받은 분야는 Genomics and Sequencing 분야 •Human Longevity ($220M), Color Genomics ($45M), Seven Bridges Genomics ($45M) •Pathway Genomics ($40M), Emulate ($28M) https://rockhealth.com/reports/2016-year-end-funding-report-a-reality-check-for-digital-health
  • 20. •총 451개 VC 및 CVC가 투자를 집행 •3개 이상의 deal 을 한 곳은 40개 투자자 •총 투자자 중 1/3 정도는 ‘하나의’ deal 만 진행 •237개는 디지털 헬스케어 기업에 '처음' 투자한 곳 (화이자 포함) https://rockhealth.com/reports/2016-year-end-funding-report-a-reality-check-for-digital-health
  • 21. •최근 3년 동안 Merk, J&J, GSK 등의 제약사들의 디지털 헬스케어 분야 투자 급증 •2015-2016년 총 22건의 deal (=2010-2014년의 5년간 투자 건수와 동일) •Merck 가 가장 활발: 2009년부터 Global Health Innovation Fund 를 통해 24건 투자 ($5-7M) •GSK 의 경우 2014년부터 6건 (via VC arm, SR One): including Propeller Health •Grail: cancer diagnostic spin-off from Illumina (Liquid biopsy) •$900m Series B, in March 2017 •가장 많은 제약사가 참여한 투자: J&J, Merck, Bristol-Myers-Squibb
  • 22. •2017 1Q에 총 71건의 deal; $1B funding 으로 strong start •트럼프 정부의 의료 및 규제 정책의 불확실성이 리스크로 보였으나, 크게 영향을 미치지는 않은 것으로 보임 •Rock Health의 경우, •Digital Healthcare 분야의 정의가 보수적 (ie. 진단회사인 Grail은 누락) •미국 내의 $20m 이상의 deal 만을 조사
  • 23. •Startup Health의 분석 •Digital Healthcare 분야의 정의가 더 넓고 (Grail 포함), $20m 이하의 deal 도 포함 •총 124 deal 에 $2.5B 가 투자 •2011년 이후 1분기 투자 횟수는 최하이지만, •개별 deal의 규모는 상승: $500m-900m startuphealth.com/reports 2010 2011 2012 2013 2014 2015 2016 2017 YTD Q1 Q2 Q3 Q4 158 300 499 668 589 526 606 124 Deal Count $1.1B $2.0B $1.5B $629M$572M$391M$192M $8.2B $6.0B $7.1B $2.9B $2.4B $2.0B $1.1B DIGITAL HEALTH FUNDING SNAPSHOT: YEAR OVER YEAR 5Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data on seed, venture, corporate venture and private equity funding only. © 2017 StartUp Health LLC $2.5B $2.5B GRAIL’s $914 million Series B may be an outlier and skewed the overall funding numbers this quarter keeping it on track for another strong year overall, and turning an otherwise modest first quarter into a record-breaker. While Q1 2017 had the lowest deal volume since 2011 - with only 124 deals this quarter - we’re seeing more and more $500-900M deals. What do less deals and more money mean? Even though VCs are betting less, they’re betting bigger. Also, the lines are blurring quickly as expected between “digital” and all other categories of health and healthcare. “AI, virtual reality, mobile connectivity, genomics, and analytics are coming to change healthcare, and that is creating a wave of innovation like we’ve never seen.” -Unity Stoakes, President, StartUp Health
  • 24. •Grail 이 $900M Series B funding으로 압도적인 1위 •이외에 상위권은 Rock Health - Startup Health 가 거의 비슷 •Alignment Healthcare: Population Health Management (병원, 보험사 대상) •PatientsLikeMe: Patients Community (제약회사 대상) •Nuna: Big Data Analytics (정부, 보험사 대상) startuphealth.com/reports Company $ Invested Subsector Notable Investor 1 $914M Big Data/Analytics 2 $115M Population Health 3 $100M Patient/Consumer Experience 4 $90M Big Data/Analytics 5 $85M EHR 6 $65M Research 7 $55M E-Commerce 8 $52M Population Health 9 $50M Medical Device 10 $41M Research THE TOP 10 LARGEST DEALS OF 2017 8Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data on seed, venture, corporate venture and private equity funding only. © 2017 StartUp Health LLC The top 10 deals of Q1 2017 included companies working in sectors in which big deals have been rare. What does this suggest? 2017 might be a breakout year in terms of funding for solutions focusing on population health, EHR innovation, and e-commerce.
  • 26. Tumor Heterogeneity Meric-Bernstam F, Mills GB. Nat Rev Clin Oncol. 2012 Sep;9(9):542-8.
  • 27. in the understanding of tumour heterogeneity; second, the role of surgery as a therapeutic modality in the era of targeted therapy; third, the use of personalized therapy in the perioperative period and, finally, the possibilities of personalization of surgical procedures according to lung cancer subtypes. VATS lobectomy showed that intraoperative blood loss was significantly reduced in the VATS group compared with open lobectomy in nine studies; however, no differ- ence was observed in five studies and the values were not reported in seven studies.12 Hospital stay was also signifi- cantly shorter in VATS group in five studies. Park et al.,13 Heterogeneity in patients with adenocarcinoma of the lung according to driver oncogenes Heterogeneity within patients with EGFR mutation Heterogeneity in resistance mechanisms in one patient HER2 3% EGFR ~40% in Asians ~15% in Caucasians ALK ~5% KRAS ~15% in Asians ~30% in Caucasians RET ~1% ROS1 ~1% BRAF ~1% PIK3CA ~1% NRAS ~1% MET <5% Others? Exon 19del ~50% L858R ~40% Sensitive Inherent resistance CRKL ~3% BIM 20–40% IκB ~30% Inherent T790M ~2% by sequencing ~30% by sensitive method Further heterogeneity EGFR-TKI Drug X T790M MET a cb T790M Heterogeneity in patients with adenocarcinoma of the lung according to driver oncogenes Heterogeneity within patients with EGFR mutation Heterogeneity resistance mecha in one patien HER2 3% EGFR ~40% in Asians ~15% in Caucasians ALK ~5% KRAS ~15% in Asians ~30% in Caucasians RET ~1% ROS1 ~1% BRAF ~1% PIK3CA ~1% NRAS ~1% MET <5% Others? Exon 19del ~50% L858R ~40% Sensitive Inherent resistance CRKL ~3% BIM 20–40% IκB ~30% Inherent T790M ~2% by sequencing ~30% by sensitive method Further heterogeneity EGFR-TKI Drug T790M ME a cb T790M Figure 1 | Various classes of tumour heterogeneity in adenocarcinoma of the lung. a | Heterogeneity in patients with adenocarcinoma of the lung according to driver oncogenes that are crucial for selecting targeted drugs for treatment.2,76 Number of people reflects approximate incidence.2,76 b | Heterogeneity in patients with EGFR mutations, resulting in MitsudomiT, Suda K,YatabeY. Nat Rev Clin Oncol. 2013 Apr;10(4):235-44. Heterogeneity in Lung Adenocarcinoma
  • 28. Tumor Heterogeneity Meric-Bernstam F, Mills GB. Nat Rev Clin Oncol. 2012 Sep;9(9):542-8.
  • 29. Intratumor Heterogeneity Revealed by multiregion Sequencing B Regional Distribution of Mutations C Phylogenetic Relationships of Tumor Regions D Ploidy Profiling A Biopsy Sites R2 R4 R9 R8 R5 R1 R3 R2 PreP PreM R1 R2 R3 R5 R8 R9 R4 M1 M2a M2b C2orf85 WDR7 SUPT6H CDH19 LAMA3 DIXDC1 HPS5 NRAP KIAA1524 SETD2 PLCL1 BCL11A IFNAR1 DAMTS10 C3 KIAA1267 RT4 CD44 ANKRD26 TM7SF4 SLC2A1 DACH2 MMAB ZNF521 HMG20A DNMT3A RLF MAMLD1 MAP3K6 HDAC6 PHF21B FAM129B RPS8 CIB2 RAB27A SLC2A12 DUSP12 ADAMTSL4 NAP1L3 USP51 KDM5C SBF1 TOM1 MYH8 WDR24 ITIH5 AKAP9 FBXO1 LIAS TNIK SETD2 C3orf20 MR1 PIAS3 DIO1 ERCC5 KL ALKBH8 DAPK1 DDX58 SPATA21 ZNF493 NGEF DIRAS3 LATS2 ITGB3 FLNA SATL1 KDM5C KDM5C RBFOX2 NPHS1 SOX9 CENPN PSMD7 RIMBP2 GALNT11 ABHD11 UGT2A1 MTOR PPP6R2 ZNF780A WSCD2 CDKN1B PPFIA1 TH SSNA1 CASP2 PLRG1 SETD2 CCBL2 SESN2 MAGEB16 NLRP7 IGLON5 KLK4 WDR62 KIAA0355 CYP4F3 AKAP8 ZNF519 DDX52 ZC3H18 TCF12 NUSAP1 X4 KDM2B MRPL51 C11orf68 ANO5 EIF4G2 MSRB2 RALGDS EXT1 ZC3HC1 PTPRZ1 INTS1 CCR6 DOPEY1 ATXN1 WHSC1 CLCN2 SSR3 KLHL18 SGOL1 VHL C2orf21 ALS2CR12 PLB1 FCAMR IFI16 BCAS2 IL12RB2 PrivateUbiquitous Shared primary Shared metastasis Ubiquitous Lung metastases Chest-wall metastasis Perinephric metastasis M1 10 cm R7 (G4) R5 (G4) R9 R3 (G4) R1 (G3) R2 (G3) R4 (G1) R6 (G1) Hilum R8 (G4) Primary tumor Shared primary Shared metastasis M2b M2a Intratumor Heterogeneity Revealed by Multiregion Sequencing Gerlinger M et al. N Engl J Med. 2012 Mar 8;366(10):883-92
  • 30. Nat Genet. 2014 Feb 26;46(3):214-5. Intratumoral heterogeneity in kidney cancer
  • 31. Nat Genet. 2014 Mar;46(3):225-33. E S 226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat map indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutation tumor. An asterisk indicates where VHL methylation was included in the analysis. 226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat ma indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutatio tumor. An asterisk indicates where VHL methylation was included in the analysis. Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat map indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutation tumor. An asterisk indicates where VHL methylation was included in the analysis. 226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat ma indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutatio tumor. An asterisk indicates where VHL methylation was included in the analysis. 226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat m indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutati tumor. An asterisk indicates where VHL methylation was included in the analysis. Regional distribution of nonsynonymous mutations in ten ccRCC tumors Heat maps indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 probable driver mutations are highlighted in magenta.
  • 32. E S 226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat map indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutation tumor. An asterisk indicates where VHL methylation was included in the analysis. 226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat ma indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutatio tumor. An asterisk indicates where VHL methylation was included in the analysis. Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat map indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutation tumor. An asterisk indicates where VHL methylation was included in the analysis. 226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE G Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat ma indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 p driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutatio tumor. An asterisk indicates where VHL methylation was included in the analysis. 226 VOLUME 46 | NUMBER 3 | MARCH 2014 NATURE Figure 1 Regional distribution of nonsynonymous mutations in ten ccRCC tumors. Mutations that failed validation were not included. Heat m indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 driver mutations are highlighted in magenta. The table shows the number of nonsynonymous mutations and the ratio of heterogeneous mutati tumor. An asterisk indicates where VHL methylation was included in the analysis. Regional distribution of nonsynonymous mutations in ten ccRCC tumors Heat maps indicate the presence of a mutation (yellow) or its absence (blue) in each region. Category 1 high-confidence driver mutations and category 2 probable driver mutations are highlighted in magenta. Nat Genet. 2014 Mar;46(3):225-33.
  • 33. A RT I C L E S We determined the regional distribution f nonsynonymous mutations on the basis of ata from ultra-deep amplicon sequencing. We called a mutation as being present in a umor region if a nucleotide substitution was etected in 0.5% of reads or an indel was etected in 1% of reads. We chose these hresholds on the basis of the error rate of he sequencing platform13. The regional istribution of 28 mutations for which ltra-deep sequencing data were not avail- ble was inferred from the exome sequenc- ng data. Exome sequencing of EV001 and EV002 has previously been reported2 and was ncluded in this analysis. On average, 67% range of 28–92%) of the nonsynonymous omatic mutations were heterogeneous and ot detectable across all sampled regions of n individual tumor (Fig. 1). The presence f somatic mutational heterogeneity in all 10/10) treatment-naive or pretreated cases indicates that ITH, char- cterized by the spatial separation of subclones, is a common feature n stage T2–T4 ccRCCs. To identify the optimal number of biopsies that can reliably detect he majority of nonsynonymous somatic mutations in a tumor, we alculated the number of mutations that would have been detected heterogeneity specifically in EV003 and EV006. No other clinical or pathological characteristic seemed to correlate with mutational ITH, and larger series will be required to determine the biological basis for the diversity in ccRCC phylogenetic structures. Identification of intraregional subclones R4b GL VHL SETD2 SETD2 KDM5C MTOR R8 KDM5C R4a R5 R3 R2 R1 R9 M1 M2a M2b SETD2 EV001 EV003 R6 R7 R1 R5 GL R9 VHL (methylation) PBRM1 EV005 R6dom R7 R1R5 R3 R4, R6min R2 GL VHL PBRM1 PIK3CA PIK3CA SF3B1 EV006 EV007 RMH002 R6 R7 R1 R2 R3 PBRM1 BAP1 TP53 RMH004 R8 R10 R2 GL VT R4 VHL PBRM1 ATM PTEN SMARCA4 R3 MSH6 PBRM1 ARID1A RMH008 R4min R5, R7 R6min R8 GL R1 R2 R3 VHL BAP1 TSC2 BAP1 BAP1 R6dom R4dom RK26 PBRM1 TP53 BAP1 R3, R4 R11 R9 GL R1 R2 VHL R5min R10 R7 R5dom R8 R6 10 non synonymous mutations Trunk Internal branch Terminal branch EV002 R7 R1 R3 R6 GL R9 VHL PBRM1 SETD2 TP53 R4 M PTEN PTEN SETD2 R3 GL GL GL R4 R7 VHL VHL VHL LN1a, LN1b R2R6 R1 R1 R15 R9min R9dom R3min BAP1 SETD2 R5,R7 R2, R3dom R6 PIK3CA SETD2 TP53 R4 R3R4 R2 igure 3 Phylogenetic trees generated by maximum parsimony from M-seq data for ten cRCC tumors. Trees for EV001 and EV002 re adapted from Gerlinger et al.2. Branch nd trunk lengths are proportional to the umber of nonsynonymous mutations acquired n the corresponding branch or trunk. Driver mutations were acquired by the indicated enes in the branches the arrows indicate. river mutations defining parallel evolution vents are highlighted by color. Trees are ooted at the germline (GL) DNA sequence, etermined by exome sequencing of DNA from eripheral blood. Phylogenetic trees generated for ten ccRCC tumors Mutational processes change during tumor evolution ccRCCs can traverse different evolutionary routes simultaneously
  • 34. Br J Cancer. 2010 Oct 12;103(8):1139-43. resistance develops. A further obstacle for the interpretation of large-scale somatic mutation analyses is that fitness effects of the vast majority of mutations are unknown. The RNA interference- based functional genomic screening approaches can experimen- tally test the phenotypic effect of silencing large numbers of genes individually and may support the interpretation of mutation data sets by identifying genes that influence cellular fitness or drug sensitivity. cells in vitro (Duesberg et al recurrence after drug treatmen 2010). The clinically importan geneity could accelerate evolu enhance biological fitness to pressures could in turn favour t unstable cancer cells by can advantages conferred by genom must be balanced against the s result from the generation o deleterious mutations or tumou chromosomal instability in anim Importantly, evolutionary mod instability can be positively selec advantage in environments (e.g. during chemotherapy) in cycle arrest after DNA damage cells that are negatively selected cell cycle arrest and have a lower Wodarz, 2003). Thus, it is conceivable that the instability required to accelerate of cancers and that excessive tumour. Results from animal tu excessive chromosomal instabili role leads to the tantalising prop genome instability provides intervention (Weaver et al, 2007 EVIDENCE FOR DRUG RE EVOLUTION The harsh clinical reality is th almost invariably occurs in adva leading to disease progression an examples highlight how Darwi tumoural genetic heterogeneity pressure of systemic cancer t resistance from a Darwinian Genetic heterogeneity Time Bottleneck Drug treatment Cancercellpopulation Figure 1 Schematic view of tumour heterogeneity during tumour progression and treatment. Acquired mutations in daughter cells of a single founder cell (left) promote diversion into subclones (different colours reflect different clones). Some new mutations lead to accelerated growth (for example yellow and orange clones). Fitness reducing mutations lead to negative selection (cells with brown cytoplasm). Drug treatment leads to selective survival of a drug resistant clone (pink) and generates an evolutionary bottleneck that reduces genetic heterogeneity transiently. Heterogeneity is re-established rapidly through acquisition of mutations by daughter cells of the resistant clone. Darwinian evolution of tumor elucidate clonal heterogeneity • Acquired mutations in daughter cells of a single founder cell (left) promote diversion into subclones • Drug treatment leads to selective survival of a drug resistant clone (pink) and generates an evolutionary bottleneck that reduces genetic heterogeneity transiently. • Heterogeneity is re-established rapidly through acquisition of mutations by daughter cells of the resistant clone.
  • 35. P E R S P E C T I V E Fig. 1. A trunk-branch model of intratumor heterogeneity. (A) The development of intratumor heterogeneity is analogous to a growing tree. The trunk harbors the founding ubiquitous driver mutations of a cancer present in every tumor subclone and region. The sprouting branches represent different geographically separated regions of the tumor or subclones present within single biopsies that carry heterogeneous mutations that are not present in every tumor cell or tumor region. Such mutations may distinguish the biological behavior of subclones and harbor the potential to become driver mutations under distinct selection pressures. Ubiquitous genetic events present in the trunk may provide more tractable biomarkers and therapeutic targets than heterogeneous events in the branches. We describe three levels of complexity: level 1, the trunk carries driver events, whereas the branches carry neutral mutations; level 2, the trunk carries driver events, whereas the branches carry neutral or additional driver events that may harbor convergent phenotypes (for example, distinct mutations in SETD2 or PTEN occur in different regions of the same renal cancer and converge on the same pathway resulting in its inactivation) (4); level 3, level 1, and level 2 events plus neutral mutations in the branches (or trunk) that become driver events under selection pressures (11, 17–20). With level 1 complexity, one biomarker can be developed against one target; with level 2 and 3 complexity, a single biomarker is unlikely to be sufficient. The risk of drug resistance may increase with each level of complexity. (B) Clonal ar- chitecture as a biomarker.The polygenic nature of drug resistance and intratumor heterogeneity may exacerbate difficulties in predicting therapeutic outcome. Consideration of tumor growth within a Darwinian evolutionary tree framework may support the identification of new predictive biomark- Level 1 complexity Level 2 complexity Level 3 complexity Clonal architecture as a biomarker A BTrunk-branch hypothesis onApril4,2012stm.sciencemag.org A trunk-branch model of intratumor heterogeneity • The trunk harbors the founding ubiquitous driver mutations of a cancer present in every tumor subclone and region. • The sprouting branches represent different geographically separated regions of the tumor or subclones present within single biopsies that carry heterogeneous mutations that are not present in every tumor cell or tumor region. Sci Transl Med. 2012 Mar 28;4(127):127
  • 37.
  • 38. Release and extraction of cfDNA from the blood •cfDNA 는 건강한 세포가 사멸할 때뿐만 아니라, 암 세포가 사멸할 때도 혈액 속으로 나온다. •Liquid biopsy (액체 생검) •혈액 속에서 cfDNA를 추출하여 암세포에서 나온 DNA를 detection 하고 분석 •암의 재발 유무 조기 발견, 항암제의 약효 파악, 암 세포의 유전 변이 파악 등에 활용 http://www.nature.com/nrclinonc/journal/v10/n8/full/nrclinonc.2013.110.html
  • 39. http://www.nature.com/nrclinonc/journal/v10/n8/full/nrclinonc.2013.110.html Monitoring tumour-specific aberrations to detect recurrence and resistance •a. 암이 수술 이후에 조기 재발했는지에 대한 모니터링 •b. 표적 항암제 투여 이후에 내성이 있는 새로운 암세포(clone)가 자라는지 검사 •Red: 새로운 clone 이 생성하여 재발 •blue: 기저에 줄어들었던 원래 clone이 새로운 mutation 을 얻어서 재발
  • 40. Importantly, the data provided by these tests indicate that these genotypes are not common in the plasma of individuals that are presumably cancer-free (Thress et al., 2015). It is worth noting that tu- mor-derived RNA and DNA methylation patterns can also be detected in the with highly conserved biology, a popula- tion of cancer patients behaves as a het- erogeneous collection of many diseases, each of which carries additional heteroge- neity in its own right. Therefore, identifying a finite number of protein or nucleic acid biomarkers that are highly sensitive and ctDNA molecules to reliably measure them in a background of mostly non-tu- mor-derived cfDNA. We estimate that such a broad and deep sequencing approach could require orders of magni- tude more sequence data than liquid bi- opsy assays currently use (Table 1). To Table 1. Comparison of ctDNA Liquid Biopsy Test to Potential Cancer Screening Test Indication Tumor Liquid Biopsy (Genotyping, Monitoring) Early Cancer Detection Target population Patients with known diagnosis of cancer Asymptomatic individuals Tissue reference Can be informed by tissue analyses No prior knowledge of tissue Key performance characteristics Sensitivity and specificity for specific actionable genotypes d Sensitivity and specificity for clinically detectable cancer d Premium on specificity in individuals without detectable cancer d Tissue of origin needed to guide workup Clinical Endpoint for Utility Therapeutic benefit with specific therapies Net outcome improvement with early detection and local treatment of cancer Genes Covered 10-50 100-1000s ctDNA Limit of Detection 0.1% <0.01% Importance of Novel Variant Detection Low High Amount of Sequencing 1x 100X Study Size for Clinical Validity and Utility 100’s 10,000 - 100,000 s Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection Cell 168, February 9, 2017
  • 41. C A N C E R Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer Jeanne Tie,1,2,3,4 *† Yuxuan Wang,5† Cristian Tomasetti,6,7 Lu Li,6 Simeon Springer,5 Isaac Kinde,8 Natalie Silliman,5 Mark Tacey,9 Hui-Li Wong,1,3,4 Michael Christie,1,3,10 Suzanne Kosmider,2 Iain Skinner,2 Rachel Wong,1,11,12 Malcolm Steel,11 Ben Tran,1,2,3,4 Jayesh Desai,1,3,4 Ian Jones,4,13 Andrew Haydon,14 Theresa Hayes,15 Tim J. Price,16 Robert L. Strausberg,17 Luis A. Diaz Jr.,5 Nickolas Papadopoulos,5 Kenneth W. Kinzler,5 Bert Vogelstein,5 *† Peter Gibbs1,2,3,4,17 *† Detection of circulating tumor DNA (ctDNA) after resection of stage II colon cancer may identify patients at the highest risk of recurrence and help inform adjuvant treatment decisions. We used massively parallel sequencing–based assays to evaluate the ability of ctDNA to detect minimal residual disease in 1046 plasma samples from a prospective cohort of 230 patients with resected stage II colon cancer. In patients not treated with adjuvant chemotherapy, ctDNA was detected postoperatively in 14 of 178 (7.9%) patients, 11 (79%) of whom had recurred at a median follow-up of 27 months; recurrence occurred in only 16 (9.8 %) of 164 patients with negative ctDNA [hazard ratio (HR), 18; 95% confidence interval (CI), 7.9 to 40; P < 0.001]. In patients treated with chemotherapy, the presence of ctDNA after completion of chemotherapy was also associated with an inferior recurrence-free survival (HR, 11; 95% CI, 1.8 to 68; P = 0.001). ctDNA detection after stage II colon cancer resection provides direct evidence of residual disease and identifies patients at very high risk of recurrence. INTRODUCTION About 1.3 million cases of colorectal cancer are diagnosed annually worldwide (1). In patients with stage II colon cancer (~25% of all colorectal cancer), management after surgical resection remains a clinical dilemma, with about 80% cured by surgery alone (2). The cur- rent approach to defining recurrence risk for patients with early- tus in the tumor defines a low-risk group in which adjuvant chemo- therapy is not beneficial (6, 7). Most recently, multiple tissue-based gene signatures have been shown to have prognostic significance, but again with modest hazard ratios (HRs) of 1.4 to 3.7 (8–11). In practice, adjuvant chemotherapy is more frequently offered to high-risk stage II patients, with the justification that high-risk R E S E A R C H A R T I C L E http://stm.sciencemag.orgDownloadedfrom Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
  • 42. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer postoperative adjuvant chemotherapy 를 받지 않은 환자군에 대해서, ctDNA 양성/음성 기반으로 RFS 을 효과적으로 구분할 수 있음 Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
  • 43. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer RFS를 ctDNA 여부에 의해서 판단하는 것이 (A) 기존의 T stage, LN yield, LVI 등 기반의 (clinicopathogic) 위험군 분류(B)보다 더욱 효과적일 가능성이 있음 Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
  • 44. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer 기존의 위험군 분류 기준에 의해서 저위험군(C)과 고위험군(D)을 따로 나눠서 ctDNA의 검출 여부로 보게 되더라도, 그 중에서도 RFS 예후 예측을 효과적으로 할 수 있음 Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
  • 45. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer postoperative adjuvant chemo therapy 를 받은 환자의 항암제 치료 도중과 이후의 ctDNA 변화와 이후 재발여부의 관계 A, B의 경우 •chemo 시작시에는 ctDNA가 positive였다가, •chemo 받는 동안에는 negative가 되고, •chemo 끝난 후에는 증가해서 결국 재발 •이 과정에서 기존의 표준 바이오마커인 CEA는 detection 에 실패 Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
  • 46. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer C, D 환자는 chemo 받는 동안 ctDNA가 negative가 되고 이후에도 유지되어서, 이후 f/u 에서도 재발하지 않음 이 환자들의 경우에는 CEA도 결과는 동일 Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
  • 47. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer E, F 환자의 경우에는 ctDNA가 각각 false negative, false polisive 결과 •E 환자: 수술 후 10개월 경에 재발하였으나, ctDNA 수치는 negative •F 환자: ctDNA는 계속 들쭉날쭉 했는데 36개월까지 재발을 하지 않음 Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
  • 48. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S. et al. (2016). Sci. Transl. Med. 8, 346ra92.
  • 49. pointing to cancers th by R (i.e., those with t account for cancer in seem particularly we miologic investigation appear unavoidable n they will become avo are at least four sourc cells: quantum effects o made by polymerase tion of bases (32), and produced reactive oxy olites (33). The last o be reduced by the dant drugs (34). The principle, be reduced cient repair genes int or through other crea As a result of the ulation, cancer is tod of death in the world the best way to reduc of a third contributo does not diminish t prevention but emph can be prevented by a factors (Figs. 2 and 3 vention is not the on exists or can be im ondary prevention, i.e vention, can also be which all mutations a Fig. 3. Etiology of driver gene mutations in women with cancer. For each of 18 representative cancer types, the schematic depicts the proportion of mutations that are inherited, due to environmental factors, or due to errors in DNA replication (i.e., not attributable to either heredity or environment).The sum of these three proportions is 100%. The color codes for hereditary, replicative, and environmental factors are identical and span white (0%) to brightest red (100%). The numerical values used to construct this figure, as well as the values for 14 other cancer types not shown in the figure, are provided in table S6. B, brain; Bl, bladder; Br, breast; C, cervical; CR, colorectal; E, esophagus; HN, head and neck; K, kidney; Li, liver; Lk, leukemia; Lu, lung; M, melanoma; NHL, non-Hodgkin lymphoma; O, ovarian; P, pancreas; S, stomach; RESEARCH | REPORTEtiology of driver gene mutations in women with cancer Cristian Tomasetti , Science 2017 유전적 요인(Hereditary), 환경적 요인(Environmental)에 비해서, 
 DNA replication에 의한 driver mutation (Replicative)의 비율이 암종의 구분 없이 매우 높다. 따라서, 암의 조기 발견의 중요성이 더욱 높아지고 있음.
  • 50.
  • 51.
  • 52. https://www.illumina.com/content/dam/illumina-marketing/documents/company/investor-relations/investor_presentations/illumina_investor_presentation.pdf Product MiniSeq ™ MiSeq ® NextSeq HiSeq ® HiSeq ® X 4000 Five Ten Output per run 7.5 Gb 15 Gb 120 Gb 1.5 Tb 1.8 Tb 1.8 Tb Instrument price $49.5K $99K $275K $900K $6M1 $10M1 Utilization2 $20K–$25K $40K–$45K $100K–$150K $300K–$350K $625K–$725K Installed base3 370 ~5,300 ~1,800 ~1,900 ~400 Sequencing Power for Every Scale The broadest portfolio offering available 1. Based on purchase of 5 and 10 units for HiSeq X Five and HiSeq X Ten, respectively 2. Company’s projected annual instrument utilization per installed instrument; HiSeq and HiSeq X utilization to be combined later in • 2014년 1월 출시 • 기기 하나에 약 10억원 • 10개 번들 판매로 최소 구입 단위는 100억원 • 미국의 브로드 연구소, 호주의 가반의학연구소, 한국의 마크로젠
  • 53. 6 Shipping Q1 2017 $985K Shipping Early 2018 $850K NovaSeq 6000NovaSeq 5000 NovaSeq 5000 Flow Cells NovaSeq 6000 Flow Cells 1 Tb* 2 Tb 4 Tb* 6 Tb*Output/Run: NovaSeq System Scalable throughput to complete studies faster and more economically *S1 and S4 flow cells expected to begin shipping in Q3 2017; S3 flow cell expected to begin shipping in early 2018 https://www.illumina.com/content/dam/illumina-marketing/documents/company/investor-relations/investor_presentations/illumina_investor_presentation.pdf
  • 54. • 2017년 1월 NovaSeq 5000, 6000 발표 • 몇년 내로 $100로 WES 를 실현하겠다고 공언 • 2일에 60명의 WES 가능 (한 명당 한 시간 이하)
  • 56. http://privateoffice.investec.co.uk/research-and-insights/insights/vision_next_generation_sequencing.html Next Generation Sequencing (NGS) Market Share • 일루미나는 현재 전세계 DNA의 90%를 생산 • 전세계 인구의 0.01% 밖에 아직 DNA 서열 분석을 하지 않았음
  • 57. Value Chain of Sequencing Industry Sequencing Analysis Diagnosis Treatment Consumer Service
  • 58. Illumina tries to eat everything in sequencing market Sequencing Analysis Diagnosis Treatment Consumer Service 개인유전정보 앱스토어$100 m funding, co-founding (2015) NIPT(비침습 태아 산전진단) $350m 인수 (2013) Analysis Liquid Biopsy (액체 생검) Spin-off (2016.1)/ $100m 빌게이츠, 제프 베조스 등 투자
  • 59. • 일루미나는 NGS 기기를 만드는 하드웨어 기업으로 시작 • 시퀀싱 시장 점유를 기반으로 value chain 후반의 진단, 소비자 서비스 시장으로 진출 중 • (via 인수, 투자, 공동 설립)
 • 과거 인터넷 산업에 비유하자면, • 초기에는 Cisco 같은 네트워크 인프라를 구축하는 기업이 수익 • 나중에는 인프라를 활용한 서비스 제공 기업이 성장 (구글, 페이스북…) • 일루미나는 그 둘을 모두 하겠다는 것 Illumina tries to eat everything in sequencing market Sequencing Analysis Diagnosis Treatment Consumer Service 개인유전정보 앱스토어$100 m funding, co-founding (2015) NIPT(비침습 태아 산전진단) $350m 인수 (2013) Analysis Liquid Biopsy (액체 생검) Spin-off (2016.1)/ $100m 빌게이츠, 제프 베조스 등 투자
  • 60.
  • 61. •Series A: $100m •Series B: $900m •Biotech funding round 사상 최고액으로 평가 •ARCH Venture Partners led the round



with participation from J&J, Amazon, BMS, Celgene, Varian, and Merck. •Liquid Biopsy의 임상 연구에 활용할 계획
  • 62. • Grail 이 발표한 최초의 대규모 임상 연구 (2016년 12월): Mayo Clinic, MSKCC 등 50여개 병원 참여 • 10,000명의 환자의 혈액을 분석으로 시작 (추후 확대 예정) • 7,000명의 암 환자 • 3,000명의 정상인 • 정상인 혈액과 암 환자의 cell free genome profile 을 파악하기 위한 연구 • 정상인의 cf genome의 heterogeneity 역시 연구: 정상인 - 암환자 구분에 도움 • ‘high intensitiy’ sequencing: ultra-deep sequencing & ultra-wide sequencing 을 사용하게 될 것
  • 63. • 2017년 4월 대규모 유방암 환자 임상시험 STRIVE를 개시한다고 공표 • 유방암 조기 발견을 위한 blood test 의 개발 목적 • 120,000명 규모 • Mayo Clinic 과 Sutter Health 에서 유방암 정기검사 (mammography)를 받는 환자들 대상 • ultra-deep sequencing & ultra-wide sequencing 을 사용하게 될 것 • 이 임상 결과를 바탕으로 pan-cancer test 의 개발에도 사용하게 될 것
  • 64. Leading Edge Commentary Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection Alexander M. Aravanis,1,2 Mark Lee,1,2 and Richard D. Klausner1,* 1GRAIL, Menlo Park, CA 94402, USA 2Co-first author *Correspondence: klausner.rick@gmail.com http://dx.doi.org/10.1016/j.cell.2017.01.030 Curative therapies are most successful when cancer is diagnosed and treated at an early stage. We advocate that technological advances in next-generation sequencing of circulating, tumor-derived nucleic acids hold promise for addressing the challenge of developing safe and effective cancer screening tests. Cancer-specific mortality from most types of solid tumors has barely decreased in decades, despite an expo- nential increase in our knowledge about cancer pathogenesis and significant in- vestments in the development of effective treatments. The past few years have witnessed a dramatic success of immu- notherapies in treating a subgroup of patients with a variety of tumor types, including lung, bladder, and kidney, as well as Hodgkin’s lymphoma and mela- noma. While such breakthroughs offer the hope of prolonged survival for some patients with advanced cancers, finding cancers earlier would still afford the great- est chance for cure, given that the survival rates for patients with early diagnoses are five to ten times higher compared with late stage disease (Cho et al., 2014). By tion algorithms that either miss a large number of invasive cancers or make the costly trade-off of over-diagnosing and consequently over treating. For instance, high false-positive rates from mammog- raphy in breast cancer screening, low- dose CT in lung cancer screening, and prostate-specific antigen (PSA) screening (Nelson et al., 2016a; Aberle et al., 2011; Chou et al., 2011) represent a significant cost to the healthcare system, with result- ing mental and physical morbidity, and even mortality in some cases (Nelson et al., 2016b). Even where cancer screening has pro- duced significant stage shifts, as with breast and prostate cancer screening, the impact on cancer-specific mortality has not been a predictable outcome (Berry, 2014). Multiple explanations may cancers are in a pre-metastatic state and thus still curable. This kinetic aspect of cancer progression is poorly understood, but it is essential to informing effective screening intervals. It is worth noting that mammography and PSA are only sur- rogate measures of cancer, which have poor specificity and provide little insight into tumor biology. We would argue that for successful screening, we need a platform that provides direct, sensitive, and specific measures of cancer and its attributes, which have bearing on clinical behavior. Circulating Tumor DNA Profiling of a tumor’s somatic alterations has become routine, and many clinical tests are now available that interrogate anywhere from a few genes to the whole
  • 65. •국내에서도 삼성유전체연구소를 비롯한 몇몇 그룹이 Liquid Biopsy 를 연구 •삼성유전체연구소에서 LiquidScan을 개발했다고 발표 (2017.4) •(기사 제목처럼) 피 한 방울은 아니고, 20ml 정도 필요 •현재 췌장암 및 유방암 연구 중 •췌장암의 경우 LiquidScan을 통해 기존 방식보다 2-3개월 미리 재발 여부파악 가능
  • 66. 23andMe의 DTC 서비스 FDA 인허가 확대
  • 67.
  • 68. Results within 6-8 weeksA little spit is all it takes! DTC Genetic TestingDirect-To-Consumer
  • 69. • Direct-to-Consumer 방식의 서비스를 고집 • 데이터 소유권 이슈: “환자 본인에게 raw data 를 주겠다”
  • 70. 120 Disease Risk 21 Drug Response 49 Carrier Status 57Traits $99
  • 71. • 질병 위험도 검사: BRCA로 유방암 위험도 예측 • 보인자 검사: 부모가 블룸증후군 유전자 보인자인지 판별 • 약물 민감도 검사: 와파린 등에 대한 민감도 검사 • 일반적 특징 검사: 곱슬머리, 카페인 대사, 유당 분해 능력 등 • 조상 분석: 내 조상이 어느 대륙에서 왔는가 Tests of 23andMe
  • 76. Inherited Conditions 혈색소증은 유전적 원인으로 철에 대한 체내 대사에 이상이 생겨 음식을 통 해 섭취한 철이 너무 많이 흡수되는 질환입니다. 너무 많이 흡수된 철은 우 리 몸의 여러 장기, 특히 간, 심장 및 췌장에 과다하게 축적되며 이들 장기 를 손상시킴으로써 간질환, 심장질환 및 악성종양을 유발합니다.
  • 77. Traits 음주 후 얼굴이 붉어지는가 쓴 맛을 감지할 수 있나 귀지 유형 눈 색깔 곱슬머리 여부 유당 분해 능력 말라리아 저항성 대머리가 될 가능성 근육 퍼포먼스 혈액형 노로바이러스 저항성 HIV 저항성 흡연 중독 가능성
  • 80. • 질병 위험도 검사: BRCA로 유방암 위험도 예측 • 보인자 검사: 부모가 블룸증후군 유전자 보인자인지 판별 • 약물 민감도 검사: 와파린 등에 대한 민감도 검사 • 일반적 특징 검사: 곱슬머리, 카페인 대사, 유당 분해 능력 등 • 조상 분석: 내 조상이 어느 대륙에서 왔는가 Tests of 23andMe (until Nov 2013)
  • 81. • 제한적 유전정보: 일부분의 유전정보 (SNP) 만을 분석 • 환경적 요인 고려 불가: 대부분의 질병은 환경+유전 요인 작용 • So What? : 유전적 위험도를 알아도 대비책이 없거나 불분명 Personal Genome Service 의 한계
  • 83.
  • 84. • 의사를 통하지 않는 DTC 방식에 대한 우려 • 이러한 서비스의 정확성 및 안정성에 대한 우려 • 결과를 받은 사용자들이 제대로 이해할 수 있을지, 오남용에 대한 우려 • 특히, BRCA 유전자에 대한 검사 • Analytic & clinical validation data 제출 지연
  • 85. • 질병 위험도 검사: BRCA로 유방암 위험도 예측 • 보인자 검사: 부모가 블룸증후군 유전자 보인자인지 판별 • 약물 민감도 검사: 와파린 등에 대한 민감도 검사 • 일반적 특징 검사: 곱슬머리, 카페인 대사, 유당 분해 능력 등 • 조상 분석: 내 조상이 어느 대륙에서 왔는가 Tests of 23andMe (Nov 2013 - Oc 2015)
  • 88. • 질병 위험도 검사: BRCA로 유방암 위험도 예측 • 보인자 검사: 부모가 블룸증후군 유전자 보인자인지 판별 • 약물 민감도 검사: 와파린 등에 대한 민감도 검사 • 일반적 특징 검사: 곱슬머리, 카페인 대사, 유당 분해 능력 등 • 조상 분석: 내 조상이 어느 대륙에서 왔는가 Tests of 23andMe (Oct 2015 - April 2017)
  • 89. 2017년 4월 6일 FDA가 23andMe의 질병 위험도 예측 서비스의 
 DTC (Direct-to-Consumer) 판매를 허가
  • 90. FDA의 23andMe 질병 위험도 예측 DTC 서비스 허가 •아래와 같은 10가지 질병의 위험도 예측에 대해서 DTC 허가 •파킨슨병 (Parkinson’s disease) •알츠하이머 (Late-onset Alzheimer’s disease) •셀리악병(Celiac disease) •알파-1 항트립신 결핍증 (Alpha-1 antitrypsin deficiency) •조발성 1차성 근긴장이상증 (Early-onset primary dystonia) •XI 혈액응고인자 결핍증 (혈우병C) (Factor XI deficiency, a blood clotting disorder) •제 1형 고셔병 (Gaucher disease type 1) •포도당-6-인산탈수소효소(G6PD) 결핍증 (Glucose-6-Phosphate Dehydrogenase deficiency) •유전성 혈색소침착증(Hereditary hemochromatosis) •유전적 혈전 기호증(Hereditary thrombophilia) •FDA는 향후 다른 질병 위험도 예측 검사에 대해서 시장 출시 전 심사(premarket review)를 면제
  • 91. FDA의 23andMe 질병 위험도 예측 DTC 서비스 허가 •임상 연구를 통하여 인허가를 위한 근거 자료 마련 •분석적 타당성(analytical validity) •임상적 타당성(clinical validity) •임상적 유용성(clinical utility)
 
 •23andMe의 타액 키트를 통해서 정확하고 일관적으로 유전 변이를 발견할 수 있다는 것을 증명 •검사하는 유전적 변이가 개별 질병의 위험도에 영향을 준다는 명확한 연구 결과. •환자의 DTC 결과 오남용에 대한 반박 •영국에서 25,000명에게 질병 위험도 예측 서비스를 DTC로 제공한 결과, 
 
 자해 등 위험한 결과가 한 건도 발생하지 않았음 •사용자들이 질병 위험도 예측의 결과 레포트의 90% 이상을 이해
  • 92. • 질병 위험도 검사 • 보인자 검사: 부모가 블룸증후군 유전자 보인자인지 판별 • 약물 민감도 검사: 와파린 등에 대한 민감도 검사 • 일반적 특징 검사: 곱슬머리, 카페인 대사, 유당 분해 능력 등 • 조상 분석: 내 조상이 어느 대륙에서 왔는가 Tests of 23andMe (April 2017- 현재)
  • 93. $115m 펀딩 100만 명 돌파 2006 23andMe 창업 20162007 2012 2013 2014 2015 구글 벤처스 360만 달러 투자 2008 $99 로 가격 인하 FDA 판매 중지 명령 영국에서 DTC 서비스 시작 FDA 블룸증후군 DTC 서비스 허가 FDA에 블룸증후군 테스트 승인 요청 FDA에 510(k) 제출 FDA 510(k) 철회 보인자 등 DTC 서비스 재개 ($199) 캐나다에서 DTC 서비스 시작 Genetech, pFizer가 23andMe 데이터 구입 자체 신약 개발 계획 발표 120만 명 돌파 $399 로 가격 인하 23andMe Chronicle Business Regulation 애플 리서치키트와 데이터 수집 협력 50만 명 돌파30만 명 돌파 TV 광고 시작 2017 FDA의 질병위험도 검사 DTC 서비스 허가 + 관련 규제 면제 프로세스 확립 Digital Healthcare Institute Director,Yoon Sup Choi, PhD yoonsup.choi@gmail.com
  • 95. 생명윤리법 개정안 및 DTC 허용 계획 •2015년 12월 9일, 국회에서 ‘생명윤리법 개정안’ 의결 •‘비의료기관은 보건복지부장관이 정하는 경우에만 의료기관의 의뢰 없이도 
 질병 예방 목적의 유전자 검사를 제한적으로 직접할 수 있도록 허용한다' •보건복지부 2016년 업무보고: 유전자 검사 제도 개선 •질병 예방 목적의 일부 유전자/유전체 검사를 비의료기관에서 직접 실시 (2016년 6월) •최적 치료법에 필요한 유전자/유전체 검사의 경우 건강보험 적용 (2016년 11월) •표적치료제 선택 검사 확대 •약물반응예측검사 추가
  • 96. 11
  • 97. Category 분류기준 I 건강보험 요양급여 등재 혹은 신의료기술평가를 통해 안정성 및 유효성이 인정된 유전자 검사 로 임상적 사용목적(Intended use)이 동일한 경우 II 아직까지 건강보험 요양급여의 등재 혹은 신의료기술평가를 통해 안정성 및 유효성이 인정되 지 않았지만, 임상적 유효성 근거가 있는 검사로 임상적 사용 목적이 동일한 경우 III 건강보험 요양급여 등재 혹은 신의료기술평가를 통해 안정성, 유효성이 인정 받은 검사 및 임 상적 유효성의 근거가 있는 유전자 검사를 건강인에게 시행하는 경우 IV 건강보험 요양급여 등재 혹은 신의료기술평가를 통해 안정성, 유효성이 인정 받은 검사 및 임 상적 유효성의 근거가 있는 유전자 검사를 적절한 임상적 사용 목적 외에 의학적 근거가 부족 한 용도로 사용하는 경우 V 건강보험 요양급여 미등재 혹은 안정성 유효성에 관한 신의료기술평가를 받지 않은 검사로 과 학적 타당성의 입증이 불확실하거나, 검사대상자를 오도할 우려가 있는 신체 외관, 성격 등의 형질에 관한 검사 VI 건강보험 요양급여 미등재 혹은 안정성, 유효성에 관한 신의료기술평가를 받지 않은 검사로 임상적 유효성에 대한 근거가 부족한 검사 유전자 검사평가원에서 제안한 유전자 검사 분류표
  • 98. 한국 DTC 유전정보 분석 제한적 허용 (2016.6.30) • 「비의료기관 직접 유전자검사 실시 허용 관련 고시 제정, 6.30일시행」 • 2015년 12월「생명윤리 및 안전에 관한 법률」개정(‘15.12.29개정, ’16.6.30시행)과 제9차 무역투자진흥회의(’16.2월) 시 발표한 규제 개선의 후속조치 일환으로 추진 • 민간 유전자검사 업체에서는 혈당, 혈압, 피부노화, 체질량지수 등 12개 검사항목과 관련된 46개 유전자를 직접 검사 가능 http://www.mohw.go.kr/m/noticeView.jsp?MENU_ID=0403&cont_seq=333112&page=1 검사항목 (유전자수) 유전자명 1 체질량지수(3) FTO, MC4R, BDNF 2 중성지방농도(8) GCKR, DOCK7, ANGPTL3, BAZ1B, TBL2, MLXIPL, LOC105375745, TRIB1 3 콜레스테롤(8) CELSR2, SORT1, HMGCR, ABO, ABCA1, MYL2, LIPG, CETP 4 혈 당(8) CDKN2A/B, G6PC2, GCK, GCKR, GLIS3, MTNR1B, DGKB-TMEM195, SLC30A8 5 혈 압(8) NPR3, ATP2B1, NT5C2, CSK, HECTD4, GUCY1A3, CYP17A1, FGF5 6 색소 침착(2) OCA2, MC1R 7 탈 모(3) chr20p11(rs1160312, rs2180439), IL2RA, HLA-DQB1 8 모발 굵기(1) EDAR 9 피부 노화(1) AGER 10 피부 탄력(1) MMP1 11 비타민C농도(1) SLC23A1(SVCT1) 12 카페인대사(2) AHR, CYP1A1-CYP1A2
  • 99. DTC 유전정보 분석 서비스 미국 vs. 한국 Table 1 분석 항목 분석 항목 예시 DTC (미국) DTC (한국) 개인유전정보 분석 질병 위험도 유방암(안젤리나 졸리) O 불가 약물 민감도 와파린 민감도 X X 열성유전질환 보인자 블룸 증후군 O X 웰니스 카페인 분해, 대머리 O 12개만 가능 조상 분석 O 불명확 •미국에서 허용된 보인자 검사, 질병 위험도 예측 검사 DTC 서비스는 여전히 한국에서 불법 •더 큰 문제는 잣대 자체가 FDA 등 글로벌 규제 기조나 산업계에서 통용되는 기준과 다름. 
 질병/약물/보인자/웰니스/조상 분석 등의 업계에서 받아들여지는 분류를 무시하고 있음. •글로벌 수준에 발맞추기는 커녕, 한국에서만 통용되는 자체적인 별도 규제 분류 체계를 
 갈수록 더 만들어가면서, 국내 산업의 갈라파고스화를 심화 시키고 있음
  • 100. IBM Watson for Oncology 도입 광풍(?)
  • 101.
  • 102. 600,000 pieces of medical evidence 2 million pages of text from 42 medical journals and clinical trials 69 guidelines, 61,540 clinical trials IBM Watson on Medicine Watson learned... + 1,500 lung cancer cases physician notes, lab results and clinical research + 14,700 hours of hands-on training
  • 103.
  • 104.
  • 105.
  • 106. Empowering the Oncology Community for Cancer Care Genomics Oncology Clinical Trial Matching Watson Health’s oncology clients span more than 35 hospital systems “Empowering the Oncology Community for Cancer Care” Andrew Norden, KOTRA Conference, March 2017, “The Future of Health is Cognitive”
  • 107. IBM Watson Health Watson for Clinical Trial Matching (CTM) 18 1. According to the National Comprehensive Cancer Network (NCCN) 2. http://csdd.tufts.edu/files/uploads/02_-_jan_15,_2013_-_recruitment-retention.pdf© 2015 International Business Machines Corporation Searching across eligibility criteria of clinical trials is time consuming and labor intensive Current Challenges Fewer than 5% of adult cancer patients participate in clinical trials1 37% of sites fail to meet minimum enrollment targets. 11% of sites fail to enroll a single patient 2 The Watson solution • Uses structured and unstructured patient data to quickly check eligibility across relevant clinical trials • Provides eligible trial considerations ranked by relevance • Increases speed to qualify patients Clinical Investigators (Opportunity) • Trials to Patient: Perform feasibility analysis for a trial • Identify sites with most potential for patient enrollment • Optimize inclusion/exclusion criteria in protocols Faster, more efficient recruitment strategies, better designed protocols Point of Care (Offering) • Patient to Trials: Quickly find the right trial that a patient might be eligible for amongst 100s of open trials available Improve patient care quality, consistency, increased efficiencyIBM Confidential
  • 108. Watson Genomics Overview 20 Watson Genomics Content • 20+ Content Sources Including: • Medical Articles (23Million) • Drug Information • Clinical Trial Information • Genomic Information Case Sequenced VCF / MAF, Log2, Dge Encryption Molecular Profile Analysis Pathway Analysis Drug Analysis Service Analysis, Reports, & Visualizations
  • 109. At HIMSS 2017, provided Hye Jin Kam of Asan Medical Center
  • 110. At HIMSS 2017, provided Hye Jin Kam of Asan Medical Center
  • 111. 식약처 인공지능 가이드라인 초안 Medtronic과 혈당관리 앱 시연 2011 2012 2013 2014 2015 Jeopardy! 우승 뉴욕 MSK암센터 협력 (Lung cancer) MD앤더슨 협력 (Leukemia) MD앤더슨 Pilot 결과 발표 @ASCO Watson Fund, WellTok 에 투자 ($22m) The NewYork Genome Center 협력 (Glioblastoma 분석) GeneMD, Watson Mobile Developer Challenge의 winner 선정 Watson Fund, Pathway Genomics 투자 Cleveland Clinic 협력 (Cancer Genome Analysis) 한국 IBM Watson 사업부 신설 Watson Health 출범 Phytel & Explorys 인수 J&J,Apple, Medtronic 협력 Epic & Mayo Clinic 제휴 (EHR data 분석) 동경대 도입 (oncology) 14 Cancer Center 제휴 (Cancer Genome Analysis) Mayo Clinic 협력 (clinical trail matching) Watson Fund, Modernizing Medicine 투자 Academia Business Pathway Genomics OME closed alpha 시작 TurvenHealth 인수 Apple ResearchKit 통한 수면 연구 시작 2017 가천대 길병원 Watson 도입 (oncology) Medtronic Sugar.IQ 출시 제약사 Teva와 제휴 인도 Manipal Hospital Watson 도입 태국 Bumrungrad  International Hospital, Watson 도입 최윤섭 디지털헬스케어 연구소, 소장 (주)디지털 헬스케어 파트너스, 대표파트너 최윤섭, Ph.D. yoonsup.choi@gmail.com IBM Watson in Healthcare Merge Healthcare 인수 2016 Under Amour 제휴 Broad 연구소 협력 발표 (유전체 분석-항암제 내성) Manipal Hospital의 WFO 정확성 발표 대구가톨릭병원 대구동산병원 WFO 도입 건양대병원 Watson 도입 (oncology) 부산대학병원 Watson 도입 (oncology/ genomics)
  • 112. 식약처 인공지능 가이드라인 초안 Medtronic과 혈당관리 앱 시연 2011 2012 2013 2014 2015 Jeopardy! 우승 뉴욕 MSK암센터 협력 (Lung cancer) MD앤더슨 협력 (Leukemia) MD앤더슨 Pilot 결과 발표 @ASCO Watson Fund, WellTok 에 투자 ($22m) The NewYork Genome Center 협력 (Glioblastoma 분석) GeneMD, Watson Mobile Developer Challenge의 winner 선정 Watson Fund, Pathway Genomics 투자 Cleveland Clinic 협력 (Cancer Genome Analysis) 한국 IBM Watson 사업부 신설 Watson Health 출범 Phytel & Explorys 인수 J&J,Apple, Medtronic 협력 Epic & Mayo Clinic 제휴 (EHR data 분석) 동경대 도입 (oncology) 14 Cancer Center 제휴 (Cancer Genome Analysis) Mayo Clinic 협력 (clinical trail matching) Watson Fund, Modernizing Medicine 투자 Academia Business Pathway Genomics OME closed alpha 시작 TurvenHealth 인수 Apple ResearchKit 통한 수면 연구 시작 2017 가천대 길병원 Watson 도입 (oncology) Medtronic Sugar.IQ 출시 제약사 Teva와 제휴 인도 Manipal Hospital Watson 도입 태국 Bumrungrad  International Hospital, Watson 도입 최윤섭 디지털헬스케어 연구소, 소장 (주)디지털 헬스케어 파트너스, 대표파트너 최윤섭, Ph.D. yoonsup.choi@gmail.com IBM Watson in Healthcare Merge Healthcare 인수 2016 Under Amour 제휴 Broad 연구소 협력 발표 (유전체 분석-항암제 내성) Manipal Hospital의 WFO 정확성 발표 대구가톨릭병원 대구동산병원 WFO 도입 건양대병원 Watson 도입 (oncology) 부산대학병원 Watson 도입 (oncology/ genomics)
  • 113. 한국에서도 Watson을 볼 수 있을까? 2015.7.9. 서울대학병원
  • 114.
  • 115. • 부산대학병원 (2017년 1월) • Watson의 솔루션 두 가지를 도입 • Watson for Oncology • Watson for Genomics
  • 116. • 건양대학병원 Watson for Oncology 도입 • 2017년 3월 • “최원준 건양대병원장은 "지역 환자들은 수도권의 여러 병원을 찾아다닐 필요가 없어질 것"이라며 "병 원의 우수한 협진 팀과 인공지능 의료 시스템의 시 너지를 바탕으로 암 환자에게 최상의 의료 서비스를 제공하겠다"고 약속했다."
  • 117.
  • 118. IBM Watson Health Organizations Leveraging Watson Watson for Oncology Best Doctors (second opinion) Bumrungrad International Hospital Confidential client (Bangladesh and Nepal) Gachon University Gil Medical Center (Korea) Hangzhou Cognitive Care – 50+ Chinese hospitals Jupiter Medical Center Manipal Hospitals – 16 Indian Hospitals MD Anderson (**Oncology Expert Advisor) Memorial Sloan Kettering Cancer Center MRDM - Zorg (Netherlands) Pusan National University Hospital Clinical Trial Matching Best Doctors (second opinion) Confidential – Major Academic Center Highlands Oncology Group Froedtert & Medical College of Wisconsin Mayo Clinic Multiple Life Sciences pilots 24 Watson Genomic Analytics Ann & Robert H Lurie Children’s Hospital of Chicago BC Cancer Agency City of Hope Cleveland Clinic Columbia University, Irwing Cancer Center Duke Cancer Institute Fred & Pamela Buffett Cancer Center Fleury (Brazil) Illumina 170 Gene Panel NIH Japan McDonnell Institute at Washington University in St. Louis New York Genome Center Pusan National University Hospital Quest Diagnostics Stanford Health University of Kansas Cancer Center University of North Carolina Lineberger Cancer Center University of Southern California University of Washington Medical Center University of Tokyo Yale Cancer Center Andrew Norden, KOTRA Conference, March 2017, “The Future of Health is Cognitive” Watson for Oncology 는 현재 전세계 70여개 병원에 도입
  • 119. • 인공지능으로 인한 인간 의사의 권위 약화 • 환자의 자기 결정권 및 권익 증대 • 의사의 진료 방식 및 교육 방식의 변화 필요 http://news.donga.com/3/all/20170320/83400087/1
  • 120. • 의사와 Watson의 판단이 다른 경우? • NCCN 가이드라인과 다른 판단을 주기는 것으로 보임 • 100 여명 중에 5 case. 
 • 환자의 판단이 합리적이라고 볼 수 있는가? • Watson의 정확도는 검증되지 않았음 • ‘제 4차 산업혁명’ 등의 buzz word의 영향으로 보임 • 임상 시험이 필요하지 않은가? • 환자들의 선호는 인공지능의 adoption rate 에 영향 • 병원 도입에 영향을 미치는 요인들 • analytical validity • clinical validity/utility • 의사들의 인식/심리적 요인 • 환자들의 인식/심리적 요인 • 규제 환경 (인허가, 수가 등등) • 결국 환자가 원하면 (그것이 의학적으로 타당한지를 떠나서) 병원 도입은 더욱 늘어날 수 밖에 없음
  • 121. • Watson에 대한 환자 반응이 생각보다 매우 좋음 • 도입 2개월만에 85명 암 환자 진료 • 기존의 길병원 예측보다는 더 빠른 수치일 듯 • Big5 에서도 길병원으로 전원 문의 증가 한다는 후문 • 교수들이 더 열심히 상의하고 환자 본다고 함
  • 122. • Trained by 400 cases of historical patients cases • Assessed accuracy OEA treatment suggestions 
 using MD Anderson’s physicians’ decision as benchmark • When 200 leukemia cases were tested, • False positive rate=2.9% • False negative rate=0.4% • Overall accuracy of treatment recommendation=82.6% • Conclusion: Suggested personalized treatment option showed reasonably high accuracy MDAnderson’s Oncology ExpertAdvisor Powered by IBM Watson :AWeb-Based Cognitive Clinical Decision Support Tool Koichi Takahashi, MD (ASCO 2014)
  • 123. Annals of Oncology (2016) 27 (suppl_9): ix179-ix180. 10.1093/annonc/mdw601 Validation study to assess performance of IBM cognitive computing system Watson for oncology with Manipal multidisciplinary tumour board for 1000 consecutive cases: 
 An Indian experience • MMDT(Manipal multidisciplinary tumour board) treatment recommendation and data of 1000 cases of 4 different cancers breast (638), colon (126), rectum (124) and lung (112) which were treated in last 3 years was collected. • Of the treatment recommendations given by MMDT, WFO provided 
 
 50% in REC, 28% in FC, 17% in NREC • Nearly 80% of the recommendations were in WFO REC and FC group • 5% of the treatment provided by MMDT was not available with WFO • The degree of concordance varied depending on the type of cancer • WFO-REC was high in Rectum (85%) and least in Lung (17.8%) • high with TNBC (67.9%); HER2 negative (35%)
 • WFO took a median of 40 sec to capture, analyze and give the treatment.
 
 (vs MMDT took the median time of 15 min)
  • 124. Sung Won Park,APFCP, 2017 Assessing the performance of Watson for Oncology using colon cancer cases treated with surgery and adjuvant chemotherapy 
 at Gachon University Gil Medical Center • Stage II with high risk and stage III colon cancer patients (N=162) • Retrospective study: From September 1, 2014 to August 31, 2016 • Gachon University Gil Medical Center (GMC) • Generally accepted by GMC-recommendation in 83.3% • Concordant with • WFO-Rec: 53.1% • WFO-FC: 30.2% • WFO-NREC: 13.0% • Not included: 3.7%
  • 125. WHY? • 국가별 가이드라인의 차이 • WFO는 기본적으로 MSKCC 기준 • 인종적 차이, 인허가 약물의 차이, 보험 제도의 차이 • NCCN 가이드라인의 업데이트 • 암종별 치료 가능한 옵션의 다양성 차이 • 폐암: 다양함 vs 직장암: 다양하지 않음 • TNBC: 다양하지 않음 vs HER2 (-): 다양함
  • 126. 원칙이 필요하다 •어떤 환자의 경우, 왓슨에게 의견을 물을 것인가? •왓슨을 (암종별로) 얼마나 신뢰할 것인가? •왓슨의 의견을 환자에게 공개할 것인가? •왓슨과 의료진의 판단이 다른 경우 어떻게 할 것인가? •왓슨에게 보험 급여를 매길 수 있는가? 이러한 기준에 따라 의료의 질/치료효과가 달라질 수 있으나, 현재 개별 병원이 개별적인 기준으로 활용하게 됨
  • 127. 의사를 능가하는 Deep Learning 연구 결과들
  • 129. Detection of Diabetic Retinopathy
  • 130. 당뇨성 망막병증 • 당뇨병의 대표적 합병증: 당뇨병력이 30년 이상 환자 90% 발병 • 안과 전문의들이 안저(안구의 안쪽)를 사진으로 찍어서 판독 • 망막 내 미세혈관 생성, 출혈, 삼출물 정도를 파악하여 진단
  • 131. Copyright 2016 American Medical Association. All rights reserved. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD; Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB; Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD IMPORTANCE Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation. OBJECTIVE To apply deep learning to create an algorithm for automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus photographs. DESIGN AND SETTING A specific type of neural network optimized for image classification called a deep convolutional neural network was trained using a retrospective development data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents between May and December 2015. The resultant algorithm was validated in January and February 2016 using 2 separate data sets, both graded by at least 7 US board-certified ophthalmologists with high intragrader consistency. EXPOSURE Deep learning–trained algorithm. MAIN OUTCOMES AND MEASURES The sensitivity and specificity of the algorithm for detecting referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, referable diabetic macular edema, or both, were generated based on the reference standard of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2 operating points selected from the development set, one selected for high specificity and another for high sensitivity. RESULTS TheEyePACS-1datasetconsistedof9963imagesfrom4997patients(meanage,54.4 years;62.2%women;prevalenceofRDR,683/8878fullygradableimages[7.8%]);the Messidor-2datasethad1748imagesfrom874patients(meanage,57.6years;42.6%women; prevalenceofRDR,254/1745fullygradableimages[14.6%]).FordetectingRDR,thealgorithm hadanareaunderthereceiveroperatingcurveof0.991(95%CI,0.988-0.993)forEyePACS-1and 0.990(95%CI,0.986-0.995)forMessidor-2.Usingthefirstoperatingcutpointwithhigh specificity,forEyePACS-1,thesensitivitywas90.3%(95%CI,87.5%-92.7%)andthespecificity was98.1%(95%CI,97.8%-98.5%).ForMessidor-2,thesensitivitywas87.0%(95%CI,81.1%- 91.0%)andthespecificitywas98.5%(95%CI,97.7%-99.1%).Usingasecondoperatingpoint withhighsensitivityinthedevelopmentset,forEyePACS-1thesensitivitywas97.5%and specificitywas93.4%andforMessidor-2thesensitivitywas96.1%andspecificitywas93.9%. CONCLUSIONS AND RELEVANCE In this evaluation of retinal fundus photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy. Further research is necessary to determine the feasibility of applying this algorithm in the clinical setting and to determine whether use of the algorithm could lead to improved care and outcomes compared with current ophthalmologic assessment. JAMA. doi:10.1001/jama.2016.17216 Published online November 29, 2016. Editorial Supplemental content Author Affiliations: Google Inc, Mountain View, California (Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Nelson, Webster); Department of Computer Science, University of Texas, Austin (Venugopalan); EyePACS LLC, San Jose, California (Cuadros); School of Optometry, Vision Science Graduate Group, University of California, Berkeley (Cuadros); Aravind Medical Research Foundation, Aravind Eye Care System, Madurai, India (Kim); Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India (Raman); Verily Life Sciences, Mountain View, California (Mega); Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts (Mega). Corresponding Author: Lily Peng, MD, PhD, Google Research, 1600 Amphitheatre Way, Mountain View, CA 94043 (lhpeng@google.com). Research JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY (Reprinted) E1 Copyright 2016 American Medical Association. All rights reserved.
  • 132. Training Set / Test Set • CNN으로 후향적으로 128,175개의 안저 이미지 학습 • 미국의 안과전문의 54명이 3-7회 판독한 데이터 • 우수한 안과전문의들 7-8명의 판독 결과와 인공지능의 판독 결과 비교 • EyePACS-1 (9,963 개), Messidor-2 (1,748 개)a) Fullscreen mode b) Hit reset to reload this image. This will reset all of the grading. c) Comment box for other pathologies you see eFigure 2. Screenshot of the Second Screen of the Grading Tool, Which Asks Graders to Assess the Image for DR, DME and Other Notable Conditions or Findings
  • 134. • EyePACS-1 과 Messidor-2 의 AUC = 0.991, 0.990 • 7-8명의 안과 전문의와 sensitivity, specificity 가 동일한 수준 • F-score: 0.95 (vs. 인간 의사는 0.91) Additional sensitivity analyses were conducted for sev- eralsubcategories:(1)detectingmoderateorworsediabeticreti- effects of data set size on algorithm performance were exam- ined and shown to plateau at around 60 000 images (or ap- Figure 2. Validation Set Performance for Referable Diabetic Retinopathy 100 80 60 40 20 0 0 70 80 85 95 90 75 0 5 10 15 20 25 30 100806040 Sensitivity,% 1 – Specificity, % 20 EyePACS-1: AUC, 99.1%; 95% CI, 98.8%-99.3%A 100 High-sensitivity operating point High-specificity operating point 100 80 60 40 20 0 0 70 80 85 95 90 75 0 5 10 15 20 25 30 100806040 Sensitivity,% 1 – Specificity, % 20 Messidor-2: AUC, 99.0%; 95% CI, 98.6%-99.5%B 100 High-specificity operating point High-sensitivity operating point Performance of the algorithm (black curve) and ophthalmologists (colored circles) for the presence of referable diabetic retinopathy (moderate or worse diabetic retinopathy or referable diabetic macular edema) on A, EyePACS-1 (8788 fully gradable images) and B, Messidor-2 (1745 fully gradable images). The black diamonds on the graph correspond to the sensitivity and specificity of the algorithm at the high-sensitivity and high-specificity operating points. In A, for the high-sensitivity operating point, specificity was 93.4% (95% CI, 92.8%-94.0%) and sensitivity was 97.5% (95% CI, 95.8%-98.7%); for the high-specificity operating point, specificity was 98.1% (95% CI, 97.8%-98.5%) and sensitivity was 90.3% (95% CI, 87.5%-92.7%). In B, for the high-sensitivity operating point, specificity was 93.9% (95% CI, 92.4%-95.3%) and sensitivity was 96.1% (95% CI, 92.4%-98.3%); for the high-specificity operating point, specificity was 98.5% (95% CI, 97.7%-99.1%) and sensitivity was 87.0% (95% CI, 81.1%-91.0%). There were 8 ophthalmologists who graded EyePACS-1 and 7 ophthalmologists who graded Messidor-2. AUC indicates area under the receiver operating characteristic curve. Research Original Investigation Accuracy of a Deep Learning Algorithm for Detection of Diabetic Retinopathy Results
  • 137. 0 0 M O N T H 2 0 1 7 | V O L 0 0 0 | N A T U R E | 1 LETTER doi:10.1038/nature21056 Dermatologist-level classification of skin cancer with deep neural networks Andre Esteva1 *, Brett Kuprel1 *, Roberto A. Novoa2,3 , Justin Ko2 , Susan M. Swetter2,4 , Helen M. Blau5 & Sebastian Thrun6 Skin cancer, the most common human malignancy1–3 , is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs)4,5 show potential for general and highly variable tasks across many fine-grained object categories6–11 . Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets12 —consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care. There are 5.4 million new cases of skin cancer in the United States2 every year. One in five Americans will be diagnosed with a cutaneous malignancy in their lifetime. Although melanomas represent fewer than 5% of all skin cancers in the United States, they account for approxi- mately 75% of all skin-cancer-related deaths, and are responsible for over 10,000 deaths annually in the United States alone. Early detection is critical, as the estimated 5-year survival rate for melanoma drops from over 99% if detected in its earliest stages to about 14% if detected in its latest stages. We developed a computational method which may allow medical practitioners and patients to proactively track skin lesions and detect cancer earlier. By creating a novel disease taxonomy, and a disease-partitioning algorithm that maps individual diseases into training classes, we are able to build a deep learning system for auto- mated dermatology. Previous work in dermatological computer-aided classification12,14,15 has lacked the generalization capability of medical practitioners owing to insufficient data and a focus on standardized tasks such as dermoscopy16–18 and histological image classification19–22 . Dermoscopy images are acquired via a specialized instrument and histological images are acquired via invasive biopsy and microscopy; whereby both modalities yield highly standardized images. Photographic images (for example, smartphone images) exhibit variability in factors such as zoom, angle and lighting, making classification substantially more challenging23,24 . We overcome this challenge by using a data- driven approach—1.41 million pre-training and training images make classification robust to photographic variability. Many previous techniques require extensive preprocessing, lesion segmentation and extraction of domain-specific visual features before classification. By contrast, our system requires no hand-crafted features; it is trained end-to-end directly from image labels and raw pixels, with a single network for both photographic and dermoscopic images. The existing body of work uses small datasets of typically less than a thousand images of skin lesions16,18,19 , which, as a result, do not generalize well to new images. We demonstrate generalizable classification with a new dermatologist-labelled dataset of 129,450 clinical images, including 3,374 dermoscopy images. Deep learning algorithms, powered by advances in computation and very large datasets25 , have recently been shown to exceed human performance in visual tasks such as playing Atari games26 , strategic board games like Go27 and object recognition6 . In this paper we outline the development of a CNN that matches the performance of dermatologists at three key diagnostic tasks: melanoma classification, melanoma classification using dermoscopy and carcinoma classification. We restrict the comparisons to image-based classification. We utilize a GoogleNet Inception v3 CNN architecture9 that was pre- trained on approximately 1.28 million images (1,000 object categories) from the 2014 ImageNet Large Scale Visual Recognition Challenge6 , and train it on our dataset using transfer learning28 . Figure 1 shows the working system. The CNN is trained using 757 disease classes. Our dataset is composed of dermatologist-labelled images organized in a tree-structured taxonomy of 2,032 diseases, in which the individual diseases form the leaf nodes. The images come from 18 different clinician-curated, open-access online repositories, as well as from clinical data from Stanford University Medical Center. Figure 2a shows a subset of the full taxonomy, which has been organized clinically and visually by medical experts. We split our dataset into 127,463 training and validation images and 1,942 biopsy-labelled test images. To take advantage of fine-grained information contained within the taxonomy structure, we develop an algorithm (Extended Data Table 1) to partition diseases into fine-grained training classes (for example, amelanotic melanoma and acrolentiginous melanoma). During inference, the CNN outputs a probability distribution over these fine classes. To recover the probabilities for coarser-level classes of interest (for example, melanoma) we sum the probabilities of their descendants (see Methods and Extended Data Fig. 1 for more details). We validate the effectiveness of the algorithm in two ways, using nine-fold cross-validation. First, we validate the algorithm using a three-class disease partition—the first-level nodes of the taxonomy, which represent benign lesions, malignant lesions and non-neoplastic 1 Department of Electrical Engineering, Stanford University, Stanford, California, USA. 2 Department of Dermatology, Stanford University, Stanford, California, USA. 3 Department of Pathology, Stanford University, Stanford, California, USA. 4 Dermatology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. 5 Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA. 6 Department of Computer Science, Stanford University, Stanford, California, USA. *These authors contributed equally to this work. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
  • 138. LETTERH his task, the CNN achieves 72.1±0.9% (mean±s.d.) overall he average of individual inference class accuracies) and two gists attain 65.56% and 66.0% accuracy on a subset of the set. Second, we validate the algorithm using a nine-class rtition—the second-level nodes—so that the diseases of have similar medical treatment plans. The CNN achieves two trials, one using standard images and the other using images, which reflect the two steps that a dermatologist m to obtain a clinical impression. The same CNN is used for a Figure 2b shows a few example images, demonstrating th distinguishing between malignant and benign lesions, whic visual features. Our comparison metrics are sensitivity an Acral-lentiginous melanoma Amelanotic melanoma Lentigo melanoma … Blue nevus Halo nevus Mongolian spot … Training classes (757)Deep convolutional neural network (Inception v3) Inference classes (varies by task) 92% malignant melanocytic lesion 8% benign melanocytic lesion Skin lesion image Convolution AvgPool MaxPool Concat Dropout Fully connected Softmax Deep CNN layout. Our classification technique is a Data flow is from left to right: an image of a skin lesion e, melanoma) is sequentially warped into a probability over clinical classes of skin disease using Google Inception hitecture pretrained on the ImageNet dataset (1.28 million 1,000 generic object classes) and fine-tuned on our own 29,450 skin lesions comprising 2,032 different diseases. ning classes are defined using a novel taxonomy of skin disease oning algorithm that maps diseases into training classes (for example, acrolentiginous melanoma, amelanotic melano melanoma). Inference classes are more general and are comp or more training classes (for example, malignant melanocytic class of melanomas). The probability of an inference class is c summing the probabilities of the training classes according to structure (see Methods). Inception v3 CNN architecture repr from https://research.googleblog.com/2016/03/train-your-ow classifier-with.html GoogleNet Inception v3 • 129,450개의 피부과 병변 이미지 데이터를 자체 제작 • 미국의 피부과 전문의 18명이 데이터 curation • CNN (Inception v3)으로 이미지를 학습 • 피부과 전문의들 21명과 인공지능의 판독 결과 비교 • 표피세포 암 (keratinocyte carcinoma)과 지루각화증(benign seborrheic keratosis)의 구분 • 악성 흑색종과 양성 병변 구분 (표준 이미지 데이터 기반) • 악성 흑색종과 양성 병변 구분 (더마토스코프로 찍은 이미지 기반)
  • 139. Skin cancer classification performance of the CNN and dermatologists. LETT a b 0 1 Sensitivity 0 1 Specificity Melanoma: 130 images 0 1 Sensitivity 0 1 Specificity Melanoma: 225 images Algorithm: AUC = 0.96 0 1 Sensitivity 0 1 Specificity Melanoma: 111 dermoscopy images 0 1 Sensitivity 0 1 Specificity Carcinoma: 707 images Algorithm: AUC = 0.96 0 1 Sensitivity 0 1 Specificity Melanoma: 1,010 dermoscopy images Algorithm: AUC = 0.94 0 1 Sensitivity 0 1 Specificity Carcinoma: 135 images Algorithm: AUC = 0.96 Dermatologists (25) Average dermatologist Algorithm: AUC = 0.94 Dermatologists (22) Average dermatologist Algorithm: AUC = 0.91 Dermatologists (21) Average dermatologist cancer classification performance of the CNN and 21명 중에 인공지능보다 정확성이 떨어지는 피부과 전문의들이 상당수 있었음 피부과 전문의들의 평균 성적도 인공지능보다 좋지 않았음
  • 140. Skin cancer classification performance of the CNN and dermatologists. LETT a b 0 1 Sensitivity 0 1 Specificity Melanoma: 130 images 0 1 Sensitivity 0 1 Specificity Melanoma: 225 images Algorithm: AUC = 0.96 0 1 Sensitivity 0 1 Specificity Melanoma: 111 dermoscopy images 0 1 Sensitivity 0 1 Specificity Carcinoma: 707 images Algorithm: AUC = 0.96 0 1 Sensitivity 0 1 Specificity Melanoma: 1,010 dermoscopy images Algorithm: AUC = 0.94 0 1 Sensitivity 0 1 Specificity Carcinoma: 135 images Algorithm: AUC = 0.96 Dermatologists (25) Average dermatologist Algorithm: AUC = 0.94 Dermatologists (22) Average dermatologist Algorithm: AUC = 0.91 Dermatologists (21) Average dermatologist cancer classification performance of the CNN and
  • 142. Figure 4. Participating Pathologists’ Interpretations of Each of the 240 Breast Biopsy Test Cases 0 25 50 75 100 Interpretations, % 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Case Benign without atypia 72 Cases 2070 Total interpretations A 0 25 50 75 100 Interpretations, % 218 220 222 224 226 228 230 232 234 236 238 240 Case Invasive carcinoma 23 Cases 663 Total interpretations D 0 25 50 75 100 Interpretations, % 147 145 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217 Case DCIS 73 Cases 2097 Total interpretations C 0 25 50 75 100 Interpretations, % 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 Case Atypia 72 Cases 2070 Total interpretations B Benign without atypia Atypia DCIS Invasive carcinoma Pathologist interpretation DCIS indicates ductal carcinoma in situ. Diagnostic Concordance in Interpreting Breast Biopsies Original Investigation Research Elmore etl al. JAMA 2015 Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy Specimens The overall agreement between the individual pathologists’ interpretations and the expert consensus–derived reference diagnoses was 75.3% (total 240 cases)
  • 143. Elmore etl al. JAMA 2015 Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy Specimens • Concordance noted in 5194 of 6900 case interpretations or 75.3%. • Reference diagnosis was obtained from consensus of 3 experienced breast pathologists. spentonthisactivitywas16(95%CI,15-17);43participantswere awarded the maximum 20 hours. Pathologists’ Diagnoses Compared With Consensus-Derived Reference Diagnoses The 115 participants each interpreted 60 cases, providing 6900 total individual interpretations for comparison with the con- sensus-derived reference diagnoses (Figure 3). Participants agreed with the consensus-derived reference diagnosis for 75.3% of the interpretations (95% CI, 73.4%-77.0%). Partici- pants (n = 94) who completed the CME activity reported that Patient and Pathologist Characteristics Associated With Overinterpretation and Underinterpretation The association of breast density with overall pathologists’ concordance (as well as both overinterpretation and under- interpretation rates) was statistically significant, as shown in Table 3 when comparing mammographic density grouped into 2 categories (low density vs high density). The overall concordance estimates also decreased consistently with increasing breast density across all 4 Breast Imaging- Reporting and Data System (BI-RADS) density categories: BI-RADS A, 81% (95% CI, 75%-86%); BI-RADS B, 77% (95% Figure 3. Comparison of 115 Participating Pathologists’ Interpretations vs the Consensus-Derived Reference Diagnosis for 6900 Total Case Interpretationsa Participating Pathologists’ Interpretation ConsensusReference Diagnosisb Benign without atypia Atypia DCIS Invasive carcinoma Total Benign without atypia 1803 200 46 21 2070 Atypia 719 990 353 8 2070 DCIS 133 146 1764 54 2097 Invasive carcinoma 3 0 23 637 663 Total 2658 1336 2186 720 6900 DCIS indicates ductal carcinoma in situ. a Concordance noted in 5194 of 6900 case interpretations or 75.3%. b Reference diagnosis was obtained from consensus of 3 experienced breast pathologists. Diagnostic Concordance in Interpreting Breast Biopsies Original Investigation Research Comparison of 115 Participating Pathologists’ Interpretations vs 
 the Consensus-Derived Reference Diagnosis for 6900 Total Case Interpretations
  • 144. Constructing higher-level contextual/relational features: Relationships between epithelial nuclear neighbors Relationships between morphologically regular and irregular nuclei Relationships between epithelial and stromal objects Relationships between epithelial nuclei and cytoplasm Characteristics of stromal nuclei and stromal matrix Characteristics of epithelial nuclei and epithelial cytoplasm Building an epithelial/stromal classifier: Epithelial vs.stroma classifier Epithelial vs.stroma classifier B Basic image processing and feature construction: H&E image Image broken into superpixels Nuclei identified within each superpixel A Relationships of contiguous epithelial regions with underlying nuclear objects Learning an image-based model to predict survival Processed images from patients Processed images from patients C D onNovember17,2011stm.sciencemag.orgwnloadedfrom TMAs contain 0.6-mm-diameter cores (median of two cores per case) that represent only a small sample of the full tumor. We acquired data from two separate and independent cohorts: Nether- lands Cancer Institute (NKI; 248 patients) and Vancouver General Hospital (VGH; 328 patients). Unlike previous work in cancer morphom- etry (18–21), our image analysis pipeline was not limited to a predefined set of morphometric features selected by pathologists. Rather, C-Path measures an extensive, quantitative feature set from the breast cancer epithelium and the stro- ma (Fig. 1). Our image processing system first performed an automated, hierarchical scene seg- mentation that generated thousands of measure- ments, including both standard morphometric descriptors of image objects and higher-level contextual, relational, and global image features. The pipeline consisted of three stages (Fig. 1, A to C, and tables S8 and S9). First, we used a set of processing steps to separate the tissue from the background, partition the image into small regions of coherent appearance known as superpixels, find nuclei within the superpixels, and construct Constructing higher-level contextual/relational features: Relationships between epithelial nuclear neighbors Relationships between morphologically regular and irregular nuclei Relationships between epithelial and stromal objects Relationships between epithelial nuclei and cytoplasm Characteristics of stromal nuclei and stromal matrix Characteristics of epithelial nuclei and epithelial cytoplasm Epithelial vs.stroma classifier Epithelial vs.stroma classifier Relationships of contiguous epithelial regions with underlying nuclear objects Learning an image-based model to predict survival Processed images from patients alive at 5 years Processed images from patients deceased at 5 years L1-regularized logisticregression modelbuilding 5YS predictive model Unlabeled images Time P(survival) C D Identification of novel prognostically important morphologic features basic cellular morphologic properties (epithelial reg- ular nuclei = red; epithelial atypical nuclei = pale blue; epithelial cytoplasm = purple; stromal matrix = green; stromal round nuclei = dark green; stromal spindled nuclei = teal blue; unclassified regions = dark gray; spindled nuclei in unclassified regions = yellow; round nuclei in unclassified regions = gray; background = white). (Left panel) After the classification of each image object, a rich feature set is constructed. (D) Learning an image-based model to predict survival. Processed images from patients alive at 5 years after surgery and from patients deceased at 5 years after surgery were used to construct an image-based prog- nostic model. After construction of the model, it was applied to a test set of breast cancer images (not used in model building) to classify patients as high or low risk of death by 5 years. www.ScienceTranslationalMedicine.org 9 November 2011 Vol 3 Issue 108 108ra113 2 onNovember17,2011stm.sciencemag.orgDownloadedfrom Digital Pathologist Sci Transl Med. 2011 Nov 9;3(108):108ra113