SlideShare une entreprise Scribd logo
1  sur  263
How to Implement Digital Healthcare in the Future
Professor, SAHIST, Sungkyunkwan University
Director, Digital Healthcare Institute
Yoon Sup Choi, Ph.D.
“It's in Apple's DNA that technology alone is not enough. 

It's technology married with liberal arts.”
The Convergence of IT, BT and Medicine
Inevitable Tsunami of Change
http://rockhealth.com/2015/01/digital-health-funding-tops-4-1b-2014-year-review/
https://rockhealth.com/reports/2016-year-end-funding-report-a-reality-check-for-digital-health
•2016년 디지털 헬스케어 스타트업 펀딩 규모는 $4.2b 으로 전년도에 비해서 8% 감소

•반면 투자를 받은 기업은 273개에서 296개로 약 10% 증가

•총 451개 VC 및 CVC가 투자를 집행

•그 중 237개는 디지털 헬스케어 기업에 '처음' 투자한 곳 (화이자 포함)
startuphealth.com/reports
2010 2011 2012 2013 2014 2015 2016 2017
YTD
Q1 Q2 Q3 Q4
160
302
499
672
593
530
613
306
Deal Count
$1.8B
$2.1B
$1.9B
$897M
$589M
$470M
$386M
$8.3B
$6.1B
$7.2B
$3.0B
$2.4B
$2.1B
$1.1B
DIGITAL HEALTH FUNDING SNAPSHOT: YEAR OVER YEAR
8Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data on seed, venture, corporate venture and private equity funding only. © 2017 StartUp Health LLC
$6.5B
$3.8B
Over six billion dollars poured into the industry in nearly 300 deals in the first half of the year. 2017 is on track to be the
most active year for funding by a significant margin.
Substantial amounts of funding continues to pour into
digital health. Deal sizes continue to grow as the industry
matures. We expect this trend to continue and see more
$100M+ raises as industry leaders find their way into
mass market opportunities.
“There’s nothing that touches
the human soul more than
your health.”
-Bill McDermott, CEO, SAP
DEALS & FUNDING GEOGRAPHY INVESTORSMOONSHOTS
•2017 2Q는 역대 분기별로 가장 큰 투자가 집행된 분기였음. 

•2010년+2011년 전체보다 더 큰 규모가 투자. 

•분기별 투자 총 건수는 비슷하였으나, 개별 딜의 규모가 상승

•투자 건수는 2017년 상반기가 306건으로 예년에 비해서 크게 달라지지는 않음 

•2013-2016년의 연간 투자 건수가 각각 거의 530-670건 사이
startuphealth.com/reports
$0B
$0.417B
$0.833B
$1.25B
$1.667B
$2.083B
$2.5B
2010 2011 2012 2013 2014 2015 2016 2017 YTD
$150M Series C
$37.5M Venture
$37.9M Venture
$394M Venture
$33M Series B
$31M Series A
$400M Series C
$500M Series C
R2 = 0.5564
$220M Series A
Good Doctor
$500M Venture
DIGITAL HEALTH FUNDING SNAPSHOT: MONTH OVER MONTH
9
$500M Series A
Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data on seed, venture, corporate venture and private equity funding only. © 2017 StartUp Health LLC
$130M Series B
$914M Series B
Two massive spikes in March and May indicate large funding events in the first half of 2017 and continue to push private
funding towards a more positive overall trend.
$600M Venture$360M Series E
DEALS & FUNDING GEOGRAPHY INVESTORSMOONSHOTS
•2017년 1Q에는 Grail ($914M)과 2Q에 Outcome
Health ($600M) 이라는 두 outlier 가 있기는 했으나,

•이를 고려하지 않더라도, 연도별 digital healthcare 분야 

글로벌 투자는 지속적으로 우상향 중
https://rockhealth.com/reports/digital-health-funding-2015-year-in-review/
5%
8%
24%
27%
36%
Life Science & Health
Mobile
Enterprise & Data
Consumer
Commerce
9%
13%
23%
24%
31%
Life Science & Health
Consumer
Enterprise
Data & AI
Others
2014 2015
Investment of GoogleVentures in 2014-2015
startuphealth.com/reports
Firm 2017 YTD Deals Stage
Early Mid Late
1 7
1 7
2 6
2 6
3 5
3 5
3 5
3 5
THE TOP INVESTORS OF 2017 YTD
We are seeing huge strides in new investors pouring money into the digital health market, however all the top 10 investors of
2017 year to date are either maintaining or increasing their investment activity.
Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data on seed, venture, corporate venture and private equity funding only. © 2017 StartUp Health LLC
DEALS & FUNDING GEOGRAPHY INVESTORSMOONSHOTS
20
•개별 투자자별로 보자면, 이 분야 전통의 강자(?)인 Google Ventures
와 Khosla Ventures가 각각 7개로 공동 1위, 

•GE Ventures와 Accel Partners가 6건으로 공동 2위를 기록

•GV 가 투자한 기업

•virtual fitness membership network를 만드는 뉴욕의
ClassPass

•Remote clinical trial 회사인 Science 37

•Digital specialty prescribing platform ZappRx 등에 투자.

•Khosla Ventures 가 투자한 기업

•single-molecule 검사 장비를 만드는 TwoPoreGuys

•Mabu라는 AI-powered patient engagement robot 을 만드는
Catalia Health에 투자.
헬스케어넓은 의미의 건강 관리에는 해당되지만, 

디지털 기술이 적용되지 않고, 전문 의료 영역도 아닌 것

예) 운동, 영양, 수면
디지털 헬스케어
건강 관리 중에 디지털 기술이 사용되는 것

예) 사물인터넷, 인공지능, 3D 프린터, VR/AR
모바일 헬스케어
디지털 헬스케어 중 

모바일 기술이 사용되는 것

예) 스마트폰, 사물인터넷, SNS
개인 유전정보분석
예) 암유전체, 질병위험도, 

보인자, 약물 민감도
예) 웰니스, 조상 분석
헬스케어 관련 분야 구성도(ver 0.3)
의료
질병 예방, 치료, 처방, 관리 

등 전문 의료 영역
원격의료
원격진료
What is most important factor in digital medicine?
“Data! Data! Data!” he cried.“I can’t
make bricks without clay!”
- Sherlock Holmes,“The Adventure of the Copper Beeches”
새로운 데이터가

새로운 방식으로

새로운 주체에 의해

측정, 저장, 통합, 분석된다.
데이터의 종류

데이터의 질적/양적 측면
웨어러블 기기

스마트폰

유전 정보 분석

인공지능

SNS
사용자/환자

대중
Three Steps to Implement Digital Medicine
• Step 1. Measure the Data
• Step 2. Collect the Data
• Step 3. Insight from the Data
Digital Healthcare Industry Landscape
Data Measurement Data Integration Data Interpretation Treatment
Smartphone Gadget/Apps
DNA
Artificial Intelligence
2nd Opinion
Wearables / IoT
(ver. 3)
EMR/EHR 3D Printer
Counseling
Data Platform
Accelerator/early-VC
Telemedicine
Device
On Demand (O2O)
VR
Digital Healthcare Institute
Diretor, Yoon Sup Choi, Ph.D.
yoonsup.choi@gmail.com
Data Measurement Data Integration Data Interpretation Treatment
Smartphone Gadget/Apps
DNA
Artificial Intelligence
2nd Opinion
Device
On Demand (O2O)
Wearables / IoT
Digital Healthcare Institute
Diretor, Yoon Sup Choi, Ph.D.
yoonsup.choi@gmail.com
EMR/EHR 3D Printer
Counseling
Data Platform
Accelerator/early-VC
VR
Telemedicine
Digital Healthcare Industry Landscape (ver. 3)
Step 1. Measure the Data
Smartphone: the origin of healthcare innovation
Smartphone: the origin of healthcare innovation
2013?
The election of Pope Benedict
The Election of Pope Francis
The Election of Pope Francis
The Election of Pope Benedict
SummerTanThese Days
Sci Transl Med 2015
Jan 2015 WSJ
CellScope’s iPhone-enabled otoscope
CellScope’s iPhone-enabled otoscope
http://www.firsthud.com/
Smartphone-connected dermatoscope
Smartphone video microscope
automates detection of parasites in blood
SpiroSmart: spirometer using iPhone
AliveCor Heart Monitor (Kardia)
AliveCor Heart Monitor (Kardia)
Sleep Cycle
BeyondVerbal: Reading emotions from voices
http://www.wsj.com/articles/SB10001424052702303824204579421242295627138
Beyond Verbal
• 기계가 사람의 감정을 이해한다면? 

• 헬스케어 분야에서도 응용도 높음: 슬픔/우울함/피로 등의 감정 파악 

• 일부 보험 회사에서는 가입자의 우울증 여부 파악을 위해 이미 사용 중

• Aetna 는 2012년 부터 고객의 우울증 여부를 전화 목소리 분석으로 파악

• 기존의 방식에 비해 우울증 환자 6배 파악

• 사생활 침해 여부 존재
Digital Phenotype:
Your smartphone knows if you are depressed
Ginger.io
Digital Phenotype:
Your smartphone knows if you are depressed
J Med Internet Res. 2015 Jul 15;17(7):e175.
The correlation analysis between the features and the PHQ-9 scores revealed that 6 of the 10
features were significantly correlated to the scores:
• strong correlation: circadian movement, normalized entropy, location variance
• correlation: phone usage features, usage duration and usage frequency
Digital Phenotype:
Your smartphone knows if you are depressed
J Med Internet Res. 2015 Jul 15;17(7):e175.
Comparison of location and usage feature statistics between participants with no symptoms of depression (blue) and the
ones with (red). (ENT, entropy; ENTN, normalized entropy; LV, location variance; HS, home stay;TT, transition time;TD,
total distance; CM, circadian movement; NC, number of clusters; UF, usage frequency; UD, usage duration).
Figure 4. Comparison of location and usage feature statistics between participants with no symptoms of depression (blue) and the ones with (red).
Feature values are scaled between 0 and 1 for easier comparison. Boxes extend between 25th and 75th percentiles, and whiskers show the range.
Horizontal solid lines inside the boxes are medians. One, two, and three asterisks show significant differences at P<.05, P<.01, and P<.001 levels,
respectively (ENT, entropy; ENTN, normalized entropy; LV, location variance; HS, home stay; TT, transition time; TD, total distance; CM, circadian
movement; NC, number of clusters; UF, usage frequency; UD, usage duration).
Figure 5. Coefficients of correlation between location features. One, two, and three asterisks indicate significant correlation levels at P<.05, P<.01,
and P<.001, respectively (ENT, entropy; ENTN, normalized entropy; LV, location variance; HS, home stay; TT, transition time; TD, total distance;
CM, circadian movement; NC, number of clusters).
Saeb et alJOURNAL OF MEDICAL INTERNET RESEARCH
the variability of the time
the participant spent at
the location clusters
what extent the participants’
sequence of locations followed a
circadian rhythm.
home stay
Reece & Danforth, “Instagram photos reveal predictive markers of depression” (2016)
higher Hue (bluer)
lower Saturation (grayer)
lower Brightness (darker)
Digital Phenotype:
Your Instagram knows if you are depressed
Rao (MVR) (24) .  
 
Results 
Both All­data and Pre­diagnosis models were decisively superior to a null model
. All­data predictors were significant with 99% probability.57.5;(KAll  = 1 K 49.8)  Pre = 1  7
Pre­diagnosis and All­data confidence levels were largely identical, with two exceptions: 
Pre­diagnosis Brightness decreased to 90% confidence, and Pre­diagnosis posting frequency 
dropped to 30% confidence, suggesting a null predictive value in the latter case.  
Increased hue, along with decreased brightness and saturation, predicted depression. This 
means that photos posted by depressed individuals tended to be bluer, darker, and grayer (see 
Fig. 2). The more comments Instagram posts received, the more likely they were posted by 
depressed participants, but the opposite was true for likes received. In the All­data model, higher 
posting frequency was also associated with depression. Depressed participants were more likely 
to post photos with faces, but had a lower average face count per photograph than healthy 
participants. Finally, depressed participants were less likely to apply Instagram filters to their 
posted photos.  
 
Fig. 2. Magnitude and direction of regression coefficients in All­data (N=24,713) and Pre­diagnosis (N=18,513) 
models. X­axis values represent the adjustment in odds of an observation belonging to depressed individuals, per 
Reece & Danforth, “Instagram photos reveal predictive markers of depression” (2016)
 
 
Fig. 1. Comparison of HSV values. Right photograph has higher Hue (bluer), lower Saturation (grayer), and lower 
Brightness (darker) than left photograph. Instagram photos posted by depressed individuals had HSV values 
shifted towards those in the right photograph, compared with photos posted by healthy individuals. 
 
Units of observation 
In determining the best time span for this analysis, we encountered a difficult question: 
When and for how long does depression occur? A diagnosis of depression does not indicate the 
persistence of a depressive state for every moment of every day, and to conduct analysis using an 
individual’s entire posting history as a single unit of observation is therefore rather specious. At 
the other extreme, to take each individual photograph as units of observation runs the risk of 
being too granular. DeChoudhury et al. (5) looked at all of a given user’s posts in a single day, 
and aggregated those data into per­person, per­day units of observation. We adopted this 
precedent of “user­days” as a unit of analysis .  5
 
Statistical framework 
We used Bayesian logistic regression with uninformative priors to determine the strength 
of individual predictors. Two separate models were trained. The All­data model used all 
collected data to address Hypothesis 1. The Pre­diagnosis model used all data collected from 
higher Hue (bluer)
lower Saturation (grayer)
lower Brightness (darker)
Digital Phenotype:
Your Instagram knows if you are depressed
Reece & Danforth, “Instagram photos reveal predictive markers of depression” (2016)
. In particular, depressedχ2 07.84, p .17e 64;( All  = 9   = 9 − 1 13.80, p .87e 44)χ2Pre  = 8   = 2 − 1  
participants were less likely than healthy participants to use any filters at all. When depressed 
participants did employ filters, they most disproportionately favored the “Inkwell” filter, which 
converts color photographs to black­and­white images. Conversely, healthy participants most 
disproportionately favored the Valencia filter, which lightens the tint of photos. Examples of 
filtered photographs are provided in SI Appendix VIII.  
 
Fig. 3. Instagram filter usage among depressed and healthy participants. Bars indicate difference between observed 
and expected usage frequencies, based on a Chi­squared analysis of independence. Blue bars indicate 
disproportionate use of a filter by depressed compared to healthy participants, orange bars indicate the reverse. 
Digital Phenotype:
Your Instagram knows if you are depressed
Reece & Danforth, “Instagram photos reveal predictive markers of depression” (2016)
 
VIII. Instagram filter examples 
 
Fig. S8. Examples of Inkwell and Valencia Instagram filters.  Inkwell converts 
color photos to black­and­white, Valencia lightens tint.  Depressed participants 
most favored Inkwell compared to healthy participants, Healthy participants 
• 아이폰의 센서로 측정한 자신의 의료/건강 데이터를 플랫폼에 공유 가능

• 가속도계, 마이크, 자이로스코프, GPS 센서 등을 이용

• 걸음, 운동량, 기억력, 목소리 떨림 등등

• 기존의 의학연구의 문제를 해결: 충분한 의료 데이터의 확보

• 연구 참여자 등록에 물리적, 시간적 장벽을 제거 (1번/3개월 ➞ 1번/1초)

• 대중의 의료 연구 참여 장려: 연구 참여자의 수 증가

• 발표 후 24시간 내에 수만명의 연구 참여자들이 지원

• 사용자 본인의 동의 하에 진행
Research Kit
•초기 버전으로, 5가지 질환에 대한 앱 5개를 소개
ResearchKit
ResearchKit
ResearchKit
Autism and Beyond EpiWatchMole Mapper
measuring facial expressions of young
patients having autism
measuring morphological changes
of moles
measuring behavioral data
of epilepsy patients
•스탠퍼드의 심혈관 질환 연구 앱, myHeart 

• 발표 하루만에 11,000 명의 참가자가 등록

• 스탠퍼드의 해당 연구 책임자 앨런 영,

“기존의 방식으로는 11,000명 참가자는 

미국 전역의 50개 병원에서 1년간 모집해야 한다”
•파킨슨 병 연구 앱, mPower

• 발표 하루만에 5,589 명의 참가자가 등록

• 기존에 6000만불을 들여 5년 동안 모집한

환자의 수는 단 800명
Wearable Devices
http://www.rolls-royce.com/about/our-technology/enabling-technologies/engine-health-management.aspx#sense
250 sensors to monitor the “health” of the GE turbines
Fig 1. What can consumer wearables do? Heart rate can be measured with an oximeter built into a ring [3], muscle activity with an electromyographi
sensor embedded into clothing [4], stress with an electodermal sensor incorporated into a wristband [5], and physical activity or sleep patterns via an
accelerometer in a watch [6,7]. In addition, a female’s most fertile period can be identified with detailed body temperature tracking [8], while levels of me
attention can be monitored with a small number of non-gelled electroencephalogram (EEG) electrodes [9]. Levels of social interaction (also known to a
PLOS Medicine 2016
PwC Health Research Institute Health wearables: Early days2
insurers—offering incentives for
use may gain traction. HRI’s survey
Source: HRI/CIS Wearables consumer survey 2014
21%
of US
consumers
currently
own a
wearable
technology
product
2%
wear it a few
times a month
2%
no longer
use it
7%
wear it a few
times a week
10%
wear it
everyday
Figure 2: Wearables are not mainstream – yet
Just one in five US consumers say they own a wearable device.
Intelligence Series sought to better
understand American consumers’
attitudes toward wearables through
done with the data.
PwC, Health wearables: early days, 2014
PwC | The Wearable Life | 3
device (up from 21% in 2014). And 36% own more than one.
We didn’t even ask this question in our previous survey since
it wasn’t relevant at the time. That’s how far we’ve come.
millennials are far more likely to own wearables than older
adults. Adoption of wearables declines with age.
Of note in our survey findings, however: Consumers aged
35 to 49 are more likely to own smart watches.
Across the board for gender, age, and ethnicity, fitness
wearable technology is most popular.
Fitness band
Smart clothing
Smart video/
photo device
(e.g. GoPro)
Smart watch
Smart
glasses*
45%
14%
27%
15%
12%
Base: Respondents who currently own at least one device (pre-quota sample, n=700); Q10A/B/C/D/E. Please tell us your relationship with the following wearable
technology products. *Includes VR/AR glasses
Fitness runs away with it
% respondents who own type of wearable device
PwC,The Wearable Life 2.0, 2016
• 49% own at least one wearable device (up from 21% in2014)
• 36% own more than one device.
Hype or Hope?
Source: Gartner
Hype or Hope?
Source: Gartner
Fitbit
21.4m
$1.8B
Fitbit
Apple Watch
n
n-
ng
n
es
h-
n
ne
ne
ct
d
n-
at
s-
or
e,
ts
n
a-
gs
d
ch
Nat Biotech 2015
• $20
• the first and only 24-hour thermometer
• constantly monitor baby’s temperature
• FDA cleared
iRythm ZIO patch
Multisense
Google’s Smart Contact Lens
Ingestible Sensor, Proteus Digital Health
Ingestible Sensor, Proteus Digital Health
IEEE Trans Biomed Eng. 2014 Jul
An Ingestible Sensor
for Measuring Medication Adherence
d again on
imal was
ysis were
s detected,
risk of
ed with a
his can be
s during
can be
on, placed
filling, or
an edible
monstrated
cases, the
nts of the
ve release
ity, visual
a suitable
The 0.9% of devices that went undetected represent
contributions from all components of the system. For the
sensor, the most likely contribution is due to physiological
corner cases, where a combination of stomach environment
and receiver-sensor orientation may result in a small
proportion of devices (no greater than 0.9%) being missed.
Table IV- Exposure and performance in clinical trials
412 subjects
20,993 ingestions
Maximum daily ingestion: 34
Maximum use days: 90 days
99.1% Detection accuracy
100% Correct identification
0% False positives
No SAEs / UADEs related to system
Trials were conducted in the following patient populations. The number of
patients in each study is indicated in parentheses: Healthy Volunteers (296),
Cardiovascular disease (53), Tuberculosis (30), Psychiatry (28).
SAE = Serious Adverse Event; UADE = Unanticipated Adverse Device
Effect)
Exposure and performance in clinical trials
n
n-
ng
n
es
h-
n
ne
ne
ct
d
n-
at
s-
or
e,
ts
n
a-
gs
d
ch
Nat Biotech 2015
Personal Genome Analysis
2003 Human Genome Project 13 years (676 weeks) $2,700,000,000
2007 Dr. CraigVenter’s genome 4 years (208 weeks) $100,000,000
2008 Dr. James Watson’s genome 4 months (16 weeks) $1,000,000
2009 (Nature Biotechnology) 4 weeks $48,000
2013 1-2 weeks ~$5,000
13 years 30 hours
(676 weeks)
Over the last decade,
$2,700,000,000 ~$1,000
Over the last decade,
Ferrari 458 Spider
$398,000 40 cents
http://www.guardian.co.uk/science/2013/jun/08/genome-sequenced
The $1000 Genome is Already Here!
• 2017년 1월 NovaSeq 5000, 6000 발표

• 몇년 내로 $100로 WES 를 실현하겠다고 공언

• 2일에 60명의 WES 가능 (한 명당 한 시간 이하)
Results within 6-8 weeksA little spit is all it takes!
DTC Genetic TestingDirect-To-Consumer
120 Disease Risk
21 Drug Response
49 Carrier Status
57Traits
$99
Health Risks
Health Risks
Health Risks
Drug Response
Inherited Conditions
혈색소증은 유전적 원인으로 철에 대한 체내 대사에 이상이 생겨 음식을
통해 섭취한 철이 너무 많이 흡수되는 질환입니다. 너무 많이 흡수된 철
은 우리 몸의 여러 장기, 특히 간, 심장 및 췌장에 과다하게 축적되며 이
들 장기를 손상시킴으로써 간질환, 심장질환 및 악성종양을 유발합니다.
Traits
음주 후 얼굴이 붉어지는가
쓴 맛을 감지할 수 있나
귀지 유형
눈 색깔
곱슬머리 여부
유당 분해 능력
말라리아 저항성
대머리가 될 가능성
근육 퍼포먼스
혈액형
노로바이러스 저항성
HIV 저항성
흡연 중독 가능성
Ancestry Composition
Neanderthal Ancestry
genetic factor vs. environmental factor
1,200,000
1,000,000
900,000
850,000
650,000
500,000
400,000
300,000
250,000
180,000
100,000
2007-11
2011-06
2011-10
2012-04
2012-10
2013-04
2013-06
2013-09
2013-12
2014-10
2015-02
2015-05
2015-06
2016-02
0
Customer growth of 23andMe
2017-04
2,000,000
Digital Healthcare Institute
Director,Yoon Sup Choi, PhD
yoonsup.choi@gmail.com
Human genomes are being sequenced at an ever-increasing rate. The 1000 Genomes Project has
aggregated hundreds of genomes; The Cancer Genome Atlas (TGCA) has gathered several thousand; and
the Exome Aggregation Consortium (ExAC) has sequenced more than 60,000 exomes. Dotted lines show
three possible future growth curves.
DNA SEQUENCING SOARS
2001 2005 2010 2015 2020 2025
100
103
106
109
Human Genome Project
Cumulativenumberofhumangenomes
1000 Genomes
TCGA
ExAC
Current amount
1st personal genome
Recorded growth
Projection
Double every 7 months (historical growth rate)
Double every 12 months (Illumina estimate)
Double every 18 months (Moore's law)
Michael Einsetein, Nature, 2015
more rapid and accurate approaches to infectious diseases. The driver mutations and key biologic unde
Sequencing Applications in Medicine
from Prewomb to Tomb
Cell. 2014 Mar 27; 157(1): 241–253.
Step1. Measure the Data
• With your smartphone
• With wearable devices (connected to smartphone)
• Personal genome analysis
... without even going to the hospital!
Step 2. Collect the Data
Sci Transl Med 2015
Google Fit
Samsung SAMI
Epic MyChart App Epic EHR
Dexcom CGM
Patients/User
Devices
EHR Hospital
Whitings
+
Apple Watch
Apps
HealthKit
• 애플 HealthKit 가 미국의 23개 선도병원 중에, 14개의 병원과 협력

• 경쟁 플랫폼 Google Fit, S-Health 보다 현저히 빠른 움직임

• Beth Israel Deaconess 의 CIO 

• “25만명의 환자들 중 상당수가 웨어러블로 각종 데이터 생산 중.

이 모든 디바이스에 인터페이스를 우리 병원은 제공할 수 없다. 

하지만 애플이라면 가능하다.”
2015.2.5
Step 3. Insight from the Data
Data Overload
How to Analyze and Interpret the Big Data?
and/or
Two ways to get insights from the big data
Epic MyChart Epic EHR
Dexcom CGM
Patients/User
Devices
EHR Hospital
Whitings
+
Apple Watch
Apps
HealthKit
transfer from Share2 to HealthKit as mandated by Dexcom receiver
Food and Drug Administration device classification. Once the glucose
values reach HealthKit, they are passively shared with the Epic
MyChart app (https://www.epic.com/software-phr.php). The MyChart
patient portal is a component of the Epic EHR and uses the same data-
base, and the CGM values populate a standard glucose flowsheet in
the patient’s chart. This connection is initially established when a pro-
vider places an order in a patient’s electronic chart, resulting in a re-
quest to the patient within the MyChart app. Once the patient or
patient proxy (parent) accepts this connection request on the mobile
device, a communication bridge is established between HealthKit and
MyChart enabling population of CGM data as frequently as every 5
Participation required confirmation of Bluetooth pairing of the CGM re-
ceiver to a mobile device, updating the mobile device with the most recent
version of the operating system, Dexcom Share2 app, Epic MyChart app,
and confirming or establishing a username and password for all accounts,
including a parent’s/adolescent’s Epic MyChart account. Setup time aver-
aged 45–60 minutes in addition to the scheduled clinic visit. During this
time, there was specific verbal and written notification to the patients/par-
ents that the diabetes healthcare team would not be actively monitoring
or have real-time access to CGM data, which was out of scope for this pi-
lot. The patients/parents were advised that they should continue to contact
the diabetes care team by established means for any urgent questions/
concerns. Additionally, patients/parents were advised to maintain updates
Figure 1: Overview of the CGM data communication bridge architecture.
BRIEFCOMMUNICATION
Kumar R B, et al. J Am Med Inform Assoc 2016;0:1–6. doi:10.1093/jamia/ocv206, Brief Communication
byguestonApril7,2016http://jamia.oxfordjournals.org/Downloadedfrom
•Apple HealthKit, Dexcom CGM기기를 통해 지속적으로 혈당을 모니터링한 데이터를 EHR과 통합

•당뇨환자의 혈당관리를 향상시켰다는 연구결과

•Stanford Children’s Health와 Stanford 의대에서 10명 type 1 당뇨 소아환자 대상으로 수행 (288 readings /day)

•EHR 기반 데이터분석과 시각화는 데이터 리뷰 및 환자커뮤니케이션을 향상

•환자가 내원하여 진료하는 기존 방식에 비해 실시간 혈당변화에 환자가 대응
JAMIA 2016
Remote Patients Monitoring
via Dexcom-HealthKit-Epic-Stanford
GluVue
https://gluvue.stanfordchildrens.org/dashboard/?src=DEMO
Telemedicine
8
How long will you wait to see a doctor?
http://money.cnn.com/interactive/economy/average-doctor-wait-times/
Average Time to Appointment (Familiy Medicine)
Boston
LA
Portland
Miami
Atlanta
Denver
Detroit
New York
Seattle
Houston
Philadelphia
Washington DC
San Diego
Dallas
Minneapolis
Total
0 30 60 90 120
20.3
10
8
24
30
9
17
8
24
14
14
9
7
8
59
63
19.5
10
5
7
14
21
19
23
26
16
16
24
12
13
20
66
29.3 days
8 days
12 days
13 days
17 days
17 days
21 days
26 days
26 days
27 days
27 days
27 days
28 days
39 days
42 days
109 days
2017
2014
2009
Growth of Teladoc
Revenue ($m)
0
45
90
135
180
2013 2014 2015 2016 2017(E)
$180m
$123m
$77.4m
$44m
$20m
Visits (k)
0
350
700
1050
1400
2013 2014 2015 2016 2017(E)
1,400K
952K
575K
299K
127K
Members (m)
0
5.5
11
16.5
22
2013 2014 2015 2016 2017(E)
21.5
17.5
11.5
8.1
6.2
Vinod Khosla
Founder, 1st CEO of Sun Microsystems
Partner of KPCB, CEO of KhoslaVentures
LegendaryVenture Capitalist in SiliconValley
“Technology will replace 80% of doctors”
Luddites in the 1810’s
and/or
•AP 통신: 로봇이 인간 대신 기사를 작성

•초당 2,000 개의 기사 작성 가능

•기존에 300개 기업의 실적 ➞ 3,000 개 기업을 커버
• 1978
• As part of the obscure task of “discovery” —
providing documents relevant to a lawsuit — the
studios examined six million documents at a
cost of more than $2.2 million, much of it to pay
for a platoon of lawyers and paralegals who
worked for months at high hourly rates.
• 2011
• Now, thanks to advances in artificial intelligence,
“e-discovery” software can analyze documents
in a fraction of the time for a fraction of the
cost.
• In January, for example, Blackstone Discovery of
Palo Alto, Calif., helped analyze 1.5 million
documents for less than $100,000.
•일본의 Fukoku 생명보험에서는 보험금 지급 여부를 심사하
는 사람을 30명 이상 해고하고, IBM Watson Explorer 에
게 맡기기로 결정

•의료 기록을 바탕으로 Watson이 보험금 지급 여부를 판단 

•인공지능으로 교체하여 생산성을 30% 향상

•2년 안에 ROI 가 나올 것이라고 예상

•1년차: 140m yen

•2년차: 200m yen
No choice but to bring AI into the medicine
Martin Duggan,“IBM Watson Health - Integrated Care & the Evolution to Cognitive Computing”
•약한 인공 지능 (Artificial Narrow Intelligence)

• 특정 방면에서 잘하는 인공지능

• 체스, 퀴즈, 메일 필터링, 상품 추천, 자율 운전

•강한 인공 지능 (Artificial General Intelligence)

• 모든 방면에서 인간 급의 인공 지능

• 사고, 계획, 문제해결, 추상화, 복잡한 개념 학습

•초 인공 지능 (Artificial Super Intelligence)

• 과학기술, 사회적 능력 등 모든 영역에서 인간보다 뛰어난 인공 지능

• “충분히 발달한 과학은 마법과 구분할 수 없다” - 아서 C. 클라크
2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
90%
50%
10%
PT-AI
AGI
EETNTOP100 Combined
언제쯤 기계가 인간 수준의 지능을 획득할 것인가?
Philosophy and Theory of AI (2011)
Artificial General Intelligence (2012)
Greek Association for Artificial Intelligence
Survey of most frequently cited 100 authors (2013)
Combined
응답자
누적 비율
Superintelligence, Nick Bostrom (2014)
Superintelligence: Science of fiction?
Panelists: Elon Musk (Tesla, SpaceX), Bart Selman (Cornell), Ray Kurzweil (Google),
David Chalmers (NYU), Nick Bostrom(FHI), Demis Hassabis (Deep Mind), Stuart
Russell (Berkeley), Sam Harris, and Jaan Tallinn (CSER/FLI)
January 6-8, 2017, Asilomar, CA
https://brunch.co.kr/@kakao-it/49
https://www.youtube.com/watch?v=h0962biiZa4
Superintelligence: Science of fiction?
Panelists: Elon Musk (Tesla, SpaceX), Bart Selman (Cornell), Ray Kurzweil (Google),
David Chalmers (NYU), Nick Bostrom(FHI), Demis Hassabis (Deep Mind), Stuart
Russell (Berkeley), Sam Harris, and Jaan Tallinn (CSER/FLI)
January 6-8, 2017, Asilomar, CA
Q: 초인공지능이란 영역은 도달 가능한 것인가?
Q: 초지능을 가진 개체의 출현이 가능할 것이라고 생각하는가?
Table 1
Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn
YES YES YES YES YES YES YES YES YES
Table 1-1
Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn
YES YES YES YES YES YES YES YES YES
Q: 초지능의 실현이 일어나기를 희망하는가?
Table 1-1-1
Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn
Complicated Complicated Complicated YES Complicated YES YES Complicated Complicated
https://brunch.co.kr/@kakao-it/49
https://www.youtube.com/watch?v=h0962biiZa4
http://waitbutwhy.com/2015/01/artificial-intelligence-revolution-2.html
http://waitbutwhy.com/2015/01/artificial-intelligence-revolution-2.html
•약한 인공 지능 (Artificial Narrow Intelligence)

• 특정 방면에서 잘하는 인공지능

• 체스, 퀴즈, 메일 필터링, 상품 추천, 자율 운전

•강한 인공 지능 (Artificial General Intelligence)

• 모든 방면에서 인간 급의 인공 지능

• 사고, 계획, 문제해결, 추상화, 복잡한 개념 학습

•초 인공 지능 (Artificial Super Intelligence)

• 과학기술, 사회적 능력 등 모든 영역에서 인간보다 뛰어난 인공 지능

• “충분히 발달한 과학은 마법과 구분할 수 없다” - 아서 C. 클라크
•약한 인공 지능 (Artificial Narrow Intelligence)

• 특정 방면에서 잘하는 인공지능

• 체스, 퀴즈, 메일 필터링, 상품 추천, 자율 운전

•강한 인공 지능 (Artificial General Intelligence)

• 모든 방면에서 인간 급의 인공 지능

• 사고, 계획, 문제해결, 추상화, 복잡한 개념 학습

•초 인공 지능 (Artificial Super Intelligence)

• 과학기술, 사회적 능력 등 모든 영역에서 인간보다 뛰어난 인공 지능

• “충분히 발달한 과학은 마법과 구분할 수 없다” - 아서 C. 클라크
“As soon as it works, no one calls it artificial intelligence any more.”
- John McCarthy (1927-2011)
Jeopardy!
2011년 인간 챔피언 두 명 과 퀴즈 대결을 벌여서 압도적인 우승을 차지
IBM Watson on Jeopardy!
600,000 pieces of medical evidence
2 million pages of text from 42 medical journals and clinical trials
69 guidelines, 61,540 clinical trials
IBM Watson on Medicine
Watson learned...
+
1,500 lung cancer cases
physician notes, lab results and clinical research
+
14,700 hours of hands-on training
Annals of Oncology (2016) 27 (suppl_9): ix179-ix180. 10.1093/annonc/mdw601
Validation study to assess performance of IBM cognitive
computing system Watson for oncology with Manipal
multidisciplinary tumour board for 1000 consecutive cases: 

An Indian experience
• MMDT(Manipal multidisciplinary tumour board) treatment recommendation and
data of 1000 cases of 4 different cancers breast (638), colon (126), rectum (124)
and lung (112) which were treated in last 3 years was collected.
• Of the treatment recommendations given by MMDT, WFO provided 



50% in REC, 28% in FC, 17% in NREC
• Nearly 80% of the recommendations were in WFO REC and FC group
• 5% of the treatment provided by MMDT was not available with WFO
• The degree of concordance varied depending on the type of cancer
• WFO-REC was high in Rectum (85%) and least in Lung (17.8%)
• high with TNBC (67.9%); HER2 negative (35%)

• WFO took a median of 40 sec to capture, analyze and give the treatment.



(vs MMDT took the median time of 15 min)
2015.10.4.Transforming Medicine, San Diego
Empowering the Oncology Community for Cancer Care
Genomics
Oncology
Clinical
Trial
Matching
Watson Health’s oncology clients span more than 35 hospital systems
“Empowering the Oncology Community
for Cancer Care”
Andrew Norden, KOTRA Conference, March 2017, “The Future of Health is Cognitive”
식약처 인공지능
가이드라인 초안
Medtronic과
혈당관리 앱 시연
2011 2012 2013 2014 2015
Jeopardy! 우승
뉴욕 MSK암센터 협력
(Lung cancer)
MD앤더슨 협력
(Leukemia)
MD앤더슨
Pilot 결과 발표
@ASCO
Watson Fund,
WellTok 에 투자
($22m)
The NewYork
Genome Center 협력
(Glioblastoma 분석)
GeneMD,
Watson Mobile Developer
Challenge의 winner 선정
Watson Fund,
Pathway Genomics 투자
Cleveland Clinic 협력
(Cancer Genome Analysis)
한국 IBM
Watson 사업부 신설
Watson Health 출범
Phytel & Explorys 인수
J&J,Apple, Medtronic 협력
Epic & Mayo Clinic 제휴
(EHR data 분석)
동경대 도입
(oncology)
14 Cancer Center 제휴
(Cancer Genome Analysis)
Mayo Clinic 협력
(clinical trail matching)
Watson Fund,
Modernizing Medicine
투자
Academia
Business
Pathway Genomics OME
closed alpha 시작
TurvenHealth
인수
Apple ResearchKit
통한 수면 연구 시작
2017
가천대 길병원
Watson 도입
(oncology)
Medtronic
Sugar.IQ 출시
제약사
Teva와 제휴
인도 Manipal Hospital
Watson 도입
태국 Bumrungrad 
International Hospital,
Watson 도입
최윤섭 디지털헬스케어 연구소, 소장
(주)디지털 헬스케어 파트너스, 대표파트너
최윤섭, Ph.D.
yoonsup.choi@gmail.com
IBM Watson in Healthcare
Merge
Healthcare
인수
2016
Under Amour
제휴
Broad 연구소 협력 발표
(유전체 분석-항암제 내성)
Manipal Hospital의
WFO 정확성 발표
대구가톨릭병원
대구동산병원
WFO 도입
건양대병원
Watson 도입
(oncology)
부산대학병원
Watson 도입
(oncology/
genomics)
식약처 인공지능
가이드라인 초안
Medtronic과
혈당관리 앱 시연
2011 2012 2013 2014 2015
Jeopardy! 우승
뉴욕 MSK암센터 협력
(Lung cancer)
MD앤더슨 협력
(Leukemia)
MD앤더슨
Pilot 결과 발표
@ASCO
Watson Fund,
WellTok 에 투자
($22m)
The NewYork
Genome Center 협력
(Glioblastoma 분석)
GeneMD,
Watson Mobile Developer
Challenge의 winner 선정
Watson Fund,
Pathway Genomics 투자
Cleveland Clinic 협력
(Cancer Genome Analysis)
한국 IBM
Watson 사업부 신설
Watson Health 출범
Phytel & Explorys 인수
J&J,Apple, Medtronic 협력
Epic & Mayo Clinic 제휴
(EHR data 분석)
동경대 도입
(oncology)
14 Cancer Center 제휴
(Cancer Genome Analysis)
Mayo Clinic 협력
(clinical trail matching)
Watson Fund,
Modernizing Medicine
투자
Academia
Business
Pathway Genomics OME
closed alpha 시작
TurvenHealth
인수
Apple ResearchKit
통한 수면 연구 시작
2017
가천대 길병원
Watson 도입
(oncology)
Medtronic
Sugar.IQ 출시
제약사
Teva와 제휴
인도 Manipal Hospital
Watson 도입
태국 Bumrungrad 
International Hospital,
Watson 도입
최윤섭 디지털헬스케어 연구소, 소장
(주)디지털 헬스케어 파트너스, 대표파트너
최윤섭, Ph.D.
yoonsup.choi@gmail.com
IBM Watson in Healthcare
Merge
Healthcare
인수
2016
Under Amour
제휴
Broad 연구소 협력 발표
(유전체 분석-항암제 내성)
Manipal Hospital의
WFO 정확성 발표
대구가톨릭병원
대구동산병원
WFO 도입
건양대병원
Watson 도입
(oncology)
부산대학병원
Watson 도입
(oncology/
genomics)
IBM Watson Health
Organizations Leveraging Watson
Watson for Oncology
Best Doctors (second opinion)
Bumrungrad International Hospital
Confidential client (Bangladesh and Nepal)
Gachon University Gil Medical Center (Korea)
Hangzhou Cognitive Care – 50+ Chinese hospitals
Jupiter Medical Center
Manipal Hospitals – 16 Indian Hospitals
MD Anderson (**Oncology Expert Advisor)
Memorial Sloan Kettering Cancer Center
MRDM - Zorg (Netherlands)
Pusan National University Hospital
Clinical Trial Matching
Best Doctors (second opinion)
Confidential – Major Academic Center
Highlands Oncology Group
Froedtert & Medical College of Wisconsin
Mayo Clinic
Multiple Life Sciences pilots
24
Watson Genomic Analytics
Ann & Robert H Lurie Children’s Hospital of Chicago
BC Cancer Agency
City of Hope
Cleveland Clinic
Columbia University, Irwing Cancer Center
Duke Cancer Institute
Fred & Pamela Buffett Cancer Center
Fleury (Brazil)
Illumina 170 Gene Panel
NIH Japan
McDonnell Institute at Washington University in St. Louis
New York Genome Center
Pusan National University Hospital
Quest Diagnostics
Stanford Health
University of Kansas Cancer Center
University of North Carolina Lineberger Cancer Center
University of Southern California
University of Washington Medical Center
University of Tokyo
Yale Cancer Center
Andrew Norden, KOTRA Conference, March 2017, “The Future of Health is Cognitive”
한국에서도 Watson을 볼 수 있을까?
2015.7.9. 서울대학병원
길병원 인공지능 암센터 다학제진료실
Deep Learning
http://theanalyticsstore.ie/deep-learning/
12 Olga Russakovsky* et al.
Fig. 4 Random selection of images in ILSVRC detection validation set. The images in the top 4 rows were taken from
ILSVRC2012 single-object localization validation set, and the images in the bottom 4 rows were collected from Flickr using
scene-level queries.
tage of all the positive examples available. The second is images collected from Flickr specifically for the de- http://arxiv.org/pdf/1409.0575.pdf
• Main competition

• 객체 분류 (Classification): 그림 속의 객체를 분류

• 객체 위치 (localization): 그림 속 ‘하나’의 객체를 분류하고 위치를 파악

• 객체 인식 (object detection): 그림 속 ‘모든’ 객체를 분류하고 위치 파악
16 Olga Russakovsky* et al.
Fig. 7 Tasks in ILSVRC. The first column shows the ground truth labeling on an example image, and the next three show
three sample outputs with the corresponding evaluation score.
http://arxiv.org/pdf/1409.0575.pdf
Performance of winning entries in the ILSVRC2010-2015 competitions
in each of the three tasks
http://image-net.org/challenges/LSVRC/2015/results#loc
Single-object localization
Localizationerror
0
10
20
30
40
50
2011 2012 2013 2014 2015
Object detection
Averageprecision
0.0
17.5
35.0
52.5
70.0
2013 2014 2015
Image classification
Classificationerror
0
10
20
30
2010 2011 2012 2013 2014 2015
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep Residual Learning for Image Recognition”, 2015
How deep is deep?
http://image-net.org/challenges/LSVRC/2015/results
Localization
Classification
http://image-net.org/challenges/LSVRC/2015/results
http://venturebeat.com/2015/12/25/5-deep-learning-startups-to-follow-in-2016/
DeepFace: Closing the Gap to Human-Level
Performance in FaceVerification
Taigman,Y. et al. (2014). DeepFace: Closing the Gap to Human-Level Performance in FaceVerification, CVPR’14.
Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.
very few parameters. These layers merely expand the input
into a set of simple local features.
The subsequent layers (L4, L5 and L6) are instead lo-
cally connected [13, 16], like a convolutional layer they ap-
ply a filter bank, but every location in the feature map learns
a different set of filters. Since different regions of an aligned
image have different local statistics, the spatial stationarity
The goal of training is to maximize the probability of
the correct class (face id). We achieve this by minimiz-
ing the cross-entropy loss for each training sample. If k
is the index of the true label for a given input, the loss is:
L = log pk. The loss is minimized over the parameters
by computing the gradient of L w.r.t. the parameters and
Human: 95% vs. DeepFace in Facebook: 97.35%
Recognition Accuracy for Labeled Faces in the Wild (LFW) dataset (13,233 images, 5,749 people)
FaceNet:A Unified Embedding for Face
Recognition and Clustering
Schroff, F. et al. (2015). FaceNet:A Unified Embedding for Face Recognition and Clustering
Human: 95% vs. FaceNet of Google: 99.63%
Recognition Accuracy for Labeled Faces in the Wild (LFW) dataset (13,233 images, 5,749 people)
False accept
False reject
s. This shows all pairs of images that were
on LFW. Only eight of the 13 errors shown
he other four are mislabeled in LFW.
on Youtube Faces DB
ge similarity of all pairs of the first one
our face detector detects in each video.
False accept
False reject
Figure 6. LFW errors. This shows all pairs of images that were
incorrectly classified on LFW. Only eight of the 13 errors shown
here are actual errors the other four are mislabeled in LFW.
5.7. Performance on Youtube Faces DB
We use the average similarity of all pairs of the first one
hundred frames that our face detector detects in each video.
This gives us a classification accuracy of 95.12%±0.39.
Using the first one thousand frames results in 95.18%.
Compared to [17] 91.4% who also evaluate one hundred
frames per video we reduce the error rate by almost half.
DeepId2+ [15] achieved 93.2% and our method reduces this
error by 30%, comparable to our improvement on LFW.
5.8. Face Clustering
Our compact embedding lends itself to be used in order
to cluster a users personal photos into groups of people with
the same identity. The constraints in assignment imposed
by clustering faces, compared to the pure verification task,
lead to truly amazing results. Figure 7 shows one cluster in
a users personal photo collection, generated using agglom-
erative clustering. It is a clear showcase of the incredible
invariance to occlusion, lighting, pose and even age.
Figure 7. Face Clustering. Shown is an exemplar cluster for one
user. All these images in the users personal photo collection were
clustered together.
6. Summary
We provide a method to directly learn an embedding into
an Euclidean space for face verification. This sets it apart
from other methods [15, 17] who use the CNN bottleneck
layer, or require additional post-processing such as concate-
nation of multiple models and PCA, as well as SVM clas-
sification. Our end-to-end training both simplifies the setup
and shows that directly optimizing a loss relevant to the task
at hand improves performance.
Another strength of our model is that it only requires
False accept
False reject
Figure 6. LFW errors. This shows all pairs of images that were
incorrectly classified on LFW. Only eight of the 13 errors shown
here are actual errors the other four are mislabeled in LFW.
5.7. Performance on Youtube Faces DB
We use the average similarity of all pairs of the first one
hundred frames that our face detector detects in each video.
This gives us a classification accuracy of 95.12%±0.39.
Using the first one thousand frames results in 95.18%.
Compared to [17] 91.4% who also evaluate one hundred
frames per video we reduce the error rate by almost half.
DeepId2+ [15] achieved 93.2% and our method reduces this
error by 30%, comparable to our improvement on LFW.
5.8. Face Clustering
Our compact embedding lends itself to be used in order
to cluster a users personal photos into groups of people with
the same identity. The constraints in assignment imposed
by clustering faces, compared to the pure verification task,
Figure 7. Face Clustering. Shown is an exemplar cluster for one
user. All these images in the users personal photo collection were
clustered together.
6. Summary
We provide a method to directly learn an embedding into
an Euclidean space for face verification. This sets it apart
from other methods [15, 17] who use the CNN bottleneck
layer, or require additional post-processing such as concate-
nation of multiple models and PCA, as well as SVM clas-
Show and Tell:
A Neural Image Caption Generator
Vinyals, O. et al. (2015). Show and Tell:A Neural Image Caption Generator, arXiv:1411.4555
v
om
Samy Bengio
Google
bengio@google.com
Dumitru Erhan
Google
dumitru@google.com
s a
cts
his
re-
m-
ed
he
de-
nts
A group of people
shopping at an
outdoor market.
!
There are many
vegetables at the
fruit stand.
Vision!
Deep CNN
Language !
Generating!
RNN
Figure 1. NIC, our model, is based end-to-end on a neural net-
work consisting of a vision CNN followed by a language gener-
Show and Tell:
A Neural Image Caption Generator
Vinyals, O. et al. (2015). Show and Tell:A Neural Image Caption Generator, arXiv:1411.4555
Figure 5. A selection of evaluation results, grouped by human rating.
Radiologist
Medical Imaging AI Startups by Applications
Bone Age Assessment
• M: 28 Classes
• F: 20 Classes
• Method: G.P.
• Top3-95.28% (F)
• Top3-81.55% (M)
Business Area
Medical Image Analysis
VUNOnet and our machine learning technology will help doctors and hospitals manage
medical scans and images intelligently to make diagnosis faster and more accurately.
Original Image Automatic Segmentation EmphysemaNormal ReticularOpacity
Our system finds DILDs at the highest accuracy * DILDs: Diffuse Interstitial Lung Disease
Digital Radiologist
Collaboration with Prof. Joon Beom Seo (Asan Medical Center)
Analysed 1200 patients for 3 months
Digital Radiologist
Collaboration with Prof. Joon Beom Seo (Asan Medical Center)
Analysed 1200 patients for 3 months
Digital Radiologist
Med Phys. 2013 May;40(5):051912. doi: 10.1118/1.4802214.
Collaboration with Prof. Joon Beom Seo (Asan Medical Center)
Analysed 1200 patients for 3 months
Digital Radiologist
Med Phys. 2013 May;40(5):051912. doi: 10.1118/1.4802214.
Collaboration with Prof. Joon Beom Seo (Asan Medical Center)
Analysed 1200 patients for 3 months
Digital Radiologist
Med Phys. 2013 May;40(5):051912. doi: 10.1118/1.4802214.
Collaboration with Prof. Joon Beom Seo (Asan Medical Center)
Analysed 1200 patients for 3 months
Feature Engineering vs Feature Learning
alization of Hand-crafted Feature vs Learned Feature in 2D
Feature Engineering vs Feature Learning
• Visualization of Hand-crafted Feature vs Learned Feature in 2D
Visualization of Hand-crafted Feature vs Learned Feature in 2D
Bench to Bedside : Practical Applications
• Contents-based Case Retrieval
–Finding similar cases with the clinically matching context - Search engine for medical images.
–Clinicians can refer the diagnosis, prognosis of past similar patients to make better clinical decision.
–Accepted to present at RSNA 2017
Digital Radiologist
Detection of Diabetic Retinopathy
당뇨성 망막병증
• 당뇨병의 대표적 합병증: 당뇨병력이 30년 이상 환자 90% 발병

• 안과 전문의들이 안저(안구의 안쪽)를 사진으로 찍어서 판독

• 망막 내 미세혈관 생성, 출혈, 삼출물 정도를 파악하여 진단
Case Study: TensorFlow in Medicine - Retinal Imaging (TensorFlow Dev Summit 2017)
Copyright 2016 American Medical Association. All rights reserved.
Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy
in Retinal Fundus Photographs
Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD;
Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB;
Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD
IMPORTANCE Deep learning is a family of computational methods that allow an algorithm to
program itself by learning from a large set of examples that demonstrate the desired
behavior, removing the need to specify rules explicitly. Application of these methods to
medical imaging requires further assessment and validation.
OBJECTIVE To apply deep learning to create an algorithm for automated detection of diabetic
retinopathy and diabetic macular edema in retinal fundus photographs.
DESIGN AND SETTING A specific type of neural network optimized for image classification
called a deep convolutional neural network was trained using a retrospective development
data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy,
diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists
and ophthalmology senior residents between May and December 2015. The resultant
algorithm was validated in January and February 2016 using 2 separate data sets, both
graded by at least 7 US board-certified ophthalmologists with high intragrader consistency.
EXPOSURE Deep learning–trained algorithm.
MAIN OUTCOMES AND MEASURES The sensitivity and specificity of the algorithm for detecting
referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy,
referable diabetic macular edema, or both, were generated based on the reference standard
of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2
operating points selected from the development set, one selected for high specificity and
another for high sensitivity.
RESULTS TheEyePACS-1datasetconsistedof9963imagesfrom4997patients(meanage,54.4
years;62.2%women;prevalenceofRDR,683/8878fullygradableimages[7.8%]);the
Messidor-2datasethad1748imagesfrom874patients(meanage,57.6years;42.6%women;
prevalenceofRDR,254/1745fullygradableimages[14.6%]).FordetectingRDR,thealgorithm
hadanareaunderthereceiveroperatingcurveof0.991(95%CI,0.988-0.993)forEyePACS-1and
0.990(95%CI,0.986-0.995)forMessidor-2.Usingthefirstoperatingcutpointwithhigh
specificity,forEyePACS-1,thesensitivitywas90.3%(95%CI,87.5%-92.7%)andthespecificity
was98.1%(95%CI,97.8%-98.5%).ForMessidor-2,thesensitivitywas87.0%(95%CI,81.1%-
91.0%)andthespecificitywas98.5%(95%CI,97.7%-99.1%).Usingasecondoperatingpoint
withhighsensitivityinthedevelopmentset,forEyePACS-1thesensitivitywas97.5%and
specificitywas93.4%andforMessidor-2thesensitivitywas96.1%andspecificitywas93.9%.
CONCLUSIONS AND RELEVANCE In this evaluation of retinal fundus photographs from adults
with diabetes, an algorithm based on deep machine learning had high sensitivity and
specificity for detecting referable diabetic retinopathy. Further research is necessary to
determine the feasibility of applying this algorithm in the clinical setting and to determine
whether use of the algorithm could lead to improved care and outcomes compared with
current ophthalmologic assessment.
JAMA. doi:10.1001/jama.2016.17216
Published online November 29, 2016.
Editorial
Supplemental content
Author Affiliations: Google Inc,
Mountain View, California (Gulshan,
Peng, Coram, Stumpe, Wu,
Narayanaswamy, Venugopalan,
Widner, Madams, Nelson, Webster);
Department of Computer Science,
University of Texas, Austin
(Venugopalan); EyePACS LLC,
San Jose, California (Cuadros); School
of Optometry, Vision Science
Graduate Group, University of
California, Berkeley (Cuadros);
Aravind Medical Research
Foundation, Aravind Eye Care
System, Madurai, India (Kim); Shri
Bhagwan Mahavir Vitreoretinal
Services, Sankara Nethralaya,
Chennai, Tamil Nadu, India (Raman);
Verily Life Sciences, Mountain View,
California (Mega); Cardiovascular
Division, Department of Medicine,
Brigham and Women’s Hospital and
Harvard Medical School, Boston,
Massachusetts (Mega).
Corresponding Author: Lily Peng,
MD, PhD, Google Research, 1600
Amphitheatre Way, Mountain View,
CA 94043 (lhpeng@google.com).
Research
JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY
(Reprinted) E1
Copyright 2016 American Medical Association. All rights reserved.
Inception-v3 (aka GoogleNet)
https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html
https://arxiv.org/abs/1512.00567
Training Set / Test Set
• CNN으로 후향적으로 128,175개의 안저 이미지 학습

• 미국의 안과전문의 54명이 3-7회 판독한 데이터

• 우수한 안과전문의들 7-8명의 판독 결과와 인공지능의 판독 결과 비교

• EyePACS-1 (9,963 개), Messidor-2 (1,748 개)a) Fullscreen mode
b) Hit reset to reload this image. This will reset all of the grading.
c) Comment box for other pathologies you see
eFigure 2. Screenshot of the Second Screen of the Grading Tool, Which Asks Graders to Assess the
Image for DR, DME and Other Notable Conditions or Findings
• EyePACS-1 과 Messidor-2 의 AUC = 0.991, 0.990

• 7-8명의 안과 전문의와 sensitivity, specificity 가 동일한 수준

• F-score: 0.95 (vs. 인간 의사는 0.91)
Additional sensitivity analyses were conducted for sev-
eralsubcategories:(1)detectingmoderateorworsediabeticreti-
effects of data set size on algorithm performance were exam-
ined and shown to plateau at around 60 000 images (or ap-
Figure 2. Validation Set Performance for Referable Diabetic Retinopathy
100
80
60
40
20
0
0
70
80
85
95
90
75
0 5 10 15 20 25 30
100806040
Sensitivity,%
1 – Specificity, %
20
EyePACS-1: AUC, 99.1%; 95% CI, 98.8%-99.3%A
100
High-sensitivity operating point
High-specificity operating point
100
80
60
40
20
0
0
70
80
85
95
90
75
0 5 10 15 20 25 30
100806040
Sensitivity,%
1 – Specificity, %
20
Messidor-2: AUC, 99.0%; 95% CI, 98.6%-99.5%B
100
High-specificity operating point
High-sensitivity operating point
Performance of the algorithm (black curve) and ophthalmologists (colored
circles) for the presence of referable diabetic retinopathy (moderate or worse
diabetic retinopathy or referable diabetic macular edema) on A, EyePACS-1
(8788 fully gradable images) and B, Messidor-2 (1745 fully gradable images).
The black diamonds on the graph correspond to the sensitivity and specificity of
the algorithm at the high-sensitivity and high-specificity operating points.
In A, for the high-sensitivity operating point, specificity was 93.4% (95% CI,
92.8%-94.0%) and sensitivity was 97.5% (95% CI, 95.8%-98.7%); for the
high-specificity operating point, specificity was 98.1% (95% CI, 97.8%-98.5%)
and sensitivity was 90.3% (95% CI, 87.5%-92.7%). In B, for the high-sensitivity
operating point, specificity was 93.9% (95% CI, 92.4%-95.3%) and sensitivity
was 96.1% (95% CI, 92.4%-98.3%); for the high-specificity operating point,
specificity was 98.5% (95% CI, 97.7%-99.1%) and sensitivity was 87.0% (95%
CI, 81.1%-91.0%). There were 8 ophthalmologists who graded EyePACS-1 and 7
ophthalmologists who graded Messidor-2. AUC indicates area under the
receiver operating characteristic curve.
Research Original Investigation Accuracy of a Deep Learning Algorithm for Detection of Diabetic Retinopathy
Results
Skin Cancer
ABCDE checklist
0 0 M O N T H 2 0 1 7 | V O L 0 0 0 | N A T U R E | 1
LETTER doi:10.1038/nature21056
Dermatologist-level classification of skin cancer
with deep neural networks
Andre Esteva1
*, Brett Kuprel1
*, Roberto A. Novoa2,3
, Justin Ko2
, Susan M. Swetter2,4
, Helen M. Blau5
& Sebastian Thrun6
Skin cancer, the most common human malignancy1–3
, is primarily
diagnosed visually, beginning with an initial clinical screening
and followed potentially by dermoscopic analysis, a biopsy and
histopathological examination. Automated classification of skin
lesions using images is a challenging task owing to the fine-grained
variability in the appearance of skin lesions. Deep convolutional
neural networks (CNNs)4,5
show potential for general and highly
variable tasks across many fine-grained object categories6–11
.
Here we demonstrate classification of skin lesions using a single
CNN, trained end-to-end from images directly, using only pixels
and disease labels as inputs. We train a CNN using a dataset of
129,450 clinical images—two orders of magnitude larger than
previous datasets12
—consisting of 2,032 different diseases. We
test its performance against 21 board-certified dermatologists on
biopsy-proven clinical images with two critical binary classification
use cases: keratinocyte carcinomas versus benign seborrheic
keratoses; and malignant melanomas versus benign nevi. The first
case represents the identification of the most common cancers, the
second represents the identification of the deadliest skin cancer.
The CNN achieves performance on par with all tested experts
across both tasks, demonstrating an artificial intelligence capable
of classifying skin cancer with a level of competence comparable to
dermatologists. Outfitted with deep neural networks, mobile devices
can potentially extend the reach of dermatologists outside of the
clinic. It is projected that 6.3 billion smartphone subscriptions will
exist by the year 2021 (ref. 13) and can therefore potentially provide
low-cost universal access to vital diagnostic care.
There are 5.4 million new cases of skin cancer in the United States2
every year. One in five Americans will be diagnosed with a cutaneous
malignancy in their lifetime. Although melanomas represent fewer than
5% of all skin cancers in the United States, they account for approxi-
mately 75% of all skin-cancer-related deaths, and are responsible for
over 10,000 deaths annually in the United States alone. Early detection
is critical, as the estimated 5-year survival rate for melanoma drops
from over 99% if detected in its earliest stages to about 14% if detected
in its latest stages. We developed a computational method which may
allow medical practitioners and patients to proactively track skin
lesions and detect cancer earlier. By creating a novel disease taxonomy,
and a disease-partitioning algorithm that maps individual diseases into
training classes, we are able to build a deep learning system for auto-
mated dermatology.
Previous work in dermatological computer-aided classification12,14,15
has lacked the generalization capability of medical practitioners
owing to insufficient data and a focus on standardized tasks such as
dermoscopy16–18
and histological image classification19–22
. Dermoscopy
images are acquired via a specialized instrument and histological
images are acquired via invasive biopsy and microscopy; whereby
both modalities yield highly standardized images. Photographic
images (for example, smartphone images) exhibit variability in factors
such as zoom, angle and lighting, making classification substantially
more challenging23,24
. We overcome this challenge by using a data-
driven approach—1.41 million pre-training and training images
make classification robust to photographic variability. Many previous
techniques require extensive preprocessing, lesion segmentation and
extraction of domain-specific visual features before classification. By
contrast, our system requires no hand-crafted features; it is trained
end-to-end directly from image labels and raw pixels, with a single
network for both photographic and dermoscopic images. The existing
body of work uses small datasets of typically less than a thousand
images of skin lesions16,18,19
, which, as a result, do not generalize well
to new images. We demonstrate generalizable classification with a new
dermatologist-labelled dataset of 129,450 clinical images, including
3,374 dermoscopy images.
Deep learning algorithms, powered by advances in computation
and very large datasets25
, have recently been shown to exceed human
performance in visual tasks such as playing Atari games26
, strategic
board games like Go27
and object recognition6
. In this paper we
outline the development of a CNN that matches the performance of
dermatologists at three key diagnostic tasks: melanoma classification,
melanoma classification using dermoscopy and carcinoma
classification. We restrict the comparisons to image-based classification.
We utilize a GoogleNet Inception v3 CNN architecture9
that was pre-
trained on approximately 1.28 million images (1,000 object categories)
from the 2014 ImageNet Large Scale Visual Recognition Challenge6
,
and train it on our dataset using transfer learning28
. Figure 1 shows the
working system. The CNN is trained using 757 disease classes. Our
dataset is composed of dermatologist-labelled images organized in a
tree-structured taxonomy of 2,032 diseases, in which the individual
diseases form the leaf nodes. The images come from 18 different
clinician-curated, open-access online repositories, as well as from
clinical data from Stanford University Medical Center. Figure 2a shows
a subset of the full taxonomy, which has been organized clinically and
visually by medical experts. We split our dataset into 127,463 training
and validation images and 1,942 biopsy-labelled test images.
To take advantage of fine-grained information contained within the
taxonomy structure, we develop an algorithm (Extended Data Table 1)
to partition diseases into fine-grained training classes (for example,
amelanotic melanoma and acrolentiginous melanoma). During
inference, the CNN outputs a probability distribution over these fine
classes. To recover the probabilities for coarser-level classes of interest
(for example, melanoma) we sum the probabilities of their descendants
(see Methods and Extended Data Fig. 1 for more details).
We validate the effectiveness of the algorithm in two ways, using
nine-fold cross-validation. First, we validate the algorithm using a
three-class disease partition—the first-level nodes of the taxonomy,
which represent benign lesions, malignant lesions and non-neoplastic
1
Department of Electrical Engineering, Stanford University, Stanford, California, USA. 2
Department of Dermatology, Stanford University, Stanford, California, USA. 3
Department of Pathology,
Stanford University, Stanford, California, USA. 4
Dermatology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. 5
Baxter Laboratory for Stem Cell Biology, Department
of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA. 6
Department of Computer Science, Stanford University,
Stanford, California, USA.
*These authors contributed equally to this work.
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
LETTERH
his task, the CNN achieves 72.1±0.9% (mean±s.d.) overall
he average of individual inference class accuracies) and two
gists attain 65.56% and 66.0% accuracy on a subset of the
set. Second, we validate the algorithm using a nine-class
rtition—the second-level nodes—so that the diseases of
have similar medical treatment plans. The CNN achieves
two trials, one using standard images and the other using
images, which reflect the two steps that a dermatologist m
to obtain a clinical impression. The same CNN is used for a
Figure 2b shows a few example images, demonstrating th
distinguishing between malignant and benign lesions, whic
visual features. Our comparison metrics are sensitivity an
Acral-lentiginous melanoma
Amelanotic melanoma
Lentigo melanoma
…
Blue nevus
Halo nevus
Mongolian spot
…
Training classes (757)Deep convolutional neural network (Inception v3) Inference classes (varies by task)
92% malignant melanocytic lesion
8% benign melanocytic lesion
Skin lesion image
Convolution
AvgPool
MaxPool
Concat
Dropout
Fully connected
Softmax
Deep CNN layout. Our classification technique is a
Data flow is from left to right: an image of a skin lesion
e, melanoma) is sequentially warped into a probability
over clinical classes of skin disease using Google Inception
hitecture pretrained on the ImageNet dataset (1.28 million
1,000 generic object classes) and fine-tuned on our own
29,450 skin lesions comprising 2,032 different diseases.
ning classes are defined using a novel taxonomy of skin disease
oning algorithm that maps diseases into training classes
(for example, acrolentiginous melanoma, amelanotic melano
melanoma). Inference classes are more general and are comp
or more training classes (for example, malignant melanocytic
class of melanomas). The probability of an inference class is c
summing the probabilities of the training classes according to
structure (see Methods). Inception v3 CNN architecture repr
from https://research.googleblog.com/2016/03/train-your-ow
classifier-with.html
GoogleNet Inception v3
• 129,450개의 피부과 병변 이미지 데이터를 자체 제작

• 미국의 피부과 전문의 18명이 데이터 curation

• CNN (Inception v3)으로 이미지를 학습

• 피부과 전문의들 21명과 인공지능의 판독 결과 비교

• 표피세포 암 (keratinocyte carcinoma)과 지루각화증(benign seborrheic keratosis)의 구분

• 악성 흑색종과 양성 병변 구분 (표준 이미지 데이터 기반)

• 악성 흑색종과 양성 병변 구분 (더마토스코프로 찍은 이미지 기반)
Skin cancer classification performance of
the CNN and dermatologists. LETT
a
b
0 1
Sensitivity
0
1
Specificity
Melanoma: 130 images
0 1
Sensitivity
0
1
Specificity
Melanoma: 225 images
Algorithm: AUC = 0.96
0 1
Sensitivity
0
1
Specificity
Melanoma: 111 dermoscopy images
0 1
Sensitivity
0
1
Specificity
Carcinoma: 707 images
Algorithm: AUC = 0.96
0 1
Sensitivity
0
1
Specificity
Melanoma: 1,010 dermoscopy images
Algorithm: AUC = 0.94
0 1
Sensitivity
0
1
Specificity
Carcinoma: 135 images
Algorithm: AUC = 0.96
Dermatologists (25)
Average dermatologist
Algorithm: AUC = 0.94
Dermatologists (22)
Average dermatologist
Algorithm: AUC = 0.91
Dermatologists (21)
Average dermatologist
cancer classification performance of the CNN and
21명 중에 인공지능보다 정확성이 떨어지는 피부과 전문의들이 상당수 있었음

피부과 전문의들의 평균 성적도 인공지능보다 좋지 않았음
Skin cancer classification performance of
the CNN and dermatologists. LETT
a
b
0 1
Sensitivity
0
1
Specificity
Melanoma: 130 images
0 1
Sensitivity
0
1
Specificity
Melanoma: 225 images
Algorithm: AUC = 0.96
0 1
Sensitivity
0
1
Specificity
Melanoma: 111 dermoscopy images
0 1
Sensitivity
0
1
Specificity
Carcinoma: 707 images
Algorithm: AUC = 0.96
0 1
Sensitivity
0
1
Specificity
Melanoma: 1,010 dermoscopy images
Algorithm: AUC = 0.94
0 1
Sensitivity
0
1
Specificity
Carcinoma: 135 images
Algorithm: AUC = 0.96
Dermatologists (25)
Average dermatologist
Algorithm: AUC = 0.94
Dermatologists (22)
Average dermatologist
Algorithm: AUC = 0.91
Dermatologists (21)
Average dermatologist
cancer classification performance of the CNN and
Digital Pathologist
Diagnostic Concordance Among Pathologists
Interpreting Breast Biopsy Specimens
A B DC
Benign without atypia / Atypic / DCIS (ductal carcinoma in situ) / Invasive Carcinoma
Interpretation?
Elmore etl al. JAMA 2015
Figure 4. Participating Pathologists’ Interpretations of Each of the 240 Breast Biopsy Test Cases
0 25 50 75 100
Interpretations, %
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
Case
Benign without atypia
72 Cases
2070 Total interpretations
A
0 25 50 75 100
Interpretations, %
218
220
222
224
226
228
230
232
234
236
238
240
Case
Invasive carcinoma
23 Cases
663 Total interpretations
D
0 25 50 75 100
Interpretations, %
147
145
149
151
153
155
157
159
161
163
165
167
169
171
173
175
177
179
181
183
185
187
189
191
193
195
197
199
201
203
205
207
209
211
213
215
217
Case
DCIS
73 Cases
2097 Total interpretations
C
0 25 50 75 100
Interpretations, %
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
Case
Atypia
72 Cases
2070 Total interpretations
B
Benign without atypia
Atypia
DCIS
Invasive carcinoma
Pathologist interpretation
DCIS indicates ductal carcinoma in situ.
Diagnostic Concordance in Interpreting Breast Biopsies Original Investigation Research
Elmore etl al. JAMA 2015
Diagnostic Concordance Among Pathologists
Interpreting Breast Biopsy Specimens
Figure 4. Participating Pathologists’ Interpretations of Each of the 240 Breast Biopsy Test Cases
0 25 50 75 100
Interpretations, %
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
Case
Benign without atypia
72 Cases
2070 Total interpretations
A
0 25 50 75 100
Interpretations, %
218
220
222
224
226
228
230
232
234
236
238
240
Case
Invasive carcinoma
23 Cases
663 Total interpretations
D
0 25 50 75 100
Interpretations, %
147
145
149
151
153
155
157
159
161
163
165
167
169
171
173
175
177
179
181
183
185
187
189
191
193
195
197
199
201
203
205
207
209
211
213
215
217
Case
DCIS
73 Cases
2097 Total interpretations
C
0 25 50 75 100
Interpretations, %
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
Case
Atypia
72 Cases
2070 Total interpretations
B
Benign without atypia
Atypia
DCIS
Invasive carcinoma
Pathologist interpretation
DCIS indicates ductal carcinoma in situ.
Diagnostic Concordance in Interpreting Breast Biopsies Original Investigation Research
Elmore etl al. JAMA 2015
Diagnostic Concordance Among Pathologists
Interpreting Breast Biopsy Specimens
Elmore etl al. JAMA 2015
Diagnostic Concordance Among Pathologists
Interpreting Breast Biopsy Specimens
• Concordance noted in 5194 of 6900 case interpretations or 75.3%.
• Reference diagnosis was obtained from consensus of 3 experienced breast pathologists.
spentonthisactivitywas16(95%CI,15-17);43participantswere
awarded the maximum 20 hours.
Pathologists’ Diagnoses Compared With Consensus-Derived
Reference Diagnoses
The 115 participants each interpreted 60 cases, providing 6900
total individual interpretations for comparison with the con-
sensus-derived reference diagnoses (Figure 3). Participants
agreed with the consensus-derived reference diagnosis for
75.3% of the interpretations (95% CI, 73.4%-77.0%). Partici-
pants (n = 94) who completed the CME activity reported that
Patient and Pathologist Characteristics Associated With
Overinterpretation and Underinterpretation
The association of breast density with overall pathologists’
concordance (as well as both overinterpretation and under-
interpretation rates) was statistically significant, as shown
in Table 3 when comparing mammographic density grouped
into 2 categories (low density vs high density). The overall
concordance estimates also decreased consistently with
increasing breast density across all 4 Breast Imaging-
Reporting and Data System (BI-RADS) density categories:
BI-RADS A, 81% (95% CI, 75%-86%); BI-RADS B, 77% (95%
Figure 3. Comparison of 115 Participating Pathologists’ Interpretations vs the Consensus-Derived Reference
Diagnosis for 6900 Total Case Interpretationsa
Participating Pathologists’ Interpretation
ConsensusReference
Diagnosisb
Benign
without atypia Atypia DCIS
Invasive
carcinoma Total
Benign without atypia 1803 200 46 21 2070
Atypia 719 990 353 8 2070
DCIS 133 146 1764 54 2097
Invasive carcinoma 3 0 23 637 663
Total 2658 1336 2186 720 6900
DCIS indicates ductal carcinoma
in situ.
a
Concordance noted in 5194 of
6900 case interpretations or
75.3%.
b
Reference diagnosis was obtained
from consensus of 3 experienced
breast pathologists.
Diagnostic Concordance in Interpreting Breast Biopsies Original Investigation Research
Comparison of 115 Participating Pathologists’ Interpretations vs 

the Consensus-Derived Reference Diagnosis for 6900 Total Case Interpretations
ISBI Grand Challenge on
Cancer Metastases Detection in Lymph Node
Camelyon16 (>200 registrants)
International Symposium on Biomedical Imaging 2016
H&E Image Processing Framework
Train
whole slide image
sample
sample
training data
normaltumor
Test
whole slide image
overlapping image
patches tumor prob. map
1.0
0.0
0.5
Convolutional Neural
Network
P(tumor)
https://blogs.nvidia.com/blog/2016/09/19/deep-learning-breast-cancer-diagnosis/
VR의 의료 분야 활용
Virtual Reality
PTSD (외상 후 스트레스 장애)
PTSD (외상 후 스트레스 장애)
• PTSD는 전쟁, 고문, 자연재해, 범죄, 테러 등의 심각한 사건을 경험한 후, 사
건 이후에도 그 사건에 공포감을 느끼고 트라우마를 느끼는 질환

• 환자들은 악몽을 꾸거나, 특정 장면이 영화의 회상 장면(Flashback)처
럼 재현되는 등의 증상을 가지게 되며, 사고와 연관된 자극을 회피

• 이러한 변화에 따라서 일상 사회 생활에도 어려움을 겪거나, 우울증, 분
노 장애 등을 동반하는 경우 많음

• 이라크전 참전 군인의 15.6-17.1%, 아프가니스탄 전에 참전 군인의 11.2%
가 PTSD 를 겪음 (NEJM, 2004)
PTSD From A Soldier's POV
Prolonged Exposure Therapy
(지속 노출 치료)
Prolonged Exposure Therapy 

(지속 노출 치료)
•PTSD 치료를 위해 가장 효과적인 치료로 증명된 원리

•환자가 트라우마를 갖고 있는 상황과 기억에 지속적으로 노출시켜 

스트레스와 회피 행동을 감소시키는 치료 방식

•트라우마에 대한 기억을 반복해서 떠올리게 되는데, 

이러한 과정을 거치며 특정 기억과 반응의 연결고리를 약화 시킴
지속 노출 치료의 한계
• 환자들이 트라우마를 떠올리는 것에 거부감을 느끼거나, 효과적으로 상상하지 못함

• 사실 그 자체가 PTSD 의 증상의 하나

• 환자가 트라우마에 대한 기억을 생생하게 시각화하지 못하면 치료 효과 감소
어떻게 환자에게 실감나는 상황을 시각화 해줄 것인가
VirtualVietnam(1997)
VirtualVietnam
•VR은 PTSD의 치료를 위해 1990년대부터 활용

•최초의 시도: 버추얼 베트남 (1997)

• 정글을 헤치고 나가는 시나리오 / 군용 헬리곱터가 날아가는 시나리오

• 그래픽 수준, 구현 효과 및 시나리오 등이 제한적

• 전통적 심리 치료에 효과 없던 환자 전원이 유의미한 개선 효과
“영상 속에서 베트남 사람들과 탱크를 보았어요”
VR: Virtual Iraq/Afganistan
Full Spectrum Warrior
Full Spectrum Warrior
Virtual Iraq 의 다양한 시나리오
•시가지: 황량한 거리에 낡은 건물과 금방 무너질 것만 같은
아파트, 창고, 모스크, 공장 등이 있는 상황. 인적이나 교통
량이 거의 없는 버전과, 사람과 교통량이 많은 두 가지 버전

•시가지 빌딩 내부: 시가지의 일부 빌딩은 환자가 내부로 들
어가볼 수 있도록 내부 구조가 모델링. 빌딩은 비어있게 할
수도 있고, 적거나 많은 거주자가 내부에 있도록 설정 가능

•검문소: 시가지 시나리오의 일부로, 차량이 도시로 진입하
기 위해 정지하는 검문소 상황.

•작은 시골 마을: 쓰러져가는 건물과 전투의 잔해들이 있는
작은 마을을 재현. 주변에 식물들이 많고, 건물들 사이로 멀
리 사막이 보임

•사막 기지: 군인들, 텐트, 군용 장비 등이 설치 되어 있는 사
막의 기지를 재현.

•사막 도로: 비포장 도로의 환경. 각각 도시, 작은 시골 마을,
사막 기지 시나리오로 이어짐. 사막의 사구, 식물들, 낡은 건
물들, 전투 잔해, 길가의 사람 등으로 구성.
Fig. 1. Outskirts of Virtual Iraq City
Fig. 2. Center Area of Virtual Iraq City
Fig. 3. Car Bombing in Virtual Iraq City
User-Centered tests with the application were conducte
the Naval Medical CenteroSan Diego and within an Army
Combat Stress Control Team in Iraq (See Figure 8). This
d at
usability of the prototype system application that fed an
iterative design process. A clinical trial version of the
application built from this process is currently being tested
with PTSD-diagnosed personnel at a variety of sites. The
Fig. 4. Interior view from of Desert Road Humvee Scenario
Fig. 5. Turret view from of Desert Road Humvee Scenario
Fig. 6. IED Attack in Desert Road Humvee Scenario
오즈의 마법사: 

시각-촉각-청각-후각을 통한 전쟁의 재현
• 상담사는 환자가 처해있는 모든 상황을 실시간으로 컨트롤 (‘오즈의 마법사’)

• 환자가 실제 트라우마를 가진 상황을 최대한 비슷하게 재현

• 시각적, 청각적, 후각적, 촉각적 상황을 컨트롤

• 다양한 군용 차량 / 근처에 있는 건물, 차, 탱크 등을 폭파

• 비행기나 헬리콥터를 머리 위에 출현, 낮/밤, 비/안개

• 다양한 상황을 재현 가능

• 총격전이 벌어지거나, 매복에 당한 상황, 로켓포가 날아오는 상황

• 동료가 죽거나 부상을 입은 상황, 사람의 시체나 잔해를 본 상황

• 적군이나 민간인에게 총격을 가한 상황 등등
scores at baseline, post treatment and 3-month follow-up are in Fig
group, mean Beck Anxiety Inventory scores significantly decrea
(9.5) to 11.9 (13.6), (t=3.37, df=19, p < .003) and mean PHQ-9
decreased 49% from 13.3 (5.4) to 7.1 (6.7), (t=3.68, df=19, p < 0.00
Figure 4. PTSD Checklist scores across treatment Figure 5. BAI and PH
The average number of sessions for this sample was just under
successful treatment completers had documented mild and mode
injuries, which suggest that this form of exposure can be useful
PTSD Checklist scores across treatment
• 연구 결과 20명의 환자들은 전반적으로 유의미한 개선을 보임

• 환자들 전체의 PCL-M 수치가 평균 54.4에서 35.6으로 감소

• 20명 중 16명은 치료 직후에 더 이상 PTSD 를 가지지 않은 것으로 나타남

• 치료가 끝난지 3개월 후에 환자들의 상태는 유지
http://www.ncbi.nlm.nih.gov/pubmed/19377167
reatment and 3-month follow-up are in Figure 4. For this same
iety Inventory scores significantly decreased 33% from 18.6
=3.37, df=19, p < .003) and mean PHQ-9 (depression) scores
3 (5.4) to 7.1 (6.7), (t=3.68, df=19, p < 0.002) (see Figure 5).
ores across treatment Figure 5. BAI and PHQ-Depression scores
r of sessions for this sample was just under 11. Also, two of the
mpleters had documented mild and moderate traumatic brain
that this form of exposure can be usefully applied with this
BAI and PHQ-Depression scores
• 벡 불안 지수는 평균 18.6에서 11.9로 33% 감소

• PHQ-9 우울증 지수 역시 13.3에서 7.1로 49% 감소

• 경미한 외상성 뇌손상 (traumatic brain injury) 환자 2명에도 유의미한 효과
http://www.ncbi.nlm.nih.gov/pubmed/19377167
Three Steps to Implement Digital Medicine
• Step 1. Measure the Data
• Step 2. Collect the Data
• Step 3. Insight from the Data
Feedback/Questions
• E-mail: yoonsup.choi@gmail.com
• Blog: http://www.yoonsupchoi.com
• Facebook: 최윤섭 디지털 헬스케어 연구소

Contenu connexe

Tendances

디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로
디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로
디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로Yoon Sup Choi
 
FDA의 최근 규제 혁신에서 무엇을 배워야 하는가
FDA의 최근 규제 혁신에서 무엇을 배워야 하는가FDA의 최근 규제 혁신에서 무엇을 배워야 하는가
FDA의 최근 규제 혁신에서 무엇을 배워야 하는가Yoon Sup Choi
 
[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래Yoon Sup Choi
 
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면Yoon Sup Choi
 
원격 의료 산업의 글로벌 동향 및 주요 이슈
원격 의료 산업의 글로벌 동향 및 주요 이슈원격 의료 산업의 글로벌 동향 및 주요 이슈
원격 의료 산업의 글로벌 동향 및 주요 이슈Yoon Sup Choi
 
디지털 의료가 '의료'가 될 때 (1/2)
디지털 의료가 '의료'가 될 때 (1/2)디지털 의료가 '의료'가 될 때 (1/2)
디지털 의료가 '의료'가 될 때 (1/2)Yoon Sup Choi
 
Recent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcareRecent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcareYoon Sup Choi
 
의료의 미래, 디지털 헬스케어: 정신의학을 중심으로
의료의 미래, 디지털 헬스케어: 정신의학을 중심으로의료의 미래, 디지털 헬스케어: 정신의학을 중심으로
의료의 미래, 디지털 헬스케어: 정신의학을 중심으로Yoon Sup Choi
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약Yoon Sup Choi
 
디지털 헬스케어의 잠재적 규제 이슈
디지털 헬스케어의 잠재적 규제 이슈 디지털 헬스케어의 잠재적 규제 이슈
디지털 헬스케어의 잠재적 규제 이슈 Yoon Sup Choi
 
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가Yoon Sup Choi
 
디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)Yoon Sup Choi
 
When digital medicine becomes the medicine (1/2)
When digital medicine becomes the medicine (1/2)When digital medicine becomes the medicine (1/2)
When digital medicine becomes the medicine (1/2)Yoon Sup Choi
 
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭Yoon Sup Choi
 
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어Yoon Sup Choi
 
When digital medicine becomes the medicine (2/2)
When digital medicine becomes the medicine (2/2)When digital medicine becomes the medicine (2/2)
When digital medicine becomes the medicine (2/2)Yoon Sup Choi
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)Yoon Sup Choi
 
디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)Yoon Sup Choi
 
의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어Yoon Sup Choi
 
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성Yoon Sup Choi
 

Tendances (20)

디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로
디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로
디지털 헬스케어를 어떻게 구현할 것인가: 국내 스타트업 업계를 중심으로
 
FDA의 최근 규제 혁신에서 무엇을 배워야 하는가
FDA의 최근 규제 혁신에서 무엇을 배워야 하는가FDA의 최근 규제 혁신에서 무엇을 배워야 하는가
FDA의 최근 규제 혁신에서 무엇을 배워야 하는가
 
[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래
 
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
 
원격 의료 산업의 글로벌 동향 및 주요 이슈
원격 의료 산업의 글로벌 동향 및 주요 이슈원격 의료 산업의 글로벌 동향 및 주요 이슈
원격 의료 산업의 글로벌 동향 및 주요 이슈
 
디지털 의료가 '의료'가 될 때 (1/2)
디지털 의료가 '의료'가 될 때 (1/2)디지털 의료가 '의료'가 될 때 (1/2)
디지털 의료가 '의료'가 될 때 (1/2)
 
Recent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcareRecent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcare
 
의료의 미래, 디지털 헬스케어: 정신의학을 중심으로
의료의 미래, 디지털 헬스케어: 정신의학을 중심으로의료의 미래, 디지털 헬스케어: 정신의학을 중심으로
의료의 미래, 디지털 헬스케어: 정신의학을 중심으로
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약
 
디지털 헬스케어의 잠재적 규제 이슈
디지털 헬스케어의 잠재적 규제 이슈 디지털 헬스케어의 잠재적 규제 이슈
디지털 헬스케어의 잠재적 규제 이슈
 
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가
 
디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)
 
When digital medicine becomes the medicine (1/2)
When digital medicine becomes the medicine (1/2)When digital medicine becomes the medicine (1/2)
When digital medicine becomes the medicine (1/2)
 
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭
인공지능은 의료를 어떻게 혁신하는가 (2017년 11월) 최윤섭
 
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
 
When digital medicine becomes the medicine (2/2)
When digital medicine becomes the medicine (2/2)When digital medicine becomes the medicine (2/2)
When digital medicine becomes the medicine (2/2)
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)
 
디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)
 
의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어
 
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
 

En vedette

Connected Health Conference 2016 Review by DHP
Connected Health Conference 2016 Review by DHPConnected Health Conference 2016 Review by DHP
Connected Health Conference 2016 Review by DHPYoon Sup Choi
 
그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다Yoon Sup Choi
 
디지털 헬스케어 파트너스 (DHP) 소개
디지털 헬스케어 파트너스 (DHP) 소개디지털 헬스케어 파트너스 (DHP) 소개
디지털 헬스케어 파트너스 (DHP) 소개Yoon Sup Choi
 
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언Yoon Sup Choi
 
그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다Yoon Sup Choi
 
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가Yoon Sup Choi
 

En vedette (6)

Connected Health Conference 2016 Review by DHP
Connected Health Conference 2016 Review by DHPConnected Health Conference 2016 Review by DHP
Connected Health Conference 2016 Review by DHP
 
그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다
 
디지털 헬스케어 파트너스 (DHP) 소개
디지털 헬스케어 파트너스 (DHP) 소개디지털 헬스케어 파트너스 (DHP) 소개
디지털 헬스케어 파트너스 (DHP) 소개
 
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
 
그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다그렇게 나는 스스로 기업이 되었다
그렇게 나는 스스로 기업이 되었다
 
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가
FDA는 디지털 헬스케어 혁신을 어떻게 규제하는가
 

Similaire à How to implement digital medicine in the future

디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들Yoon Sup Choi
 
글로벌 디지털 헬스케어 산업 및 규제 동향
글로벌 디지털 헬스케어 산업 및 규제 동향 글로벌 디지털 헬스케어 산업 및 규제 동향
글로벌 디지털 헬스케어 산업 및 규제 동향 Yoon Sup Choi
 
Healthcare: Innovate or Die | HackLaunch Inaugural Event
Healthcare: Innovate or Die | HackLaunch Inaugural EventHealthcare: Innovate or Die | HackLaunch Inaugural Event
Healthcare: Innovate or Die | HackLaunch Inaugural EventJulien de Salaberry
 
April 2013 StartUp Health Insights Funding Report
April 2013 StartUp Health Insights Funding ReportApril 2013 StartUp Health Insights Funding Report
April 2013 StartUp Health Insights Funding ReportStartUp Health
 
Asia HealthTech Investments by Julien de Salaberry (30 June 2015)
Asia HealthTech Investments by Julien de Salaberry (30 June 2015)Asia HealthTech Investments by Julien de Salaberry (30 June 2015)
Asia HealthTech Investments by Julien de Salaberry (30 June 2015)KickstartPH
 
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로디지털 의료의 현재와 미래: 임상신경생리학을 중심으로
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로Yoon Sup Choi
 
The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.Merry D'souza
 
IoMT: The Start of a New Era in the Healthcare Industry
IoMT: The Start of a New Era in the Healthcare IndustryIoMT: The Start of a New Era in the Healthcare Industry
IoMT: The Start of a New Era in the Healthcare IndustryPixel Crayons
 
SXSW 2016 Health & MedTech
SXSW 2016 Health & MedTechSXSW 2016 Health & MedTech
SXSW 2016 Health & MedTechAnthony Lazzaro
 
The Propell Group - ESSEC Business School - Digital Health Innovation
The Propell Group - ESSEC Business School - Digital Health InnovationThe Propell Group - ESSEC Business School - Digital Health Innovation
The Propell Group - ESSEC Business School - Digital Health InnovationJulien de Salaberry
 
McGrath Health Data Analyst SXSW
McGrath Health Data Analyst SXSWMcGrath Health Data Analyst SXSW
McGrath Health Data Analyst SXSWRobert McGrath
 
HealthXL: How Artificial Intelligence (AI) Can Improve Research & Care Models...
HealthXL: How Artificial Intelligence (AI) Can Improve Research & Care Models...HealthXL: How Artificial Intelligence (AI) Can Improve Research & Care Models...
HealthXL: How Artificial Intelligence (AI) Can Improve Research & Care Models...Maeve Lyons
 
Artificial Intelligence in Pharma and Care Delivery- Delivering on the Promise
Artificial Intelligence in Pharma and Care Delivery- Delivering on the PromiseArtificial Intelligence in Pharma and Care Delivery- Delivering on the Promise
Artificial Intelligence in Pharma and Care Delivery- Delivering on the PromiseJulie Carty
 
HeathXL report on use cases for Big Data and AI
HeathXL report on use cases for Big Data and AIHeathXL report on use cases for Big Data and AI
HeathXL report on use cases for Big Data and AIMartin Kelly
 
HealthXL Artificial Intelligence Working Group Report
HealthXL Artificial Intelligence Working Group ReportHealthXL Artificial Intelligence Working Group Report
HealthXL Artificial Intelligence Working Group ReportHanna Phelan
 
Digital Health Success Stories Report - Part 1
Digital Health Success Stories Report - Part 1Digital Health Success Stories Report - Part 1
Digital Health Success Stories Report - Part 1Tom Parsons
 
Top 12 Venture Capital Firms Funding the 50+ Market
Top 12 Venture Capital Firms Funding the 50+ MarketTop 12 Venture Capital Firms Funding the 50+ Market
Top 12 Venture Capital Firms Funding the 50+ MarketSanjay Khurana
 
디지털 신약, 누구도 가보지 않은 길
디지털 신약, 누구도 가보지 않은 길디지털 신약, 누구도 가보지 않은 길
디지털 신약, 누구도 가보지 않은 길Yoon Sup Choi
 
HealthXL Digital Health Success Stories Report Part One
HealthXL Digital Health Success Stories Report Part OneHealthXL Digital Health Success Stories Report Part One
HealthXL Digital Health Success Stories Report Part OneMaeve Lyons
 
HxRefactored - Validic - Drew Schiller
HxRefactored - Validic - Drew SchillerHxRefactored - Validic - Drew Schiller
HxRefactored - Validic - Drew SchillerHxRefactored
 

Similaire à How to implement digital medicine in the future (20)

디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들
 
글로벌 디지털 헬스케어 산업 및 규제 동향
글로벌 디지털 헬스케어 산업 및 규제 동향 글로벌 디지털 헬스케어 산업 및 규제 동향
글로벌 디지털 헬스케어 산업 및 규제 동향
 
Healthcare: Innovate or Die | HackLaunch Inaugural Event
Healthcare: Innovate or Die | HackLaunch Inaugural EventHealthcare: Innovate or Die | HackLaunch Inaugural Event
Healthcare: Innovate or Die | HackLaunch Inaugural Event
 
April 2013 StartUp Health Insights Funding Report
April 2013 StartUp Health Insights Funding ReportApril 2013 StartUp Health Insights Funding Report
April 2013 StartUp Health Insights Funding Report
 
Asia HealthTech Investments by Julien de Salaberry (30 June 2015)
Asia HealthTech Investments by Julien de Salaberry (30 June 2015)Asia HealthTech Investments by Julien de Salaberry (30 June 2015)
Asia HealthTech Investments by Julien de Salaberry (30 June 2015)
 
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로디지털 의료의 현재와 미래: 임상신경생리학을 중심으로
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로
 
The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.
 
IoMT: The Start of a New Era in the Healthcare Industry
IoMT: The Start of a New Era in the Healthcare IndustryIoMT: The Start of a New Era in the Healthcare Industry
IoMT: The Start of a New Era in the Healthcare Industry
 
SXSW 2016 Health & MedTech
SXSW 2016 Health & MedTechSXSW 2016 Health & MedTech
SXSW 2016 Health & MedTech
 
The Propell Group - ESSEC Business School - Digital Health Innovation
The Propell Group - ESSEC Business School - Digital Health InnovationThe Propell Group - ESSEC Business School - Digital Health Innovation
The Propell Group - ESSEC Business School - Digital Health Innovation
 
McGrath Health Data Analyst SXSW
McGrath Health Data Analyst SXSWMcGrath Health Data Analyst SXSW
McGrath Health Data Analyst SXSW
 
HealthXL: How Artificial Intelligence (AI) Can Improve Research & Care Models...
HealthXL: How Artificial Intelligence (AI) Can Improve Research & Care Models...HealthXL: How Artificial Intelligence (AI) Can Improve Research & Care Models...
HealthXL: How Artificial Intelligence (AI) Can Improve Research & Care Models...
 
Artificial Intelligence in Pharma and Care Delivery- Delivering on the Promise
Artificial Intelligence in Pharma and Care Delivery- Delivering on the PromiseArtificial Intelligence in Pharma and Care Delivery- Delivering on the Promise
Artificial Intelligence in Pharma and Care Delivery- Delivering on the Promise
 
HeathXL report on use cases for Big Data and AI
HeathXL report on use cases for Big Data and AIHeathXL report on use cases for Big Data and AI
HeathXL report on use cases for Big Data and AI
 
HealthXL Artificial Intelligence Working Group Report
HealthXL Artificial Intelligence Working Group ReportHealthXL Artificial Intelligence Working Group Report
HealthXL Artificial Intelligence Working Group Report
 
Digital Health Success Stories Report - Part 1
Digital Health Success Stories Report - Part 1Digital Health Success Stories Report - Part 1
Digital Health Success Stories Report - Part 1
 
Top 12 Venture Capital Firms Funding the 50+ Market
Top 12 Venture Capital Firms Funding the 50+ MarketTop 12 Venture Capital Firms Funding the 50+ Market
Top 12 Venture Capital Firms Funding the 50+ Market
 
디지털 신약, 누구도 가보지 않은 길
디지털 신약, 누구도 가보지 않은 길디지털 신약, 누구도 가보지 않은 길
디지털 신약, 누구도 가보지 않은 길
 
HealthXL Digital Health Success Stories Report Part One
HealthXL Digital Health Success Stories Report Part OneHealthXL Digital Health Success Stories Report Part One
HealthXL Digital Health Success Stories Report Part One
 
HxRefactored - Validic - Drew Schiller
HxRefactored - Validic - Drew SchillerHxRefactored - Validic - Drew Schiller
HxRefactored - Validic - Drew Schiller
 

Plus de Yoon Sup Choi

한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈Yoon Sup Choi
 
디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료Yoon Sup Choi
 
[대한병리학회] 의료 인공지능 101: 병리를 중심으로
[대한병리학회] 의료 인공지능 101: 병리를 중심으로[대한병리학회] 의료 인공지능 101: 병리를 중심으로
[대한병리학회] 의료 인공지능 101: 병리를 중심으로Yoon Sup Choi
 
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언Yoon Sup Choi
 
원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각Yoon Sup Choi
 
[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어Yoon Sup Choi
 
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건Yoon Sup Choi
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약Yoon Sup Choi
 
[ASGO 2019] Artificial Intelligence in Medicine
[ASGO 2019] Artificial Intelligence in Medicine[ASGO 2019] Artificial Intelligence in Medicine
[ASGO 2019] Artificial Intelligence in MedicineYoon Sup Choi
 
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가Yoon Sup Choi
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)Yoon Sup Choi
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)Yoon Sup Choi
 
성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언Yoon Sup Choi
 
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019Yoon Sup Choi
 

Plus de Yoon Sup Choi (14)

한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈
 
디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료
 
[대한병리학회] 의료 인공지능 101: 병리를 중심으로
[대한병리학회] 의료 인공지능 101: 병리를 중심으로[대한병리학회] 의료 인공지능 101: 병리를 중심으로
[대한병리학회] 의료 인공지능 101: 병리를 중심으로
 
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
 
원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각
 
[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어
 
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약
 
[ASGO 2019] Artificial Intelligence in Medicine
[ASGO 2019] Artificial Intelligence in Medicine[ASGO 2019] Artificial Intelligence in Medicine
[ASGO 2019] Artificial Intelligence in Medicine
 
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (하)
 
성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언
 
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
 

Dernier

FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607dollysharma2066
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...lizamodels9
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchirictsugar
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessSeta Wicaksana
 
Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Riya Pathan
 
MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?Olivia Kresic
 
Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Timedelhimodelshub1
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607dollysharma2066
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...lizamodels9
 
Kenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby AfricaKenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby Africaictsugar
 
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,noida100girls
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Servicecallgirls2057
 
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In.../:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...lizamodels9
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy Verified Accounts
 
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...lizamodels9
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxMarkAnthonyAurellano
 
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
Keppel Ltd. 1Q 2024 Business Update  Presentation SlidesKeppel Ltd. 1Q 2024 Business Update  Presentation Slides
Keppel Ltd. 1Q 2024 Business Update Presentation SlidesKeppelCorporation
 
Islamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in IslamabadIslamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in IslamabadAyesha Khan
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...ictsugar
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyotictsugar
 

Dernier (20)

FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchir
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful Business
 
Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737
 
MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?
 
Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Time
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
 
Kenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby AfricaKenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby Africa
 
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
 
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In.../:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail Accounts
 
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
 
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
Keppel Ltd. 1Q 2024 Business Update  Presentation SlidesKeppel Ltd. 1Q 2024 Business Update  Presentation Slides
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
 
Islamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in IslamabadIslamabad Escorts | Call 03070433345 | Escort Service in Islamabad
Islamabad Escorts | Call 03070433345 | Escort Service in Islamabad
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyot
 

How to implement digital medicine in the future

  • 1. How to Implement Digital Healthcare in the Future Professor, SAHIST, Sungkyunkwan University Director, Digital Healthcare Institute Yoon Sup Choi, Ph.D.
  • 2. “It's in Apple's DNA that technology alone is not enough. 
 It's technology married with liberal arts.”
  • 3. The Convergence of IT, BT and Medicine
  • 4.
  • 5.
  • 6.
  • 9. https://rockhealth.com/reports/2016-year-end-funding-report-a-reality-check-for-digital-health •2016년 디지털 헬스케어 스타트업 펀딩 규모는 $4.2b 으로 전년도에 비해서 8% 감소 •반면 투자를 받은 기업은 273개에서 296개로 약 10% 증가 •총 451개 VC 및 CVC가 투자를 집행 •그 중 237개는 디지털 헬스케어 기업에 '처음' 투자한 곳 (화이자 포함)
  • 10. startuphealth.com/reports 2010 2011 2012 2013 2014 2015 2016 2017 YTD Q1 Q2 Q3 Q4 160 302 499 672 593 530 613 306 Deal Count $1.8B $2.1B $1.9B $897M $589M $470M $386M $8.3B $6.1B $7.2B $3.0B $2.4B $2.1B $1.1B DIGITAL HEALTH FUNDING SNAPSHOT: YEAR OVER YEAR 8Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data on seed, venture, corporate venture and private equity funding only. © 2017 StartUp Health LLC $6.5B $3.8B Over six billion dollars poured into the industry in nearly 300 deals in the first half of the year. 2017 is on track to be the most active year for funding by a significant margin. Substantial amounts of funding continues to pour into digital health. Deal sizes continue to grow as the industry matures. We expect this trend to continue and see more $100M+ raises as industry leaders find their way into mass market opportunities. “There’s nothing that touches the human soul more than your health.” -Bill McDermott, CEO, SAP DEALS & FUNDING GEOGRAPHY INVESTORSMOONSHOTS •2017 2Q는 역대 분기별로 가장 큰 투자가 집행된 분기였음. •2010년+2011년 전체보다 더 큰 규모가 투자. •분기별 투자 총 건수는 비슷하였으나, 개별 딜의 규모가 상승
 •투자 건수는 2017년 상반기가 306건으로 예년에 비해서 크게 달라지지는 않음 •2013-2016년의 연간 투자 건수가 각각 거의 530-670건 사이
  • 11. startuphealth.com/reports $0B $0.417B $0.833B $1.25B $1.667B $2.083B $2.5B 2010 2011 2012 2013 2014 2015 2016 2017 YTD $150M Series C $37.5M Venture $37.9M Venture $394M Venture $33M Series B $31M Series A $400M Series C $500M Series C R2 = 0.5564 $220M Series A Good Doctor $500M Venture DIGITAL HEALTH FUNDING SNAPSHOT: MONTH OVER MONTH 9 $500M Series A Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data on seed, venture, corporate venture and private equity funding only. © 2017 StartUp Health LLC $130M Series B $914M Series B Two massive spikes in March and May indicate large funding events in the first half of 2017 and continue to push private funding towards a more positive overall trend. $600M Venture$360M Series E DEALS & FUNDING GEOGRAPHY INVESTORSMOONSHOTS •2017년 1Q에는 Grail ($914M)과 2Q에 Outcome Health ($600M) 이라는 두 outlier 가 있기는 했으나, •이를 고려하지 않더라도, 연도별 digital healthcare 분야 
 글로벌 투자는 지속적으로 우상향 중
  • 13. 5% 8% 24% 27% 36% Life Science & Health Mobile Enterprise & Data Consumer Commerce 9% 13% 23% 24% 31% Life Science & Health Consumer Enterprise Data & AI Others 2014 2015 Investment of GoogleVentures in 2014-2015
  • 14. startuphealth.com/reports Firm 2017 YTD Deals Stage Early Mid Late 1 7 1 7 2 6 2 6 3 5 3 5 3 5 3 5 THE TOP INVESTORS OF 2017 YTD We are seeing huge strides in new investors pouring money into the digital health market, however all the top 10 investors of 2017 year to date are either maintaining or increasing their investment activity. Source: StartUp Health Insights | startuphealth.com/insights Note: Report based on public data on seed, venture, corporate venture and private equity funding only. © 2017 StartUp Health LLC DEALS & FUNDING GEOGRAPHY INVESTORSMOONSHOTS 20 •개별 투자자별로 보자면, 이 분야 전통의 강자(?)인 Google Ventures 와 Khosla Ventures가 각각 7개로 공동 1위, •GE Ventures와 Accel Partners가 6건으로 공동 2위를 기록
 •GV 가 투자한 기업 •virtual fitness membership network를 만드는 뉴욕의 ClassPass •Remote clinical trial 회사인 Science 37 •Digital specialty prescribing platform ZappRx 등에 투자.
 •Khosla Ventures 가 투자한 기업 •single-molecule 검사 장비를 만드는 TwoPoreGuys •Mabu라는 AI-powered patient engagement robot 을 만드는 Catalia Health에 투자.
  • 15.
  • 16. 헬스케어넓은 의미의 건강 관리에는 해당되지만, 디지털 기술이 적용되지 않고, 전문 의료 영역도 아닌 것 예) 운동, 영양, 수면 디지털 헬스케어 건강 관리 중에 디지털 기술이 사용되는 것 예) 사물인터넷, 인공지능, 3D 프린터, VR/AR 모바일 헬스케어 디지털 헬스케어 중 모바일 기술이 사용되는 것 예) 스마트폰, 사물인터넷, SNS 개인 유전정보분석 예) 암유전체, 질병위험도, 보인자, 약물 민감도 예) 웰니스, 조상 분석 헬스케어 관련 분야 구성도(ver 0.3) 의료 질병 예방, 치료, 처방, 관리 등 전문 의료 영역 원격의료 원격진료
  • 17. What is most important factor in digital medicine?
  • 18. “Data! Data! Data!” he cried.“I can’t make bricks without clay!” - Sherlock Holmes,“The Adventure of the Copper Beeches”
  • 19.
  • 20. 새로운 데이터가 새로운 방식으로 새로운 주체에 의해 측정, 저장, 통합, 분석된다. 데이터의 종류 데이터의 질적/양적 측면 웨어러블 기기 스마트폰 유전 정보 분석 인공지능 SNS 사용자/환자 대중
  • 21. Three Steps to Implement Digital Medicine • Step 1. Measure the Data • Step 2. Collect the Data • Step 3. Insight from the Data
  • 22. Digital Healthcare Industry Landscape Data Measurement Data Integration Data Interpretation Treatment Smartphone Gadget/Apps DNA Artificial Intelligence 2nd Opinion Wearables / IoT (ver. 3) EMR/EHR 3D Printer Counseling Data Platform Accelerator/early-VC Telemedicine Device On Demand (O2O) VR Digital Healthcare Institute Diretor, Yoon Sup Choi, Ph.D. yoonsup.choi@gmail.com
  • 23. Data Measurement Data Integration Data Interpretation Treatment Smartphone Gadget/Apps DNA Artificial Intelligence 2nd Opinion Device On Demand (O2O) Wearables / IoT Digital Healthcare Institute Diretor, Yoon Sup Choi, Ph.D. yoonsup.choi@gmail.com EMR/EHR 3D Printer Counseling Data Platform Accelerator/early-VC VR Telemedicine Digital Healthcare Industry Landscape (ver. 3)
  • 24. Step 1. Measure the Data
  • 25. Smartphone: the origin of healthcare innovation
  • 26. Smartphone: the origin of healthcare innovation
  • 27. 2013? The election of Pope Benedict The Election of Pope Francis
  • 28. The Election of Pope Francis The Election of Pope Benedict
  • 30.
  • 31.
  • 37.
  • 38. Smartphone video microscope automates detection of parasites in blood
  • 42.
  • 43.
  • 45.
  • 48. Beyond Verbal • 기계가 사람의 감정을 이해한다면? • 헬스케어 분야에서도 응용도 높음: 슬픔/우울함/피로 등의 감정 파악 • 일부 보험 회사에서는 가입자의 우울증 여부 파악을 위해 이미 사용 중 • Aetna 는 2012년 부터 고객의 우울증 여부를 전화 목소리 분석으로 파악 • 기존의 방식에 비해 우울증 환자 6배 파악 • 사생활 침해 여부 존재
  • 49.
  • 50. Digital Phenotype: Your smartphone knows if you are depressed Ginger.io
  • 51. Digital Phenotype: Your smartphone knows if you are depressed J Med Internet Res. 2015 Jul 15;17(7):e175. The correlation analysis between the features and the PHQ-9 scores revealed that 6 of the 10 features were significantly correlated to the scores: • strong correlation: circadian movement, normalized entropy, location variance • correlation: phone usage features, usage duration and usage frequency
  • 52. Digital Phenotype: Your smartphone knows if you are depressed J Med Internet Res. 2015 Jul 15;17(7):e175. Comparison of location and usage feature statistics between participants with no symptoms of depression (blue) and the ones with (red). (ENT, entropy; ENTN, normalized entropy; LV, location variance; HS, home stay;TT, transition time;TD, total distance; CM, circadian movement; NC, number of clusters; UF, usage frequency; UD, usage duration). Figure 4. Comparison of location and usage feature statistics between participants with no symptoms of depression (blue) and the ones with (red). Feature values are scaled between 0 and 1 for easier comparison. Boxes extend between 25th and 75th percentiles, and whiskers show the range. Horizontal solid lines inside the boxes are medians. One, two, and three asterisks show significant differences at P<.05, P<.01, and P<.001 levels, respectively (ENT, entropy; ENTN, normalized entropy; LV, location variance; HS, home stay; TT, transition time; TD, total distance; CM, circadian movement; NC, number of clusters; UF, usage frequency; UD, usage duration). Figure 5. Coefficients of correlation between location features. One, two, and three asterisks indicate significant correlation levels at P<.05, P<.01, and P<.001, respectively (ENT, entropy; ENTN, normalized entropy; LV, location variance; HS, home stay; TT, transition time; TD, total distance; CM, circadian movement; NC, number of clusters). Saeb et alJOURNAL OF MEDICAL INTERNET RESEARCH the variability of the time the participant spent at the location clusters what extent the participants’ sequence of locations followed a circadian rhythm. home stay
  • 53. Reece & Danforth, “Instagram photos reveal predictive markers of depression” (2016) higher Hue (bluer) lower Saturation (grayer) lower Brightness (darker)
  • 54. Digital Phenotype: Your Instagram knows if you are depressed Rao (MVR) (24) .     Results  Both All­data and Pre­diagnosis models were decisively superior to a null model . All­data predictors were significant with 99% probability.57.5;(KAll  = 1 K 49.8)  Pre = 1  7 Pre­diagnosis and All­data confidence levels were largely identical, with two exceptions:  Pre­diagnosis Brightness decreased to 90% confidence, and Pre­diagnosis posting frequency  dropped to 30% confidence, suggesting a null predictive value in the latter case.   Increased hue, along with decreased brightness and saturation, predicted depression. This  means that photos posted by depressed individuals tended to be bluer, darker, and grayer (see  Fig. 2). The more comments Instagram posts received, the more likely they were posted by  depressed participants, but the opposite was true for likes received. In the All­data model, higher  posting frequency was also associated with depression. Depressed participants were more likely  to post photos with faces, but had a lower average face count per photograph than healthy  participants. Finally, depressed participants were less likely to apply Instagram filters to their  posted photos.     Fig. 2. Magnitude and direction of regression coefficients in All­data (N=24,713) and Pre­diagnosis (N=18,513)  models. X­axis values represent the adjustment in odds of an observation belonging to depressed individuals, per  Reece & Danforth, “Instagram photos reveal predictive markers of depression” (2016)     Fig. 1. Comparison of HSV values. Right photograph has higher Hue (bluer), lower Saturation (grayer), and lower  Brightness (darker) than left photograph. Instagram photos posted by depressed individuals had HSV values  shifted towards those in the right photograph, compared with photos posted by healthy individuals.    Units of observation  In determining the best time span for this analysis, we encountered a difficult question:  When and for how long does depression occur? A diagnosis of depression does not indicate the  persistence of a depressive state for every moment of every day, and to conduct analysis using an  individual’s entire posting history as a single unit of observation is therefore rather specious. At  the other extreme, to take each individual photograph as units of observation runs the risk of  being too granular. DeChoudhury et al. (5) looked at all of a given user’s posts in a single day,  and aggregated those data into per­person, per­day units of observation. We adopted this  precedent of “user­days” as a unit of analysis .  5   Statistical framework  We used Bayesian logistic regression with uninformative priors to determine the strength  of individual predictors. Two separate models were trained. The All­data model used all  collected data to address Hypothesis 1. The Pre­diagnosis model used all data collected from  higher Hue (bluer) lower Saturation (grayer) lower Brightness (darker)
  • 55. Digital Phenotype: Your Instagram knows if you are depressed Reece & Danforth, “Instagram photos reveal predictive markers of depression” (2016) . In particular, depressedχ2 07.84, p .17e 64;( All  = 9   = 9 − 1 13.80, p .87e 44)χ2Pre  = 8   = 2 − 1   participants were less likely than healthy participants to use any filters at all. When depressed  participants did employ filters, they most disproportionately favored the “Inkwell” filter, which  converts color photographs to black­and­white images. Conversely, healthy participants most  disproportionately favored the Valencia filter, which lightens the tint of photos. Examples of  filtered photographs are provided in SI Appendix VIII.     Fig. 3. Instagram filter usage among depressed and healthy participants. Bars indicate difference between observed  and expected usage frequencies, based on a Chi­squared analysis of independence. Blue bars indicate  disproportionate use of a filter by depressed compared to healthy participants, orange bars indicate the reverse. 
  • 56. Digital Phenotype: Your Instagram knows if you are depressed Reece & Danforth, “Instagram photos reveal predictive markers of depression” (2016)   VIII. Instagram filter examples    Fig. S8. Examples of Inkwell and Valencia Instagram filters.  Inkwell converts  color photos to black­and­white, Valencia lightens tint.  Depressed participants  most favored Inkwell compared to healthy participants, Healthy participants 
  • 57.
  • 58. • 아이폰의 센서로 측정한 자신의 의료/건강 데이터를 플랫폼에 공유 가능 • 가속도계, 마이크, 자이로스코프, GPS 센서 등을 이용 • 걸음, 운동량, 기억력, 목소리 떨림 등등 • 기존의 의학연구의 문제를 해결: 충분한 의료 데이터의 확보 • 연구 참여자 등록에 물리적, 시간적 장벽을 제거 (1번/3개월 ➞ 1번/1초) • 대중의 의료 연구 참여 장려: 연구 참여자의 수 증가 • 발표 후 24시간 내에 수만명의 연구 참여자들이 지원 • 사용자 본인의 동의 하에 진행 Research Kit
  • 59. •초기 버전으로, 5가지 질환에 대한 앱 5개를 소개 ResearchKit
  • 62. Autism and Beyond EpiWatchMole Mapper measuring facial expressions of young patients having autism measuring morphological changes of moles measuring behavioral data of epilepsy patients
  • 63. •스탠퍼드의 심혈관 질환 연구 앱, myHeart • 발표 하루만에 11,000 명의 참가자가 등록 • 스탠퍼드의 해당 연구 책임자 앨런 영,
 “기존의 방식으로는 11,000명 참가자는 
 미국 전역의 50개 병원에서 1년간 모집해야 한다”
  • 64. •파킨슨 병 연구 앱, mPower • 발표 하루만에 5,589 명의 참가자가 등록 • 기존에 6000만불을 들여 5년 동안 모집한
 환자의 수는 단 800명
  • 66.
  • 67.
  • 69. Fig 1. What can consumer wearables do? Heart rate can be measured with an oximeter built into a ring [3], muscle activity with an electromyographi sensor embedded into clothing [4], stress with an electodermal sensor incorporated into a wristband [5], and physical activity or sleep patterns via an accelerometer in a watch [6,7]. In addition, a female’s most fertile period can be identified with detailed body temperature tracking [8], while levels of me attention can be monitored with a small number of non-gelled electroencephalogram (EEG) electrodes [9]. Levels of social interaction (also known to a PLOS Medicine 2016
  • 70. PwC Health Research Institute Health wearables: Early days2 insurers—offering incentives for use may gain traction. HRI’s survey Source: HRI/CIS Wearables consumer survey 2014 21% of US consumers currently own a wearable technology product 2% wear it a few times a month 2% no longer use it 7% wear it a few times a week 10% wear it everyday Figure 2: Wearables are not mainstream – yet Just one in five US consumers say they own a wearable device. Intelligence Series sought to better understand American consumers’ attitudes toward wearables through done with the data. PwC, Health wearables: early days, 2014
  • 71. PwC | The Wearable Life | 3 device (up from 21% in 2014). And 36% own more than one. We didn’t even ask this question in our previous survey since it wasn’t relevant at the time. That’s how far we’ve come. millennials are far more likely to own wearables than older adults. Adoption of wearables declines with age. Of note in our survey findings, however: Consumers aged 35 to 49 are more likely to own smart watches. Across the board for gender, age, and ethnicity, fitness wearable technology is most popular. Fitness band Smart clothing Smart video/ photo device (e.g. GoPro) Smart watch Smart glasses* 45% 14% 27% 15% 12% Base: Respondents who currently own at least one device (pre-quota sample, n=700); Q10A/B/C/D/E. Please tell us your relationship with the following wearable technology products. *Includes VR/AR glasses Fitness runs away with it % respondents who own type of wearable device PwC,The Wearable Life 2.0, 2016 • 49% own at least one wearable device (up from 21% in2014) • 36% own more than one device.
  • 77.
  • 80. • $20 • the first and only 24-hour thermometer • constantly monitor baby’s temperature • FDA cleared
  • 83.
  • 84.
  • 85.
  • 87.
  • 88.
  • 89. Ingestible Sensor, Proteus Digital Health
  • 90. Ingestible Sensor, Proteus Digital Health
  • 91.
  • 92. IEEE Trans Biomed Eng. 2014 Jul An Ingestible Sensor for Measuring Medication Adherence d again on imal was ysis were s detected, risk of ed with a his can be s during can be on, placed filling, or an edible monstrated cases, the nts of the ve release ity, visual a suitable The 0.9% of devices that went undetected represent contributions from all components of the system. For the sensor, the most likely contribution is due to physiological corner cases, where a combination of stomach environment and receiver-sensor orientation may result in a small proportion of devices (no greater than 0.9%) being missed. Table IV- Exposure and performance in clinical trials 412 subjects 20,993 ingestions Maximum daily ingestion: 34 Maximum use days: 90 days 99.1% Detection accuracy 100% Correct identification 0% False positives No SAEs / UADEs related to system Trials were conducted in the following patient populations. The number of patients in each study is indicated in parentheses: Healthy Volunteers (296), Cardiovascular disease (53), Tuberculosis (30), Psychiatry (28). SAE = Serious Adverse Event; UADE = Unanticipated Adverse Device Effect) Exposure and performance in clinical trials
  • 95. 2003 Human Genome Project 13 years (676 weeks) $2,700,000,000 2007 Dr. CraigVenter’s genome 4 years (208 weeks) $100,000,000 2008 Dr. James Watson’s genome 4 months (16 weeks) $1,000,000 2009 (Nature Biotechnology) 4 weeks $48,000 2013 1-2 weeks ~$5,000
  • 96. 13 years 30 hours (676 weeks) Over the last decade,
  • 98. Ferrari 458 Spider $398,000 40 cents http://www.guardian.co.uk/science/2013/jun/08/genome-sequenced
  • 99. The $1000 Genome is Already Here!
  • 100. • 2017년 1월 NovaSeq 5000, 6000 발표 • 몇년 내로 $100로 WES 를 실현하겠다고 공언 • 2일에 60명의 WES 가능 (한 명당 한 시간 이하)
  • 101.
  • 102.
  • 103.
  • 104.
  • 105. Results within 6-8 weeksA little spit is all it takes! DTC Genetic TestingDirect-To-Consumer
  • 106. 120 Disease Risk 21 Drug Response 49 Carrier Status 57Traits $99
  • 111. Inherited Conditions 혈색소증은 유전적 원인으로 철에 대한 체내 대사에 이상이 생겨 음식을 통해 섭취한 철이 너무 많이 흡수되는 질환입니다. 너무 많이 흡수된 철 은 우리 몸의 여러 장기, 특히 간, 심장 및 췌장에 과다하게 축적되며 이 들 장기를 손상시킴으로써 간질환, 심장질환 및 악성종양을 유발합니다.
  • 112. Traits 음주 후 얼굴이 붉어지는가 쓴 맛을 감지할 수 있나 귀지 유형 눈 색깔 곱슬머리 여부 유당 분해 능력 말라리아 저항성 대머리가 될 가능성 근육 퍼포먼스 혈액형 노로바이러스 저항성 HIV 저항성 흡연 중독 가능성
  • 115. genetic factor vs. environmental factor
  • 117.
  • 118. Human genomes are being sequenced at an ever-increasing rate. The 1000 Genomes Project has aggregated hundreds of genomes; The Cancer Genome Atlas (TGCA) has gathered several thousand; and the Exome Aggregation Consortium (ExAC) has sequenced more than 60,000 exomes. Dotted lines show three possible future growth curves. DNA SEQUENCING SOARS 2001 2005 2010 2015 2020 2025 100 103 106 109 Human Genome Project Cumulativenumberofhumangenomes 1000 Genomes TCGA ExAC Current amount 1st personal genome Recorded growth Projection Double every 7 months (historical growth rate) Double every 12 months (Illumina estimate) Double every 18 months (Moore's law) Michael Einsetein, Nature, 2015
  • 119. more rapid and accurate approaches to infectious diseases. The driver mutations and key biologic unde Sequencing Applications in Medicine from Prewomb to Tomb Cell. 2014 Mar 27; 157(1): 241–253.
  • 120. Step1. Measure the Data • With your smartphone • With wearable devices (connected to smartphone) • Personal genome analysis ... without even going to the hospital!
  • 121. Step 2. Collect the Data
  • 122.
  • 123. Sci Transl Med 2015
  • 124.
  • 127. Epic MyChart App Epic EHR Dexcom CGM Patients/User Devices EHR Hospital Whitings + Apple Watch Apps HealthKit
  • 128.
  • 129. • 애플 HealthKit 가 미국의 23개 선도병원 중에, 14개의 병원과 협력 • 경쟁 플랫폼 Google Fit, S-Health 보다 현저히 빠른 움직임 • Beth Israel Deaconess 의 CIO • “25만명의 환자들 중 상당수가 웨어러블로 각종 데이터 생산 중.
 이 모든 디바이스에 인터페이스를 우리 병원은 제공할 수 없다. 
 하지만 애플이라면 가능하다.” 2015.2.5
  • 130. Step 3. Insight from the Data
  • 131.
  • 133. How to Analyze and Interpret the Big Data?
  • 134. and/or Two ways to get insights from the big data
  • 135. Epic MyChart Epic EHR Dexcom CGM Patients/User Devices EHR Hospital Whitings + Apple Watch Apps HealthKit
  • 136. transfer from Share2 to HealthKit as mandated by Dexcom receiver Food and Drug Administration device classification. Once the glucose values reach HealthKit, they are passively shared with the Epic MyChart app (https://www.epic.com/software-phr.php). The MyChart patient portal is a component of the Epic EHR and uses the same data- base, and the CGM values populate a standard glucose flowsheet in the patient’s chart. This connection is initially established when a pro- vider places an order in a patient’s electronic chart, resulting in a re- quest to the patient within the MyChart app. Once the patient or patient proxy (parent) accepts this connection request on the mobile device, a communication bridge is established between HealthKit and MyChart enabling population of CGM data as frequently as every 5 Participation required confirmation of Bluetooth pairing of the CGM re- ceiver to a mobile device, updating the mobile device with the most recent version of the operating system, Dexcom Share2 app, Epic MyChart app, and confirming or establishing a username and password for all accounts, including a parent’s/adolescent’s Epic MyChart account. Setup time aver- aged 45–60 minutes in addition to the scheduled clinic visit. During this time, there was specific verbal and written notification to the patients/par- ents that the diabetes healthcare team would not be actively monitoring or have real-time access to CGM data, which was out of scope for this pi- lot. The patients/parents were advised that they should continue to contact the diabetes care team by established means for any urgent questions/ concerns. Additionally, patients/parents were advised to maintain updates Figure 1: Overview of the CGM data communication bridge architecture. BRIEFCOMMUNICATION Kumar R B, et al. J Am Med Inform Assoc 2016;0:1–6. doi:10.1093/jamia/ocv206, Brief Communication byguestonApril7,2016http://jamia.oxfordjournals.org/Downloadedfrom •Apple HealthKit, Dexcom CGM기기를 통해 지속적으로 혈당을 모니터링한 데이터를 EHR과 통합 •당뇨환자의 혈당관리를 향상시켰다는 연구결과 •Stanford Children’s Health와 Stanford 의대에서 10명 type 1 당뇨 소아환자 대상으로 수행 (288 readings /day) •EHR 기반 데이터분석과 시각화는 데이터 리뷰 및 환자커뮤니케이션을 향상 •환자가 내원하여 진료하는 기존 방식에 비해 실시간 혈당변화에 환자가 대응 JAMIA 2016 Remote Patients Monitoring via Dexcom-HealthKit-Epic-Stanford
  • 139.
  • 140.
  • 141. 8
  • 142. How long will you wait to see a doctor? http://money.cnn.com/interactive/economy/average-doctor-wait-times/
  • 143. Average Time to Appointment (Familiy Medicine) Boston LA Portland Miami Atlanta Denver Detroit New York Seattle Houston Philadelphia Washington DC San Diego Dallas Minneapolis Total 0 30 60 90 120 20.3 10 8 24 30 9 17 8 24 14 14 9 7 8 59 63 19.5 10 5 7 14 21 19 23 26 16 16 24 12 13 20 66 29.3 days 8 days 12 days 13 days 17 days 17 days 21 days 26 days 26 days 27 days 27 days 27 days 28 days 39 days 42 days 109 days 2017 2014 2009
  • 144.
  • 145.
  • 146.
  • 147. Growth of Teladoc Revenue ($m) 0 45 90 135 180 2013 2014 2015 2016 2017(E) $180m $123m $77.4m $44m $20m Visits (k) 0 350 700 1050 1400 2013 2014 2015 2016 2017(E) 1,400K 952K 575K 299K 127K Members (m) 0 5.5 11 16.5 22 2013 2014 2015 2016 2017(E) 21.5 17.5 11.5 8.1 6.2
  • 148.
  • 149. Vinod Khosla Founder, 1st CEO of Sun Microsystems Partner of KPCB, CEO of KhoslaVentures LegendaryVenture Capitalist in SiliconValley
  • 150. “Technology will replace 80% of doctors”
  • 151.
  • 152.
  • 153. Luddites in the 1810’s
  • 154. and/or
  • 155.
  • 156. •AP 통신: 로봇이 인간 대신 기사를 작성 •초당 2,000 개의 기사 작성 가능 •기존에 300개 기업의 실적 ➞ 3,000 개 기업을 커버
  • 157. • 1978 • As part of the obscure task of “discovery” — providing documents relevant to a lawsuit — the studios examined six million documents at a cost of more than $2.2 million, much of it to pay for a platoon of lawyers and paralegals who worked for months at high hourly rates. • 2011 • Now, thanks to advances in artificial intelligence, “e-discovery” software can analyze documents in a fraction of the time for a fraction of the cost. • In January, for example, Blackstone Discovery of Palo Alto, Calif., helped analyze 1.5 million documents for less than $100,000.
  • 158. •일본의 Fukoku 생명보험에서는 보험금 지급 여부를 심사하 는 사람을 30명 이상 해고하고, IBM Watson Explorer 에 게 맡기기로 결정 •의료 기록을 바탕으로 Watson이 보험금 지급 여부를 판단 •인공지능으로 교체하여 생산성을 30% 향상 •2년 안에 ROI 가 나올 것이라고 예상 •1년차: 140m yen •2년차: 200m yen
  • 159.
  • 160.
  • 161. No choice but to bring AI into the medicine
  • 162. Martin Duggan,“IBM Watson Health - Integrated Care & the Evolution to Cognitive Computing”
  • 163. •약한 인공 지능 (Artificial Narrow Intelligence) • 특정 방면에서 잘하는 인공지능 • 체스, 퀴즈, 메일 필터링, 상품 추천, 자율 운전 •강한 인공 지능 (Artificial General Intelligence) • 모든 방면에서 인간 급의 인공 지능 • 사고, 계획, 문제해결, 추상화, 복잡한 개념 학습 •초 인공 지능 (Artificial Super Intelligence) • 과학기술, 사회적 능력 등 모든 영역에서 인간보다 뛰어난 인공 지능 • “충분히 발달한 과학은 마법과 구분할 수 없다” - 아서 C. 클라크
  • 164.
  • 165. 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 90% 50% 10% PT-AI AGI EETNTOP100 Combined 언제쯤 기계가 인간 수준의 지능을 획득할 것인가? Philosophy and Theory of AI (2011) Artificial General Intelligence (2012) Greek Association for Artificial Intelligence Survey of most frequently cited 100 authors (2013) Combined 응답자 누적 비율 Superintelligence, Nick Bostrom (2014)
  • 166. Superintelligence: Science of fiction? Panelists: Elon Musk (Tesla, SpaceX), Bart Selman (Cornell), Ray Kurzweil (Google), David Chalmers (NYU), Nick Bostrom(FHI), Demis Hassabis (Deep Mind), Stuart Russell (Berkeley), Sam Harris, and Jaan Tallinn (CSER/FLI) January 6-8, 2017, Asilomar, CA https://brunch.co.kr/@kakao-it/49 https://www.youtube.com/watch?v=h0962biiZa4
  • 167. Superintelligence: Science of fiction? Panelists: Elon Musk (Tesla, SpaceX), Bart Selman (Cornell), Ray Kurzweil (Google), David Chalmers (NYU), Nick Bostrom(FHI), Demis Hassabis (Deep Mind), Stuart Russell (Berkeley), Sam Harris, and Jaan Tallinn (CSER/FLI) January 6-8, 2017, Asilomar, CA Q: 초인공지능이란 영역은 도달 가능한 것인가? Q: 초지능을 가진 개체의 출현이 가능할 것이라고 생각하는가? Table 1 Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn YES YES YES YES YES YES YES YES YES Table 1-1 Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn YES YES YES YES YES YES YES YES YES Q: 초지능의 실현이 일어나기를 희망하는가? Table 1-1-1 Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn Complicated Complicated Complicated YES Complicated YES YES Complicated Complicated https://brunch.co.kr/@kakao-it/49 https://www.youtube.com/watch?v=h0962biiZa4
  • 170. •약한 인공 지능 (Artificial Narrow Intelligence) • 특정 방면에서 잘하는 인공지능 • 체스, 퀴즈, 메일 필터링, 상품 추천, 자율 운전 •강한 인공 지능 (Artificial General Intelligence) • 모든 방면에서 인간 급의 인공 지능 • 사고, 계획, 문제해결, 추상화, 복잡한 개념 학습 •초 인공 지능 (Artificial Super Intelligence) • 과학기술, 사회적 능력 등 모든 영역에서 인간보다 뛰어난 인공 지능 • “충분히 발달한 과학은 마법과 구분할 수 없다” - 아서 C. 클라크
  • 171. •약한 인공 지능 (Artificial Narrow Intelligence) • 특정 방면에서 잘하는 인공지능 • 체스, 퀴즈, 메일 필터링, 상품 추천, 자율 운전 •강한 인공 지능 (Artificial General Intelligence) • 모든 방면에서 인간 급의 인공 지능 • 사고, 계획, 문제해결, 추상화, 복잡한 개념 학습 •초 인공 지능 (Artificial Super Intelligence) • 과학기술, 사회적 능력 등 모든 영역에서 인간보다 뛰어난 인공 지능 • “충분히 발달한 과학은 마법과 구분할 수 없다” - 아서 C. 클라크
  • 172. “As soon as it works, no one calls it artificial intelligence any more.” - John McCarthy (1927-2011)
  • 173.
  • 174.
  • 175.
  • 176.
  • 177.
  • 178.
  • 179. Jeopardy! 2011년 인간 챔피언 두 명 과 퀴즈 대결을 벌여서 압도적인 우승을 차지
  • 180. IBM Watson on Jeopardy!
  • 181. 600,000 pieces of medical evidence 2 million pages of text from 42 medical journals and clinical trials 69 guidelines, 61,540 clinical trials IBM Watson on Medicine Watson learned... + 1,500 lung cancer cases physician notes, lab results and clinical research + 14,700 hours of hands-on training
  • 182.
  • 183.
  • 184. Annals of Oncology (2016) 27 (suppl_9): ix179-ix180. 10.1093/annonc/mdw601 Validation study to assess performance of IBM cognitive computing system Watson for oncology with Manipal multidisciplinary tumour board for 1000 consecutive cases: 
 An Indian experience • MMDT(Manipal multidisciplinary tumour board) treatment recommendation and data of 1000 cases of 4 different cancers breast (638), colon (126), rectum (124) and lung (112) which were treated in last 3 years was collected. • Of the treatment recommendations given by MMDT, WFO provided 
 
 50% in REC, 28% in FC, 17% in NREC • Nearly 80% of the recommendations were in WFO REC and FC group • 5% of the treatment provided by MMDT was not available with WFO • The degree of concordance varied depending on the type of cancer • WFO-REC was high in Rectum (85%) and least in Lung (17.8%) • high with TNBC (67.9%); HER2 negative (35%)
 • WFO took a median of 40 sec to capture, analyze and give the treatment.
 
 (vs MMDT took the median time of 15 min)
  • 186. Empowering the Oncology Community for Cancer Care Genomics Oncology Clinical Trial Matching Watson Health’s oncology clients span more than 35 hospital systems “Empowering the Oncology Community for Cancer Care” Andrew Norden, KOTRA Conference, March 2017, “The Future of Health is Cognitive”
  • 187. 식약처 인공지능 가이드라인 초안 Medtronic과 혈당관리 앱 시연 2011 2012 2013 2014 2015 Jeopardy! 우승 뉴욕 MSK암센터 협력 (Lung cancer) MD앤더슨 협력 (Leukemia) MD앤더슨 Pilot 결과 발표 @ASCO Watson Fund, WellTok 에 투자 ($22m) The NewYork Genome Center 협력 (Glioblastoma 분석) GeneMD, Watson Mobile Developer Challenge의 winner 선정 Watson Fund, Pathway Genomics 투자 Cleveland Clinic 협력 (Cancer Genome Analysis) 한국 IBM Watson 사업부 신설 Watson Health 출범 Phytel & Explorys 인수 J&J,Apple, Medtronic 협력 Epic & Mayo Clinic 제휴 (EHR data 분석) 동경대 도입 (oncology) 14 Cancer Center 제휴 (Cancer Genome Analysis) Mayo Clinic 협력 (clinical trail matching) Watson Fund, Modernizing Medicine 투자 Academia Business Pathway Genomics OME closed alpha 시작 TurvenHealth 인수 Apple ResearchKit 통한 수면 연구 시작 2017 가천대 길병원 Watson 도입 (oncology) Medtronic Sugar.IQ 출시 제약사 Teva와 제휴 인도 Manipal Hospital Watson 도입 태국 Bumrungrad  International Hospital, Watson 도입 최윤섭 디지털헬스케어 연구소, 소장 (주)디지털 헬스케어 파트너스, 대표파트너 최윤섭, Ph.D. yoonsup.choi@gmail.com IBM Watson in Healthcare Merge Healthcare 인수 2016 Under Amour 제휴 Broad 연구소 협력 발표 (유전체 분석-항암제 내성) Manipal Hospital의 WFO 정확성 발표 대구가톨릭병원 대구동산병원 WFO 도입 건양대병원 Watson 도입 (oncology) 부산대학병원 Watson 도입 (oncology/ genomics)
  • 188. 식약처 인공지능 가이드라인 초안 Medtronic과 혈당관리 앱 시연 2011 2012 2013 2014 2015 Jeopardy! 우승 뉴욕 MSK암센터 협력 (Lung cancer) MD앤더슨 협력 (Leukemia) MD앤더슨 Pilot 결과 발표 @ASCO Watson Fund, WellTok 에 투자 ($22m) The NewYork Genome Center 협력 (Glioblastoma 분석) GeneMD, Watson Mobile Developer Challenge의 winner 선정 Watson Fund, Pathway Genomics 투자 Cleveland Clinic 협력 (Cancer Genome Analysis) 한국 IBM Watson 사업부 신설 Watson Health 출범 Phytel & Explorys 인수 J&J,Apple, Medtronic 협력 Epic & Mayo Clinic 제휴 (EHR data 분석) 동경대 도입 (oncology) 14 Cancer Center 제휴 (Cancer Genome Analysis) Mayo Clinic 협력 (clinical trail matching) Watson Fund, Modernizing Medicine 투자 Academia Business Pathway Genomics OME closed alpha 시작 TurvenHealth 인수 Apple ResearchKit 통한 수면 연구 시작 2017 가천대 길병원 Watson 도입 (oncology) Medtronic Sugar.IQ 출시 제약사 Teva와 제휴 인도 Manipal Hospital Watson 도입 태국 Bumrungrad  International Hospital, Watson 도입 최윤섭 디지털헬스케어 연구소, 소장 (주)디지털 헬스케어 파트너스, 대표파트너 최윤섭, Ph.D. yoonsup.choi@gmail.com IBM Watson in Healthcare Merge Healthcare 인수 2016 Under Amour 제휴 Broad 연구소 협력 발표 (유전체 분석-항암제 내성) Manipal Hospital의 WFO 정확성 발표 대구가톨릭병원 대구동산병원 WFO 도입 건양대병원 Watson 도입 (oncology) 부산대학병원 Watson 도입 (oncology/ genomics)
  • 189. IBM Watson Health Organizations Leveraging Watson Watson for Oncology Best Doctors (second opinion) Bumrungrad International Hospital Confidential client (Bangladesh and Nepal) Gachon University Gil Medical Center (Korea) Hangzhou Cognitive Care – 50+ Chinese hospitals Jupiter Medical Center Manipal Hospitals – 16 Indian Hospitals MD Anderson (**Oncology Expert Advisor) Memorial Sloan Kettering Cancer Center MRDM - Zorg (Netherlands) Pusan National University Hospital Clinical Trial Matching Best Doctors (second opinion) Confidential – Major Academic Center Highlands Oncology Group Froedtert & Medical College of Wisconsin Mayo Clinic Multiple Life Sciences pilots 24 Watson Genomic Analytics Ann & Robert H Lurie Children’s Hospital of Chicago BC Cancer Agency City of Hope Cleveland Clinic Columbia University, Irwing Cancer Center Duke Cancer Institute Fred & Pamela Buffett Cancer Center Fleury (Brazil) Illumina 170 Gene Panel NIH Japan McDonnell Institute at Washington University in St. Louis New York Genome Center Pusan National University Hospital Quest Diagnostics Stanford Health University of Kansas Cancer Center University of North Carolina Lineberger Cancer Center University of Southern California University of Washington Medical Center University of Tokyo Yale Cancer Center Andrew Norden, KOTRA Conference, March 2017, “The Future of Health is Cognitive”
  • 190. 한국에서도 Watson을 볼 수 있을까? 2015.7.9. 서울대학병원
  • 191.
  • 192.
  • 193. 길병원 인공지능 암센터 다학제진료실
  • 195.
  • 196. 12 Olga Russakovsky* et al. Fig. 4 Random selection of images in ILSVRC detection validation set. The images in the top 4 rows were taken from ILSVRC2012 single-object localization validation set, and the images in the bottom 4 rows were collected from Flickr using scene-level queries. tage of all the positive examples available. The second is images collected from Flickr specifically for the de- http://arxiv.org/pdf/1409.0575.pdf
  • 197. • Main competition • 객체 분류 (Classification): 그림 속의 객체를 분류 • 객체 위치 (localization): 그림 속 ‘하나’의 객체를 분류하고 위치를 파악 • 객체 인식 (object detection): 그림 속 ‘모든’ 객체를 분류하고 위치 파악 16 Olga Russakovsky* et al. Fig. 7 Tasks in ILSVRC. The first column shows the ground truth labeling on an example image, and the next three show three sample outputs with the corresponding evaluation score. http://arxiv.org/pdf/1409.0575.pdf
  • 198. Performance of winning entries in the ILSVRC2010-2015 competitions in each of the three tasks http://image-net.org/challenges/LSVRC/2015/results#loc Single-object localization Localizationerror 0 10 20 30 40 50 2011 2012 2013 2014 2015 Object detection Averageprecision 0.0 17.5 35.0 52.5 70.0 2013 2014 2015 Image classification Classificationerror 0 10 20 30 2010 2011 2012 2013 2014 2015
  • 199.
  • 200. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep Residual Learning for Image Recognition”, 2015 How deep is deep?
  • 204. DeepFace: Closing the Gap to Human-Level Performance in FaceVerification Taigman,Y. et al. (2014). DeepFace: Closing the Gap to Human-Level Performance in FaceVerification, CVPR’14. Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million parameters, where more than 95% come from the local and fully connected layers. very few parameters. These layers merely expand the input into a set of simple local features. The subsequent layers (L4, L5 and L6) are instead lo- cally connected [13, 16], like a convolutional layer they ap- ply a filter bank, but every location in the feature map learns a different set of filters. Since different regions of an aligned image have different local statistics, the spatial stationarity The goal of training is to maximize the probability of the correct class (face id). We achieve this by minimiz- ing the cross-entropy loss for each training sample. If k is the index of the true label for a given input, the loss is: L = log pk. The loss is minimized over the parameters by computing the gradient of L w.r.t. the parameters and Human: 95% vs. DeepFace in Facebook: 97.35% Recognition Accuracy for Labeled Faces in the Wild (LFW) dataset (13,233 images, 5,749 people)
  • 205. FaceNet:A Unified Embedding for Face Recognition and Clustering Schroff, F. et al. (2015). FaceNet:A Unified Embedding for Face Recognition and Clustering Human: 95% vs. FaceNet of Google: 99.63% Recognition Accuracy for Labeled Faces in the Wild (LFW) dataset (13,233 images, 5,749 people) False accept False reject s. This shows all pairs of images that were on LFW. Only eight of the 13 errors shown he other four are mislabeled in LFW. on Youtube Faces DB ge similarity of all pairs of the first one our face detector detects in each video. False accept False reject Figure 6. LFW errors. This shows all pairs of images that were incorrectly classified on LFW. Only eight of the 13 errors shown here are actual errors the other four are mislabeled in LFW. 5.7. Performance on Youtube Faces DB We use the average similarity of all pairs of the first one hundred frames that our face detector detects in each video. This gives us a classification accuracy of 95.12%±0.39. Using the first one thousand frames results in 95.18%. Compared to [17] 91.4% who also evaluate one hundred frames per video we reduce the error rate by almost half. DeepId2+ [15] achieved 93.2% and our method reduces this error by 30%, comparable to our improvement on LFW. 5.8. Face Clustering Our compact embedding lends itself to be used in order to cluster a users personal photos into groups of people with the same identity. The constraints in assignment imposed by clustering faces, compared to the pure verification task, lead to truly amazing results. Figure 7 shows one cluster in a users personal photo collection, generated using agglom- erative clustering. It is a clear showcase of the incredible invariance to occlusion, lighting, pose and even age. Figure 7. Face Clustering. Shown is an exemplar cluster for one user. All these images in the users personal photo collection were clustered together. 6. Summary We provide a method to directly learn an embedding into an Euclidean space for face verification. This sets it apart from other methods [15, 17] who use the CNN bottleneck layer, or require additional post-processing such as concate- nation of multiple models and PCA, as well as SVM clas- sification. Our end-to-end training both simplifies the setup and shows that directly optimizing a loss relevant to the task at hand improves performance. Another strength of our model is that it only requires False accept False reject Figure 6. LFW errors. This shows all pairs of images that were incorrectly classified on LFW. Only eight of the 13 errors shown here are actual errors the other four are mislabeled in LFW. 5.7. Performance on Youtube Faces DB We use the average similarity of all pairs of the first one hundred frames that our face detector detects in each video. This gives us a classification accuracy of 95.12%±0.39. Using the first one thousand frames results in 95.18%. Compared to [17] 91.4% who also evaluate one hundred frames per video we reduce the error rate by almost half. DeepId2+ [15] achieved 93.2% and our method reduces this error by 30%, comparable to our improvement on LFW. 5.8. Face Clustering Our compact embedding lends itself to be used in order to cluster a users personal photos into groups of people with the same identity. The constraints in assignment imposed by clustering faces, compared to the pure verification task, Figure 7. Face Clustering. Shown is an exemplar cluster for one user. All these images in the users personal photo collection were clustered together. 6. Summary We provide a method to directly learn an embedding into an Euclidean space for face verification. This sets it apart from other methods [15, 17] who use the CNN bottleneck layer, or require additional post-processing such as concate- nation of multiple models and PCA, as well as SVM clas-
  • 206. Show and Tell: A Neural Image Caption Generator Vinyals, O. et al. (2015). Show and Tell:A Neural Image Caption Generator, arXiv:1411.4555 v om Samy Bengio Google bengio@google.com Dumitru Erhan Google dumitru@google.com s a cts his re- m- ed he de- nts A group of people shopping at an outdoor market. ! There are many vegetables at the fruit stand. Vision! Deep CNN Language ! Generating! RNN Figure 1. NIC, our model, is based end-to-end on a neural net- work consisting of a vision CNN followed by a language gener-
  • 207. Show and Tell: A Neural Image Caption Generator Vinyals, O. et al. (2015). Show and Tell:A Neural Image Caption Generator, arXiv:1411.4555 Figure 5. A selection of evaluation results, grouped by human rating.
  • 209. Medical Imaging AI Startups by Applications
  • 210. Bone Age Assessment • M: 28 Classes • F: 20 Classes • Method: G.P. • Top3-95.28% (F) • Top3-81.55% (M)
  • 211.
  • 212. Business Area Medical Image Analysis VUNOnet and our machine learning technology will help doctors and hospitals manage medical scans and images intelligently to make diagnosis faster and more accurately. Original Image Automatic Segmentation EmphysemaNormal ReticularOpacity Our system finds DILDs at the highest accuracy * DILDs: Diffuse Interstitial Lung Disease Digital Radiologist Collaboration with Prof. Joon Beom Seo (Asan Medical Center) Analysed 1200 patients for 3 months
  • 213. Digital Radiologist Collaboration with Prof. Joon Beom Seo (Asan Medical Center) Analysed 1200 patients for 3 months
  • 214. Digital Radiologist Med Phys. 2013 May;40(5):051912. doi: 10.1118/1.4802214. Collaboration with Prof. Joon Beom Seo (Asan Medical Center) Analysed 1200 patients for 3 months
  • 215. Digital Radiologist Med Phys. 2013 May;40(5):051912. doi: 10.1118/1.4802214. Collaboration with Prof. Joon Beom Seo (Asan Medical Center) Analysed 1200 patients for 3 months
  • 216. Digital Radiologist Med Phys. 2013 May;40(5):051912. doi: 10.1118/1.4802214. Collaboration with Prof. Joon Beom Seo (Asan Medical Center) Analysed 1200 patients for 3 months Feature Engineering vs Feature Learning alization of Hand-crafted Feature vs Learned Feature in 2D Feature Engineering vs Feature Learning • Visualization of Hand-crafted Feature vs Learned Feature in 2D Visualization of Hand-crafted Feature vs Learned Feature in 2D
  • 217. Bench to Bedside : Practical Applications • Contents-based Case Retrieval –Finding similar cases with the clinically matching context - Search engine for medical images. –Clinicians can refer the diagnosis, prognosis of past similar patients to make better clinical decision. –Accepted to present at RSNA 2017 Digital Radiologist
  • 218. Detection of Diabetic Retinopathy
  • 219. 당뇨성 망막병증 • 당뇨병의 대표적 합병증: 당뇨병력이 30년 이상 환자 90% 발병 • 안과 전문의들이 안저(안구의 안쪽)를 사진으로 찍어서 판독 • 망막 내 미세혈관 생성, 출혈, 삼출물 정도를 파악하여 진단
  • 220. Case Study: TensorFlow in Medicine - Retinal Imaging (TensorFlow Dev Summit 2017)
  • 221. Copyright 2016 American Medical Association. All rights reserved. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD; Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB; Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD IMPORTANCE Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation. OBJECTIVE To apply deep learning to create an algorithm for automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus photographs. DESIGN AND SETTING A specific type of neural network optimized for image classification called a deep convolutional neural network was trained using a retrospective development data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents between May and December 2015. The resultant algorithm was validated in January and February 2016 using 2 separate data sets, both graded by at least 7 US board-certified ophthalmologists with high intragrader consistency. EXPOSURE Deep learning–trained algorithm. MAIN OUTCOMES AND MEASURES The sensitivity and specificity of the algorithm for detecting referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, referable diabetic macular edema, or both, were generated based on the reference standard of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2 operating points selected from the development set, one selected for high specificity and another for high sensitivity. RESULTS TheEyePACS-1datasetconsistedof9963imagesfrom4997patients(meanage,54.4 years;62.2%women;prevalenceofRDR,683/8878fullygradableimages[7.8%]);the Messidor-2datasethad1748imagesfrom874patients(meanage,57.6years;42.6%women; prevalenceofRDR,254/1745fullygradableimages[14.6%]).FordetectingRDR,thealgorithm hadanareaunderthereceiveroperatingcurveof0.991(95%CI,0.988-0.993)forEyePACS-1and 0.990(95%CI,0.986-0.995)forMessidor-2.Usingthefirstoperatingcutpointwithhigh specificity,forEyePACS-1,thesensitivitywas90.3%(95%CI,87.5%-92.7%)andthespecificity was98.1%(95%CI,97.8%-98.5%).ForMessidor-2,thesensitivitywas87.0%(95%CI,81.1%- 91.0%)andthespecificitywas98.5%(95%CI,97.7%-99.1%).Usingasecondoperatingpoint withhighsensitivityinthedevelopmentset,forEyePACS-1thesensitivitywas97.5%and specificitywas93.4%andforMessidor-2thesensitivitywas96.1%andspecificitywas93.9%. CONCLUSIONS AND RELEVANCE In this evaluation of retinal fundus photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy. Further research is necessary to determine the feasibility of applying this algorithm in the clinical setting and to determine whether use of the algorithm could lead to improved care and outcomes compared with current ophthalmologic assessment. JAMA. doi:10.1001/jama.2016.17216 Published online November 29, 2016. Editorial Supplemental content Author Affiliations: Google Inc, Mountain View, California (Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Nelson, Webster); Department of Computer Science, University of Texas, Austin (Venugopalan); EyePACS LLC, San Jose, California (Cuadros); School of Optometry, Vision Science Graduate Group, University of California, Berkeley (Cuadros); Aravind Medical Research Foundation, Aravind Eye Care System, Madurai, India (Kim); Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India (Raman); Verily Life Sciences, Mountain View, California (Mega); Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts (Mega). Corresponding Author: Lily Peng, MD, PhD, Google Research, 1600 Amphitheatre Way, Mountain View, CA 94043 (lhpeng@google.com). Research JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY (Reprinted) E1 Copyright 2016 American Medical Association. All rights reserved.
  • 223. Training Set / Test Set • CNN으로 후향적으로 128,175개의 안저 이미지 학습 • 미국의 안과전문의 54명이 3-7회 판독한 데이터 • 우수한 안과전문의들 7-8명의 판독 결과와 인공지능의 판독 결과 비교 • EyePACS-1 (9,963 개), Messidor-2 (1,748 개)a) Fullscreen mode b) Hit reset to reload this image. This will reset all of the grading. c) Comment box for other pathologies you see eFigure 2. Screenshot of the Second Screen of the Grading Tool, Which Asks Graders to Assess the Image for DR, DME and Other Notable Conditions or Findings
  • 224. • EyePACS-1 과 Messidor-2 의 AUC = 0.991, 0.990 • 7-8명의 안과 전문의와 sensitivity, specificity 가 동일한 수준 • F-score: 0.95 (vs. 인간 의사는 0.91) Additional sensitivity analyses were conducted for sev- eralsubcategories:(1)detectingmoderateorworsediabeticreti- effects of data set size on algorithm performance were exam- ined and shown to plateau at around 60 000 images (or ap- Figure 2. Validation Set Performance for Referable Diabetic Retinopathy 100 80 60 40 20 0 0 70 80 85 95 90 75 0 5 10 15 20 25 30 100806040 Sensitivity,% 1 – Specificity, % 20 EyePACS-1: AUC, 99.1%; 95% CI, 98.8%-99.3%A 100 High-sensitivity operating point High-specificity operating point 100 80 60 40 20 0 0 70 80 85 95 90 75 0 5 10 15 20 25 30 100806040 Sensitivity,% 1 – Specificity, % 20 Messidor-2: AUC, 99.0%; 95% CI, 98.6%-99.5%B 100 High-specificity operating point High-sensitivity operating point Performance of the algorithm (black curve) and ophthalmologists (colored circles) for the presence of referable diabetic retinopathy (moderate or worse diabetic retinopathy or referable diabetic macular edema) on A, EyePACS-1 (8788 fully gradable images) and B, Messidor-2 (1745 fully gradable images). The black diamonds on the graph correspond to the sensitivity and specificity of the algorithm at the high-sensitivity and high-specificity operating points. In A, for the high-sensitivity operating point, specificity was 93.4% (95% CI, 92.8%-94.0%) and sensitivity was 97.5% (95% CI, 95.8%-98.7%); for the high-specificity operating point, specificity was 98.1% (95% CI, 97.8%-98.5%) and sensitivity was 90.3% (95% CI, 87.5%-92.7%). In B, for the high-sensitivity operating point, specificity was 93.9% (95% CI, 92.4%-95.3%) and sensitivity was 96.1% (95% CI, 92.4%-98.3%); for the high-specificity operating point, specificity was 98.5% (95% CI, 97.7%-99.1%) and sensitivity was 87.0% (95% CI, 81.1%-91.0%). There were 8 ophthalmologists who graded EyePACS-1 and 7 ophthalmologists who graded Messidor-2. AUC indicates area under the receiver operating characteristic curve. Research Original Investigation Accuracy of a Deep Learning Algorithm for Detection of Diabetic Retinopathy Results
  • 227. 0 0 M O N T H 2 0 1 7 | V O L 0 0 0 | N A T U R E | 1 LETTER doi:10.1038/nature21056 Dermatologist-level classification of skin cancer with deep neural networks Andre Esteva1 *, Brett Kuprel1 *, Roberto A. Novoa2,3 , Justin Ko2 , Susan M. Swetter2,4 , Helen M. Blau5 & Sebastian Thrun6 Skin cancer, the most common human malignancy1–3 , is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs)4,5 show potential for general and highly variable tasks across many fine-grained object categories6–11 . Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets12 —consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care. There are 5.4 million new cases of skin cancer in the United States2 every year. One in five Americans will be diagnosed with a cutaneous malignancy in their lifetime. Although melanomas represent fewer than 5% of all skin cancers in the United States, they account for approxi- mately 75% of all skin-cancer-related deaths, and are responsible for over 10,000 deaths annually in the United States alone. Early detection is critical, as the estimated 5-year survival rate for melanoma drops from over 99% if detected in its earliest stages to about 14% if detected in its latest stages. We developed a computational method which may allow medical practitioners and patients to proactively track skin lesions and detect cancer earlier. By creating a novel disease taxonomy, and a disease-partitioning algorithm that maps individual diseases into training classes, we are able to build a deep learning system for auto- mated dermatology. Previous work in dermatological computer-aided classification12,14,15 has lacked the generalization capability of medical practitioners owing to insufficient data and a focus on standardized tasks such as dermoscopy16–18 and histological image classification19–22 . Dermoscopy images are acquired via a specialized instrument and histological images are acquired via invasive biopsy and microscopy; whereby both modalities yield highly standardized images. Photographic images (for example, smartphone images) exhibit variability in factors such as zoom, angle and lighting, making classification substantially more challenging23,24 . We overcome this challenge by using a data- driven approach—1.41 million pre-training and training images make classification robust to photographic variability. Many previous techniques require extensive preprocessing, lesion segmentation and extraction of domain-specific visual features before classification. By contrast, our system requires no hand-crafted features; it is trained end-to-end directly from image labels and raw pixels, with a single network for both photographic and dermoscopic images. The existing body of work uses small datasets of typically less than a thousand images of skin lesions16,18,19 , which, as a result, do not generalize well to new images. We demonstrate generalizable classification with a new dermatologist-labelled dataset of 129,450 clinical images, including 3,374 dermoscopy images. Deep learning algorithms, powered by advances in computation and very large datasets25 , have recently been shown to exceed human performance in visual tasks such as playing Atari games26 , strategic board games like Go27 and object recognition6 . In this paper we outline the development of a CNN that matches the performance of dermatologists at three key diagnostic tasks: melanoma classification, melanoma classification using dermoscopy and carcinoma classification. We restrict the comparisons to image-based classification. We utilize a GoogleNet Inception v3 CNN architecture9 that was pre- trained on approximately 1.28 million images (1,000 object categories) from the 2014 ImageNet Large Scale Visual Recognition Challenge6 , and train it on our dataset using transfer learning28 . Figure 1 shows the working system. The CNN is trained using 757 disease classes. Our dataset is composed of dermatologist-labelled images organized in a tree-structured taxonomy of 2,032 diseases, in which the individual diseases form the leaf nodes. The images come from 18 different clinician-curated, open-access online repositories, as well as from clinical data from Stanford University Medical Center. Figure 2a shows a subset of the full taxonomy, which has been organized clinically and visually by medical experts. We split our dataset into 127,463 training and validation images and 1,942 biopsy-labelled test images. To take advantage of fine-grained information contained within the taxonomy structure, we develop an algorithm (Extended Data Table 1) to partition diseases into fine-grained training classes (for example, amelanotic melanoma and acrolentiginous melanoma). During inference, the CNN outputs a probability distribution over these fine classes. To recover the probabilities for coarser-level classes of interest (for example, melanoma) we sum the probabilities of their descendants (see Methods and Extended Data Fig. 1 for more details). We validate the effectiveness of the algorithm in two ways, using nine-fold cross-validation. First, we validate the algorithm using a three-class disease partition—the first-level nodes of the taxonomy, which represent benign lesions, malignant lesions and non-neoplastic 1 Department of Electrical Engineering, Stanford University, Stanford, California, USA. 2 Department of Dermatology, Stanford University, Stanford, California, USA. 3 Department of Pathology, Stanford University, Stanford, California, USA. 4 Dermatology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. 5 Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA. 6 Department of Computer Science, Stanford University, Stanford, California, USA. *These authors contributed equally to this work. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
  • 228. LETTERH his task, the CNN achieves 72.1±0.9% (mean±s.d.) overall he average of individual inference class accuracies) and two gists attain 65.56% and 66.0% accuracy on a subset of the set. Second, we validate the algorithm using a nine-class rtition—the second-level nodes—so that the diseases of have similar medical treatment plans. The CNN achieves two trials, one using standard images and the other using images, which reflect the two steps that a dermatologist m to obtain a clinical impression. The same CNN is used for a Figure 2b shows a few example images, demonstrating th distinguishing between malignant and benign lesions, whic visual features. Our comparison metrics are sensitivity an Acral-lentiginous melanoma Amelanotic melanoma Lentigo melanoma … Blue nevus Halo nevus Mongolian spot … Training classes (757)Deep convolutional neural network (Inception v3) Inference classes (varies by task) 92% malignant melanocytic lesion 8% benign melanocytic lesion Skin lesion image Convolution AvgPool MaxPool Concat Dropout Fully connected Softmax Deep CNN layout. Our classification technique is a Data flow is from left to right: an image of a skin lesion e, melanoma) is sequentially warped into a probability over clinical classes of skin disease using Google Inception hitecture pretrained on the ImageNet dataset (1.28 million 1,000 generic object classes) and fine-tuned on our own 29,450 skin lesions comprising 2,032 different diseases. ning classes are defined using a novel taxonomy of skin disease oning algorithm that maps diseases into training classes (for example, acrolentiginous melanoma, amelanotic melano melanoma). Inference classes are more general and are comp or more training classes (for example, malignant melanocytic class of melanomas). The probability of an inference class is c summing the probabilities of the training classes according to structure (see Methods). Inception v3 CNN architecture repr from https://research.googleblog.com/2016/03/train-your-ow classifier-with.html GoogleNet Inception v3 • 129,450개의 피부과 병변 이미지 데이터를 자체 제작 • 미국의 피부과 전문의 18명이 데이터 curation • CNN (Inception v3)으로 이미지를 학습 • 피부과 전문의들 21명과 인공지능의 판독 결과 비교 • 표피세포 암 (keratinocyte carcinoma)과 지루각화증(benign seborrheic keratosis)의 구분 • 악성 흑색종과 양성 병변 구분 (표준 이미지 데이터 기반) • 악성 흑색종과 양성 병변 구분 (더마토스코프로 찍은 이미지 기반)
  • 229. Skin cancer classification performance of the CNN and dermatologists. LETT a b 0 1 Sensitivity 0 1 Specificity Melanoma: 130 images 0 1 Sensitivity 0 1 Specificity Melanoma: 225 images Algorithm: AUC = 0.96 0 1 Sensitivity 0 1 Specificity Melanoma: 111 dermoscopy images 0 1 Sensitivity 0 1 Specificity Carcinoma: 707 images Algorithm: AUC = 0.96 0 1 Sensitivity 0 1 Specificity Melanoma: 1,010 dermoscopy images Algorithm: AUC = 0.94 0 1 Sensitivity 0 1 Specificity Carcinoma: 135 images Algorithm: AUC = 0.96 Dermatologists (25) Average dermatologist Algorithm: AUC = 0.94 Dermatologists (22) Average dermatologist Algorithm: AUC = 0.91 Dermatologists (21) Average dermatologist cancer classification performance of the CNN and 21명 중에 인공지능보다 정확성이 떨어지는 피부과 전문의들이 상당수 있었음 피부과 전문의들의 평균 성적도 인공지능보다 좋지 않았음
  • 230. Skin cancer classification performance of the CNN and dermatologists. LETT a b 0 1 Sensitivity 0 1 Specificity Melanoma: 130 images 0 1 Sensitivity 0 1 Specificity Melanoma: 225 images Algorithm: AUC = 0.96 0 1 Sensitivity 0 1 Specificity Melanoma: 111 dermoscopy images 0 1 Sensitivity 0 1 Specificity Carcinoma: 707 images Algorithm: AUC = 0.96 0 1 Sensitivity 0 1 Specificity Melanoma: 1,010 dermoscopy images Algorithm: AUC = 0.94 0 1 Sensitivity 0 1 Specificity Carcinoma: 135 images Algorithm: AUC = 0.96 Dermatologists (25) Average dermatologist Algorithm: AUC = 0.94 Dermatologists (22) Average dermatologist Algorithm: AUC = 0.91 Dermatologists (21) Average dermatologist cancer classification performance of the CNN and
  • 232. Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy Specimens A B DC Benign without atypia / Atypic / DCIS (ductal carcinoma in situ) / Invasive Carcinoma Interpretation? Elmore etl al. JAMA 2015
  • 233. Figure 4. Participating Pathologists’ Interpretations of Each of the 240 Breast Biopsy Test Cases 0 25 50 75 100 Interpretations, % 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Case Benign without atypia 72 Cases 2070 Total interpretations A 0 25 50 75 100 Interpretations, % 218 220 222 224 226 228 230 232 234 236 238 240 Case Invasive carcinoma 23 Cases 663 Total interpretations D 0 25 50 75 100 Interpretations, % 147 145 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217 Case DCIS 73 Cases 2097 Total interpretations C 0 25 50 75 100 Interpretations, % 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 Case Atypia 72 Cases 2070 Total interpretations B Benign without atypia Atypia DCIS Invasive carcinoma Pathologist interpretation DCIS indicates ductal carcinoma in situ. Diagnostic Concordance in Interpreting Breast Biopsies Original Investigation Research Elmore etl al. JAMA 2015 Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy Specimens
  • 234. Figure 4. Participating Pathologists’ Interpretations of Each of the 240 Breast Biopsy Test Cases 0 25 50 75 100 Interpretations, % 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Case Benign without atypia 72 Cases 2070 Total interpretations A 0 25 50 75 100 Interpretations, % 218 220 222 224 226 228 230 232 234 236 238 240 Case Invasive carcinoma 23 Cases 663 Total interpretations D 0 25 50 75 100 Interpretations, % 147 145 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217 Case DCIS 73 Cases 2097 Total interpretations C 0 25 50 75 100 Interpretations, % 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 Case Atypia 72 Cases 2070 Total interpretations B Benign without atypia Atypia DCIS Invasive carcinoma Pathologist interpretation DCIS indicates ductal carcinoma in situ. Diagnostic Concordance in Interpreting Breast Biopsies Original Investigation Research Elmore etl al. JAMA 2015 Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy Specimens
  • 235. Elmore etl al. JAMA 2015 Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy Specimens • Concordance noted in 5194 of 6900 case interpretations or 75.3%. • Reference diagnosis was obtained from consensus of 3 experienced breast pathologists. spentonthisactivitywas16(95%CI,15-17);43participantswere awarded the maximum 20 hours. Pathologists’ Diagnoses Compared With Consensus-Derived Reference Diagnoses The 115 participants each interpreted 60 cases, providing 6900 total individual interpretations for comparison with the con- sensus-derived reference diagnoses (Figure 3). Participants agreed with the consensus-derived reference diagnosis for 75.3% of the interpretations (95% CI, 73.4%-77.0%). Partici- pants (n = 94) who completed the CME activity reported that Patient and Pathologist Characteristics Associated With Overinterpretation and Underinterpretation The association of breast density with overall pathologists’ concordance (as well as both overinterpretation and under- interpretation rates) was statistically significant, as shown in Table 3 when comparing mammographic density grouped into 2 categories (low density vs high density). The overall concordance estimates also decreased consistently with increasing breast density across all 4 Breast Imaging- Reporting and Data System (BI-RADS) density categories: BI-RADS A, 81% (95% CI, 75%-86%); BI-RADS B, 77% (95% Figure 3. Comparison of 115 Participating Pathologists’ Interpretations vs the Consensus-Derived Reference Diagnosis for 6900 Total Case Interpretationsa Participating Pathologists’ Interpretation ConsensusReference Diagnosisb Benign without atypia Atypia DCIS Invasive carcinoma Total Benign without atypia 1803 200 46 21 2070 Atypia 719 990 353 8 2070 DCIS 133 146 1764 54 2097 Invasive carcinoma 3 0 23 637 663 Total 2658 1336 2186 720 6900 DCIS indicates ductal carcinoma in situ. a Concordance noted in 5194 of 6900 case interpretations or 75.3%. b Reference diagnosis was obtained from consensus of 3 experienced breast pathologists. Diagnostic Concordance in Interpreting Breast Biopsies Original Investigation Research Comparison of 115 Participating Pathologists’ Interpretations vs 
 the Consensus-Derived Reference Diagnosis for 6900 Total Case Interpretations
  • 236. ISBI Grand Challenge on Cancer Metastases Detection in Lymph Node
  • 237.
  • 239. International Symposium on Biomedical Imaging 2016 H&E Image Processing Framework Train whole slide image sample sample training data normaltumor Test whole slide image overlapping image patches tumor prob. map 1.0 0.0 0.5 Convolutional Neural Network P(tumor)
  • 243.
  • 244. PTSD (외상 후 스트레스 장애)
  • 245. PTSD (외상 후 스트레스 장애) • PTSD는 전쟁, 고문, 자연재해, 범죄, 테러 등의 심각한 사건을 경험한 후, 사 건 이후에도 그 사건에 공포감을 느끼고 트라우마를 느끼는 질환 • 환자들은 악몽을 꾸거나, 특정 장면이 영화의 회상 장면(Flashback)처 럼 재현되는 등의 증상을 가지게 되며, 사고와 연관된 자극을 회피 • 이러한 변화에 따라서 일상 사회 생활에도 어려움을 겪거나, 우울증, 분 노 장애 등을 동반하는 경우 많음 • 이라크전 참전 군인의 15.6-17.1%, 아프가니스탄 전에 참전 군인의 11.2% 가 PTSD 를 겪음 (NEJM, 2004)
  • 246. PTSD From A Soldier's POV
  • 248. Prolonged Exposure Therapy (지속 노출 치료) •PTSD 치료를 위해 가장 효과적인 치료로 증명된 원리 •환자가 트라우마를 갖고 있는 상황과 기억에 지속적으로 노출시켜 
 스트레스와 회피 행동을 감소시키는 치료 방식 •트라우마에 대한 기억을 반복해서 떠올리게 되는데, 
 이러한 과정을 거치며 특정 기억과 반응의 연결고리를 약화 시킴
  • 249.
  • 250. 지속 노출 치료의 한계 • 환자들이 트라우마를 떠올리는 것에 거부감을 느끼거나, 효과적으로 상상하지 못함 • 사실 그 자체가 PTSD 의 증상의 하나 • 환자가 트라우마에 대한 기억을 생생하게 시각화하지 못하면 치료 효과 감소 어떻게 환자에게 실감나는 상황을 시각화 해줄 것인가
  • 252. VirtualVietnam •VR은 PTSD의 치료를 위해 1990년대부터 활용 •최초의 시도: 버추얼 베트남 (1997) • 정글을 헤치고 나가는 시나리오 / 군용 헬리곱터가 날아가는 시나리오 • 그래픽 수준, 구현 효과 및 시나리오 등이 제한적 • 전통적 심리 치료에 효과 없던 환자 전원이 유의미한 개선 효과 “영상 속에서 베트남 사람들과 탱크를 보았어요”
  • 256. Virtual Iraq 의 다양한 시나리오 •시가지: 황량한 거리에 낡은 건물과 금방 무너질 것만 같은 아파트, 창고, 모스크, 공장 등이 있는 상황. 인적이나 교통 량이 거의 없는 버전과, 사람과 교통량이 많은 두 가지 버전 •시가지 빌딩 내부: 시가지의 일부 빌딩은 환자가 내부로 들 어가볼 수 있도록 내부 구조가 모델링. 빌딩은 비어있게 할 수도 있고, 적거나 많은 거주자가 내부에 있도록 설정 가능 •검문소: 시가지 시나리오의 일부로, 차량이 도시로 진입하 기 위해 정지하는 검문소 상황. •작은 시골 마을: 쓰러져가는 건물과 전투의 잔해들이 있는 작은 마을을 재현. 주변에 식물들이 많고, 건물들 사이로 멀 리 사막이 보임 •사막 기지: 군인들, 텐트, 군용 장비 등이 설치 되어 있는 사 막의 기지를 재현. •사막 도로: 비포장 도로의 환경. 각각 도시, 작은 시골 마을, 사막 기지 시나리오로 이어짐. 사막의 사구, 식물들, 낡은 건 물들, 전투 잔해, 길가의 사람 등으로 구성. Fig. 1. Outskirts of Virtual Iraq City Fig. 2. Center Area of Virtual Iraq City Fig. 3. Car Bombing in Virtual Iraq City User-Centered tests with the application were conducte the Naval Medical CenteroSan Diego and within an Army Combat Stress Control Team in Iraq (See Figure 8). This d at usability of the prototype system application that fed an iterative design process. A clinical trial version of the application built from this process is currently being tested with PTSD-diagnosed personnel at a variety of sites. The Fig. 4. Interior view from of Desert Road Humvee Scenario Fig. 5. Turret view from of Desert Road Humvee Scenario Fig. 6. IED Attack in Desert Road Humvee Scenario
  • 257.
  • 258. 오즈의 마법사: 시각-촉각-청각-후각을 통한 전쟁의 재현 • 상담사는 환자가 처해있는 모든 상황을 실시간으로 컨트롤 (‘오즈의 마법사’) • 환자가 실제 트라우마를 가진 상황을 최대한 비슷하게 재현 • 시각적, 청각적, 후각적, 촉각적 상황을 컨트롤 • 다양한 군용 차량 / 근처에 있는 건물, 차, 탱크 등을 폭파 • 비행기나 헬리콥터를 머리 위에 출현, 낮/밤, 비/안개 • 다양한 상황을 재현 가능 • 총격전이 벌어지거나, 매복에 당한 상황, 로켓포가 날아오는 상황 • 동료가 죽거나 부상을 입은 상황, 사람의 시체나 잔해를 본 상황 • 적군이나 민간인에게 총격을 가한 상황 등등
  • 259. scores at baseline, post treatment and 3-month follow-up are in Fig group, mean Beck Anxiety Inventory scores significantly decrea (9.5) to 11.9 (13.6), (t=3.37, df=19, p < .003) and mean PHQ-9 decreased 49% from 13.3 (5.4) to 7.1 (6.7), (t=3.68, df=19, p < 0.00 Figure 4. PTSD Checklist scores across treatment Figure 5. BAI and PH The average number of sessions for this sample was just under successful treatment completers had documented mild and mode injuries, which suggest that this form of exposure can be useful PTSD Checklist scores across treatment • 연구 결과 20명의 환자들은 전반적으로 유의미한 개선을 보임 • 환자들 전체의 PCL-M 수치가 평균 54.4에서 35.6으로 감소 • 20명 중 16명은 치료 직후에 더 이상 PTSD 를 가지지 않은 것으로 나타남 • 치료가 끝난지 3개월 후에 환자들의 상태는 유지 http://www.ncbi.nlm.nih.gov/pubmed/19377167
  • 260. reatment and 3-month follow-up are in Figure 4. For this same iety Inventory scores significantly decreased 33% from 18.6 =3.37, df=19, p < .003) and mean PHQ-9 (depression) scores 3 (5.4) to 7.1 (6.7), (t=3.68, df=19, p < 0.002) (see Figure 5). ores across treatment Figure 5. BAI and PHQ-Depression scores r of sessions for this sample was just under 11. Also, two of the mpleters had documented mild and moderate traumatic brain that this form of exposure can be usefully applied with this BAI and PHQ-Depression scores • 벡 불안 지수는 평균 18.6에서 11.9로 33% 감소 • PHQ-9 우울증 지수 역시 13.3에서 7.1로 49% 감소 • 경미한 외상성 뇌손상 (traumatic brain injury) 환자 2명에도 유의미한 효과 http://www.ncbi.nlm.nih.gov/pubmed/19377167
  • 261. Three Steps to Implement Digital Medicine • Step 1. Measure the Data • Step 2. Collect the Data • Step 3. Insight from the Data
  • 262.
  • 263. Feedback/Questions • E-mail: yoonsup.choi@gmail.com • Blog: http://www.yoonsupchoi.com • Facebook: 최윤섭 디지털 헬스케어 연구소