SlideShare une entreprise Scribd logo
1  sur  86
TURNING EFFECT OF
FORCES
Moments
Centre of mass
Stability
Turning Effect of Forces 1
Moments
• Describe the moment of a force in terms of its turning
effect and relate this to everyday examples.
• .
Turning Effect of Forces 2
Moments
• The turning effect of a force is called its moment or
torque
Turning Effect of Forces 3
Turning Effect of Forces 4
Moment factor
• The moment of a force is bigger if the force is bigger.
• The moment of a force is bigger if it acts further from the
pivot.
• The moment of force is greatest if it acts at 90ᵒ to the
object it acts on
Turning Effect of Forces 5
Moments
• Make calculations using moment of a force = force x
perpendicular distance from the pivot and the principle of
moments.
• .
Turning Effect of Forces 6
Calculating Moment
Turning Effect of Forces 7
Moment of a Force =
Force × Perpendicular distance from the line
of action of the force to the pivot
= F × d
Problem Solving
1. Calculate the moment for each of the following
Turning Effect of Forces 8
(a) (b)
2. A mechanic uses a 15 cm long spanner and applies a
force of 300 N at the end of the spanner to undo a nut.
What is the moment he applies?
3. The radius of the wheel of fortune is 1.2 m, and the
operator applies a force of 45 N tangentially to get it
spinning. What torque has he supplied?
4. A 32 kg child sits on a seesaw. If she is 2.2 m from the
pivot, what is the moment that her weight exerts?
5. A force of 40 N is acting at the end of a beam. If the
distance of this force from the pivot is 2.0 m, what is the
moment by this force?
Turning Effect of Forces 9
6. Figure below shows three positions of the pedal on a
bicycle which has a crank 0.20 m long. If the cyclist
exerts the same vertically downward push of 25 N with
his foot, in which case A, B and C, is the turning effect
i. 0,
ii. between 0 and 5 Nm,
iii. 25  0.2 = 5 Nm?
Turning Effect of Forces 10
1. If a nut and bolt are difficult to undo, it may be easier to
turn the nut by using a longer spanner.
This is because the longer spanner gives
A. a larger turning moment.
B. a smaller turning moment.
C. less friction.
D. more friction.
Turning Effect of Forces 11
2. A horizontal pole is attached to the side of a building.
There is a pivot P at the wall and a chain is connected
from the end of the pole to a point higher up the wall.
There is a tension force F in the chain.
What is the moment of the force F about the pivot P?
A. F x d
B. F x h
C. F x l
D. F x s
Turning Effect of Forces 12
3. A plane lamina is freely suspended from point P.
4. The weight of the lamina is 2.0 N and the centre of
mass is at C.
5. The lamina is displaced to the position shown. What is
the moment that will cause the lamina to swing?
A. 0.60 N m clockwise
B. 0.80 N m anticlockwise
C. 1.0 N m clockwise
D. 1.0 N m anticlockwise
Turning Effect of Forces 13
Moments
• State the principle of moments for a body in equilibrium.
Turning Effect of Forces 14
Balance Beam
• Two forces are causing this see-saw to tip.
• The girl’s weight causes it to tip to the left, while her father
provides a force to tip it to the right.
• He can increase the turning effect of his force by increasing
the force, or by pushing down at a greater distance from the
pivot.
Turning Effect of Forces 15
weight of girl
father’s
push
Principle of Moments
• Moment can be clockwise or anticlockwise.
• When an object is in equilibrium, the sum of clockwise
moments about any point is equal to the sum of
anticlockwise moments about the same point.
Turning Effect of Forces 16
Turning Effect of Forces 17
Turning Effect of Forces 18
Example
Turning Effect of Forces 19
1. For the beam balance below, work out the unknown
weight?
2. Figure below shows three weights on a beam that is
balanced at its centre. Calculate the distance d from the
0.5 N weight to the pivot.
Turning Effect of Forces 20
4. The diagram shows a uniform rod balance at its centre.
Use the principle of moments to calculate the weight W.
3. A boy weighing 600 N sits on the see-saw at a distance
of 1.5 m from the pivot. What is the force F required at
the other end to balance the see-saw?
5. Figure below, someone is trying to balance a plank with
stones. The plank has negligible weight.
Turning Effect of Forces 21
a. Calculate the moment of the 4 N force about O.
b. Calculate the moment of the 6 N force about O.
c. Will the plank balance? If not which way will it tip?
d. What extra force is needed at point P to balance the plank?
e. In which direction must the force at P act?
Turning Effect of Forces 22
Turning Effect of Forces 23
6. The board shown is hinged at A and supported by a
vertical rope at B, 3.0 m from A. A boy weighing 600 N
stands at the end D of the board, which is 4.0 m from
the hinge. Neglecting the weight of the board, calculate
the force F on the rope.
Conditions for equilibrium
• If an object is in equilibrium, the forces on it must balance
as well as their turning effect.
• So:
• The sum of the forces in one direction must equal to the sum of the
forces in the opposite direction.
• The principle of moments must apply.
Turning Effect of Forces 24
1. Figure below shows a balanced beam. Calculate the
unknown forces X and Y.
Turning Effect of Forces 25
Y
X 400 N
2.5 m1.0 m
2. Figure below shows a beam, balanced at its midpoint.
The weight of the beam is 40 N. Calculate the unknown
force Z, and the length of the beam.
Turning Effect of Forces 26
30 N
Z
0.5 m
20 N
3. Figure below shows a balanced beam. Calculate the
unknown forces X and Y.
Turning Effect of Forces 27
Y
X600 N
Moments
• Describe how to verify the principle of moments
Turning Effect of Forces 28
Experiment
• Aim: To verify the principle of moments
• Apparatus:
1. Retort stand
2. Metre rule with drill hole at the 50 cm mark.
3. Pivot
4. 10 g slotted mass with hanger labelled W1
5. 100 g slotted mass with hanger labelled W2
Turning Effect of Forces 29
• Procedure:
1. Arrange the apparatus as shown
Turning Effect of Forces 30
• Procedure:
2. Suspend different weights, W1 and W2 at different distances d1
and d2 from the pivot.
3. Carefully adjust the distances d1 and d2 until the rule balances
horizontally.
4. Record the values of W1,W2,d1 and d2.
5. Repeat procedure 2, 3 and 4 for different values of W1,W2,d1 and
d2.
Turning Effect of Forces 31
• Results
• For each set of results, calculate (W1 × d1) and (W2 × d2).
• Conclusion
• For each set of readings, within the limits of experimental accuracy, (W1 ×
d1) and (W2 × d2) will be equal for each set of readings.
• Hence clockwise moment equal anticlockwise moment.
Turning Effect of Forces 32
1. What are the conditions for equilibrium?
Turning Effect of Forces 33
D
2. A heavy beam is resting on two supports, so that there are
three forces acting on it.
The beam is in equilibrium.
Which statement is correct?
A. All the forces are equal in value.
B. The forces are in one direction and their turning effects are in the
opposite direction.
C. The resultant force is zero and the resultant turning effect is zero.
D. The total upward force is twice the total downward force.
Turning Effect of Forces 34
3. Two blocks are placed on a beam which balances on a
pivot at its centre. The weight of the beam is negligible.
Turning Effect of Forces 35
1. Which diagram shows the forces acting on the beam?
2. (The length of each arrow represents the size of a
force.)
Turning Effect of Forces 36
B
4. The weights of four objects, 1 to 4, are compared using
a balance.
Which object is the lightest?
A. object 1
B. object 2
C. object 3
D. object 4
Turning Effect of Forces 37
5. Three children, X, Y and Z, are using a see-saw to
compare their weights.
6. Which line in the table shows the correct order of the
children’s weights?
Turning Effect of Forces 38
C
6. Two equal forces F act on each of four planks.
Which plank turns?
Turning Effect of Forces 39
D
7. The diagrams show a uniform rod with its midpoint on a
pivot.
8. Two equal forces F are applied to the rod, as shown.
9. Which diagram shows the rod in equilibrium?
Turning Effect of Forces 40
C
8. Forces are applied to a uniform beam pivoted at its
centre.
9. Which beam is balanced?
Turning Effect of Forces 41
D
9. The diagram shows a uniform half-metre rule balanced
at its mid-point.
1. What is the weight of the metal block?
A. 50 N
B. 75 N
C. 100 N
D. 150 N
Turning Effect of Forces 42
10. The diagram shows a boy of weight 500 N sitting on a
see-saw. He sits 2.0 m from the pivot.
1. What is the force F needed to balance the see-saw?
Turning Effect of Forces 43
A 250 N B 750 N C 1000 N D 3000 N A
11. A beam is pivoted at its centre. Two masses are
suspended at equal distances from the pivot as shown
in the diagram.
Which statement is correct?
A. If X has a mass of exactly 2 kg, it will rise.
B. If X has a mass of less than 2 kg, it will fall.
C. If X has a mass of more than 2 kg, it will fall.
D. If X has a mass of more than 2 kg, it will rise.
Turning Effect of Forces 44
12. In an experiment, five identical bags of rice are balanced
by a 10 kg mass.
Two bags of rice are added to the other five.
What mass will now balance the bags?
A. 3.5 kg
B. 7.0 kg
C. 10 kg
D. 14 kg
Turning Effect of Forces 45
13. In an experiment, six identical bags of flour are balanced
by a 9 kg mass.
14. Two bags of flour are removed. What mass will balance
the remaining bags?
A. 3 kg
B. 6 kg
C. 7 kg
D. 9 kg
Turning Effect of Forces 46
14. A simple balance has two pans suspended from the ends of
arms of equal length. When it is balanced, the pointer is at 0.
15. Four masses (in total) are placed on the pans, with one or more
on pan X and the rest on pan Y.
16. Which combination of masses can be used to balance the
pans?
A. 1 g, 1 g, 5 g, 10 g
B. 1 g, 2 g, 2 g, 5 g
C. 2 g, 5 g, 5 g, 10 g
D. 2 g, 5 g, 10 g, 10 g
Turning Effect of Forces 47
15. A load is to be moved using a wheelbarrow. The total mass of
the load and wheelbarrow is 60 kg.
The gravitational field strength is 10 N / kg.
What is the size of force F needed just to lift the loaded
wheelbarrow?
A. 350 N
B. 430 N
C. 600 N
D. 840 N
Turning Effect of Forces 48
16. The diagram shows a wheelbarrow and its load, which
have a total weight of 150 N. This is supported by a
vertical force F at the ends of the handles.
What is the value of F?
A. 75 N
B. 150 N
C. 225 N
D. 300 N
Turning Effect of Forces 49
17. A driver’s foot presses with a steady force of 20 N on a
pedal in a car as shown.
What is the force F pulling on the piston?
A. 2.5 N
B. 10 N
C. 100 N
D. 160 N
Turning Effect of Forces 50
Centre of mass
• Describe how to determine the position of the centre of
mass of a plane lamina.
Turning Effect of Forces 51
Centre of Mass
• The weight of an object is due to the attraction of the
Earth on all these particles.
• The centre of mass is the point through which the entire
weight of the object appears to act.
Turning Effect of Forces 52
• Above diagram shows the positions of the centre of
gravity for regular-shaped objects with uniform
thickness.
• If the line of action of the weight of an object does not
go through the pivot, then a moment exists makes the
object to turn.
• The object will turn until where it reaches where there
is no moment.
• This fact enable us to find the centre of gravity of an
irregular shaped object.
Turning Effect of Forces 53
Experiment
• Aim: To determine the centre of mass of a plane lamina
• Apparatus:
• Retort stand
• Cork
• Plumb line
• Lamina
Turning Effect of Forces 54
• Procedure:
• On the lamina, make three holes near the edge of the lamina.
• Suspend the lamina through one of the holes.
• Hang the plumb line on the pin.
• When the plumb line is steady, make a dot on the position of the
line at the edge of the lamina
• Repeat steps 2-4 for the other two holes
• Conclusion
• The point where the lines meet is the centre of mass of the body.
Turning Effect of Forces 55
Turning Effect of Forces 56
Applying the Principle of Moment
• For a regular object such as uniform metre ruler, the
centre of gravity is at its centre and, when supported there
the object will be balanced
• If it supported at any other point, it will topple because
there will be a resultant moment about the point of
support.
Turning Effect of Forces 57
Example
1. The illustration in figure below represents a metre scale
balancing on a knife edge at 20 cm mark when a weight
of 60 N is suspended from 10 cm mark. Calculate the
weight of the ruler.
Turning Effect of Forces 58
2. Figure below shows a uniform metre rule weighing 30 N
pivoted on a wedge placed under the 40 cm mark and
carrying a weight of 70 N hanging from the 10 cm mark.
The ruler is balanced horizontally by a weight W
hanging from the 100 cm mark. Calculate the value of
the weight W.
Turning Effect of Forces 59
3. Figure below shows a uniform metre rule pivoted off-
centre but maintained in equilibrium by a suspended
weight of 2.4 N. The weight is hung 5 cm from one end
of the metre rule. What is the weight of the metre rule?
Turning Effect of Forces 60
4. Figure below shows a uniform metre rule weighing 3.0
N pivoted on a wedge placed under the 40 cm mark
and carrying a weight of 7.0 N hanging from the 10 cm
mark. The rule is kept horizontally by a weight W
hanging from the 100 cm end. Calculate the value of
the weight W.
Turning Effect of Forces 61
5. Figure below represents a uniform horizontal rod
weighing 10 N and of length 100 cm. The rod is
balanced on a knife-edge at C, when a weight of 8 N is
suspended from the point D and a solid S, of unknown
weight is suspended from A. Calculate the weight of the
solid S.
Turning Effect of Forces 62
6. The beam shown below is 2.0 m long and has a weight
of 20 N. It is pivoted as shown. A force of 10 N acts at
one end. What force F must be applied downwards at
the other end to balance the beam?
Turning Effect of Forces 63
7. Figure below represents a horizontal uniform rod AB of
weight 10 N and length 100 cm, pivoted at A. An irregular
solid X, is suspended 30 cm from the end B. The end B
is supported by a spring balance which reads 19 N
a) Calculate the weight of the irregular solid X.
b) What is the mass of the solid if g = 10 m s-2
Turning Effect of Forces 64
Stability
• Describe qualitatively the effect of the position of the
centre of mass on the stability of simple objects.
Turning Effect of Forces 65
Stability
• Stability is the measure of a body’s ability to maintain its
original position.
• The degree of stability in an object's position depends on
how must its center of gravity will be changed if it is
moved.
• There are three states of equilibrium:
• Stable equilibrium
• Unstable equilibrium
• Neutral equilibrium
Turning Effect of Forces 66
Stable equilibrium
• If the body returns to its original position after being
displaced slightly it is said to be in stable equilibrium.
Turning Effect of Forces 67
If the book is lifted from one edge and
then allowed to fall, it will come back to
its original position.
Explanation
Reason of stability
When the book is lifted its center of gravity is
raised. The line of action of weight passes through
the base of the book. A moment due to weight of
the book brings it back to the original position.
Unstable equilibrium
• If the body continues to move away from its original
position after being displaced, it is said to be in unstable
equilibrium.
Turning Effect of Forces 68
Explanation
If thin rod standing vertically is slightly
disturbed from its position it will not come
back to its original position.
Reason of instability
When the rod is slightly disturbed its center of
gravity is lowered . The line of action of its
weight lies outside the base of rod. The
moment due to weight of the rod toppled it
down.
Neutral equilibrium
• If an object remains wherever it is after being displaced, it
is said to be in neutral equilibrium.
Turning Effect of Forces 69
Explanation
If a ball is pushed slightly to roll, it
will neither come back to its
original nor it will roll forward rather
it will remain at rest.
Reason of neutral equilibrium
If the ball is rolled, its center of gravity is neither
raised nor lowered. This means that its center of
gravity is at the same height as before.
Designing for Stability
• There are two ways to make a body more stable.
1. Lowering its centre of gravity;
2. Increasing the area of its base.
Turning Effect of Forces 70
1. A piece of card has its centre of mass at M.
2. Which diagram shows how it hangs when suspended
by a thread?
Turning Effect of Forces 71
A
2. The diagram shows a flat metal plate that may be hung
from a nail so that it can rotate about any of four holes.
3. What is the smallest number of holes from which the
flat metal plate should be hung in order to find its centre
of gravity?
A. 1
B. 2
C. 3
D. 4
Turning Effect of Forces 72
3. A piece of uniform card is suspended freely from a
horizontal pin.
4. At which of the points shown is its centre of gravity?
Turning Effect of Forces 73
C
4. A tractor is being used on rough ground.
5. What is the safest position for its centre of mass?
Turning Effect of Forces 74
D
5. An empty glass is placed on a join between two tables
as shown. The glass remains stable.
6. Which point is the centre of mass of the glass?
Turning Effect of Forces 75
C
6. A light aircraft stands at rest on the ground. It stands on
three wheels, one at the front and two further back.
7. Which point could be its centre of mass?
Turning Effect of Forces 76
B
7. The diagram shows sections of four objects of equal
mass. The position of the centre of mass of each object
has been marked with a cross.
8. Which object is the most stable?
Turning Effect of Forces 77
A
8. A student uses a stand and clamp to hold a flask of
liquid.
9. Which diagram shows the most stable arrangement?
Turning Effect of Forces 78
B
9. Some containers are made from thin glass.
10. Which empty container is the most stable?
Turning Effect of Forces 79
A
10. The diagrams show the cross-sections of different
glasses.
11. Which one is the least stable when filled with a liquid?
Turning Effect of Forces 80
B
11. The diagram shows four models of buses placed on different
ramps.
How many of these models will fall over?
A. 1
B. 2
C. 3
D. 4
Turning Effect of Forces 81
12. The diagram shows four objects standing on a flat
surface.
13. The centre of mass of each object is marked M.
14. Which object will fall over?
Turning Effect of Forces 82
C
13. A girl uses paper-clips to balance a
toy bird on her finger as shown.
What is the effect of the paper-
clips?
A. They help to raise the centre of mass
above her finger.
B. They help to raise the centre of mass to
her finger.
C. They help to lower the centre of mass
below her finger.
D. They do not affect the centre of mass but
increase the weight.
Turning Effect of Forces 83
14. The stability of a bus is tested by tilting it on a ramp.
The diagram shows a bus that is just about to topple
over.
15. Where is the centre of mass of the bus?
Turning Effect of Forces 84
C
15. Passengers are not allowed to stand on the upper deck
of double-decker buses.
Turning Effect of Forces 85
1. Why is this?
A. They would cause the bus to become unstable.
B. They would cause the bus to slow down.
C. They would increase the kinetic energy of the bus.
D. They would lower the centre of mass of the bus.
Turning Effect of Forces 86

Contenu connexe

Tendances

Kinetic Model of Matter
Kinetic Model of MatterKinetic Model of Matter
Kinetic Model of MatterShafie Sofian
 
Ppt on work energy and power class xi science
Ppt on work energy and power class xi sciencePpt on work energy and power class xi science
Ppt on work energy and power class xi scienceacceleration gravity
 
IGCSE PHYSICS: Electromagnetic Effects
IGCSE PHYSICS: Electromagnetic EffectsIGCSE PHYSICS: Electromagnetic Effects
IGCSE PHYSICS: Electromagnetic EffectsRozzie Jhana CamQue
 
units and measurement xi physics
units and measurement xi physics  units and measurement xi physics
units and measurement xi physics ASWIN SPARKZ XD
 
Circular motion
Circular motionCircular motion
Circular motionIB School
 
9.10.3 pressure
9.10.3 pressure9.10.3 pressure
9.10.3 pressureReem Bakr
 
IGCSE Physics notes
IGCSE Physics notesIGCSE Physics notes
IGCSE Physics notesKing Ali
 
Sound (Physics) - Grade 7
Sound (Physics) - Grade 7Sound (Physics) - Grade 7
Sound (Physics) - Grade 7Rising Fighters
 
30 p.13.2 net forces ppt (3) (1)
30 p.13.2 net forces ppt (3) (1)30 p.13.2 net forces ppt (3) (1)
30 p.13.2 net forces ppt (3) (1)Christine Snyder
 
Equations of motion
Equations of motionEquations of motion
Equations of motionLily Kotze
 
Forces
ForcesForces
Forcesmeenng
 
MOTION- Velocity, Acceleration,graphs
MOTION- Velocity, Acceleration,graphsMOTION- Velocity, Acceleration,graphs
MOTION- Velocity, Acceleration,graphssujameryll
 
Linear momentum and collisions
Linear momentum and collisionsLinear momentum and collisions
Linear momentum and collisionsnlahoud
 

Tendances (20)

Kinetic Model of Matter
Kinetic Model of MatterKinetic Model of Matter
Kinetic Model of Matter
 
Ppt on work energy and power class xi science
Ppt on work energy and power class xi sciencePpt on work energy and power class xi science
Ppt on work energy and power class xi science
 
IGCSE PHYSICS: Electromagnetic Effects
IGCSE PHYSICS: Electromagnetic EffectsIGCSE PHYSICS: Electromagnetic Effects
IGCSE PHYSICS: Electromagnetic Effects
 
units and measurement xi physics
units and measurement xi physics  units and measurement xi physics
units and measurement xi physics
 
Momentum
 Momentum Momentum
Momentum
 
Circular motion
Circular motionCircular motion
Circular motion
 
Circular motion
Circular motionCircular motion
Circular motion
 
9.10.3 pressure
9.10.3 pressure9.10.3 pressure
9.10.3 pressure
 
IGCSE Physics notes
IGCSE Physics notesIGCSE Physics notes
IGCSE Physics notes
 
Sound (Physics) - Grade 7
Sound (Physics) - Grade 7Sound (Physics) - Grade 7
Sound (Physics) - Grade 7
 
Electric Forces
Electric ForcesElectric Forces
Electric Forces
 
30 p.13.2 net forces ppt (3) (1)
30 p.13.2 net forces ppt (3) (1)30 p.13.2 net forces ppt (3) (1)
30 p.13.2 net forces ppt (3) (1)
 
Equations of motion
Equations of motionEquations of motion
Equations of motion
 
Current Electricity
Current ElectricityCurrent Electricity
Current Electricity
 
Forces
ForcesForces
Forces
 
MOTION- Velocity, Acceleration,graphs
MOTION- Velocity, Acceleration,graphsMOTION- Velocity, Acceleration,graphs
MOTION- Velocity, Acceleration,graphs
 
Physics notes revision
Physics notes revisionPhysics notes revision
Physics notes revision
 
Pressure
Pressure Pressure
Pressure
 
Linear momentum and collisions
Linear momentum and collisionsLinear momentum and collisions
Linear momentum and collisions
 
Forces gr.7
Forces gr.7Forces gr.7
Forces gr.7
 

Similaire à Turning Effect of Forces

Mechanical Technology Grade 10 Chapter 8 forces
Mechanical Technology Grade 10 Chapter 8 forcesMechanical Technology Grade 10 Chapter 8 forces
Mechanical Technology Grade 10 Chapter 8 forcesFuture Managers
 
Ch 9 Rotational Dynamics
Ch 9 Rotational DynamicsCh 9 Rotational Dynamics
Ch 9 Rotational DynamicsScott Thomas
 
2nd codition of equilibrium
2nd codition of equilibrium2nd codition of equilibrium
2nd codition of equilibriumNestor Enriquez
 
Force and acceleration simplified
Force and acceleration simplifiedForce and acceleration simplified
Force and acceleration simplifiedGuerillateacher
 
Force and acceleration simplified
Force and acceleration simplifiedForce and acceleration simplified
Force and acceleration simplifiedCombrink Lisa
 
1-4 Force.pptx
1-4 Force.pptx1-4 Force.pptx
1-4 Force.pptxChenKahPin
 
Engineering Science N3 Moment of a Force
Engineering Science N3 Moment of a ForceEngineering Science N3 Moment of a Force
Engineering Science N3 Moment of a ForceJude Jay
 
Chapter -3mdddd.pptx
Chapter -3mdddd.pptxChapter -3mdddd.pptx
Chapter -3mdddd.pptxKemishaTemam
 
LECTURE NOTES ON STATICS_2024 power point presentation.
LECTURE NOTES ON STATICS_2024 power point presentation.LECTURE NOTES ON STATICS_2024 power point presentation.
LECTURE NOTES ON STATICS_2024 power point presentation.HabyarimanaProjecte
 
Kinetics of particles(energy and momentum).pptx
Kinetics of particles(energy and momentum).pptxKinetics of particles(energy and momentum).pptx
Kinetics of particles(energy and momentum).pptxLaxmiNarayanGurung2
 
Moment of force, Couples, Force rules.pptx
Moment of force, Couples, Force rules.pptxMoment of force, Couples, Force rules.pptx
Moment of force, Couples, Force rules.pptxBrigidkiplagat
 
Unit_1_MEC107.pdf introduction to mechnincs
Unit_1_MEC107.pdf introduction to mechnincsUnit_1_MEC107.pdf introduction to mechnincs
Unit_1_MEC107.pdf introduction to mechnincsVivekMishra712093
 
Balancing of rotating masses
Balancing of rotating massesBalancing of rotating masses
Balancing of rotating massesyamini champaneri
 
Physics 161Static Equilibrium and Rotational Balance Intro.docx
Physics 161Static Equilibrium and Rotational Balance Intro.docxPhysics 161Static Equilibrium and Rotational Balance Intro.docx
Physics 161Static Equilibrium and Rotational Balance Intro.docxrandymartin91030
 

Similaire à Turning Effect of Forces (20)

Ch9
Ch9Ch9
Ch9
 
Physics
PhysicsPhysics
Physics
 
Mechanical Technology Grade 10 Chapter 8 forces
Mechanical Technology Grade 10 Chapter 8 forcesMechanical Technology Grade 10 Chapter 8 forces
Mechanical Technology Grade 10 Chapter 8 forces
 
Ch 9 Rotational Dynamics
Ch 9 Rotational DynamicsCh 9 Rotational Dynamics
Ch 9 Rotational Dynamics
 
2nd codition of equilibrium
2nd codition of equilibrium2nd codition of equilibrium
2nd codition of equilibrium
 
Force and acceleration simplified
Force and acceleration simplifiedForce and acceleration simplified
Force and acceleration simplified
 
Force and acceleration simplified
Force and acceleration simplifiedForce and acceleration simplified
Force and acceleration simplified
 
1-4 Force.pptx
1-4 Force.pptx1-4 Force.pptx
1-4 Force.pptx
 
Gr
GrGr
Gr
 
Engineering Science N3 Moment of a Force
Engineering Science N3 Moment of a ForceEngineering Science N3 Moment of a Force
Engineering Science N3 Moment of a Force
 
Chapter -3mdddd.pptx
Chapter -3mdddd.pptxChapter -3mdddd.pptx
Chapter -3mdddd.pptx
 
LECTURE NOTES ON STATICS_2024 power point presentation.
LECTURE NOTES ON STATICS_2024 power point presentation.LECTURE NOTES ON STATICS_2024 power point presentation.
LECTURE NOTES ON STATICS_2024 power point presentation.
 
Kinetics of particles(energy and momentum).pptx
Kinetics of particles(energy and momentum).pptxKinetics of particles(energy and momentum).pptx
Kinetics of particles(energy and momentum).pptx
 
Moment of force, Couples, Force rules.pptx
Moment of force, Couples, Force rules.pptxMoment of force, Couples, Force rules.pptx
Moment of force, Couples, Force rules.pptx
 
Unit_1_MEC107.pdf introduction to mechnincs
Unit_1_MEC107.pdf introduction to mechnincsUnit_1_MEC107.pdf introduction to mechnincs
Unit_1_MEC107.pdf introduction to mechnincs
 
Rotational balance
Rotational balanceRotational balance
Rotational balance
 
Balancing of rotating masses
Balancing of rotating massesBalancing of rotating masses
Balancing of rotating masses
 
Physics 161Static Equilibrium and Rotational Balance Intro.docx
Physics 161Static Equilibrium and Rotational Balance Intro.docxPhysics 161Static Equilibrium and Rotational Balance Intro.docx
Physics 161Static Equilibrium and Rotational Balance Intro.docx
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 
Moments
MomentsMoments
Moments
 

Plus de Shafie Sofian

Plus de Shafie Sofian (20)

The Nuclear Atom
The Nuclear AtomThe Nuclear Atom
The Nuclear Atom
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Electromagnetic Induction
Electromagnetic InductionElectromagnetic Induction
Electromagnetic Induction
 
Magnetism and Electromagnetism
Magnetism and ElectromagnetismMagnetism and Electromagnetism
Magnetism and Electromagnetism
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetism
 
Practical Electricity
Practical ElectricityPractical Electricity
Practical Electricity
 
D.C. Circuits
D.C. CircuitsD.C. Circuits
D.C. Circuits
 
Static Electricity
Static ElectricityStatic Electricity
Static Electricity
 
Sound
SoundSound
Sound
 
Light
LightLight
Light
 
Electromagnetic Spectrum
Electromagnetic SpectrumElectromagnetic Spectrum
Electromagnetic Spectrum
 
General Wave Properties
General Wave PropertiesGeneral Wave Properties
General Wave Properties
 
Thermal Properties of Matter
Thermal Properties of MatterThermal Properties of Matter
Thermal Properties of Matter
 
Transfer of Thermal Energy
Transfer of Thermal EnergyTransfer of Thermal Energy
Transfer of Thermal Energy
 
Temperature
TemperatureTemperature
Temperature
 
Energy Sources and Transfer of Energy
Energy Sources and Transfer of EnergyEnergy Sources and Transfer of Energy
Energy Sources and Transfer of Energy
 
Pressure
PressurePressure
Pressure
 
Deformation
DeformationDeformation
Deformation
 
Mass, Weight and Density
Mass, Weight and DensityMass, Weight and Density
Mass, Weight and Density
 
Dynamics
DynamicsDynamics
Dynamics
 

Dernier

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 

Dernier (20)

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 

Turning Effect of Forces

  • 1. TURNING EFFECT OF FORCES Moments Centre of mass Stability Turning Effect of Forces 1
  • 2. Moments • Describe the moment of a force in terms of its turning effect and relate this to everyday examples. • . Turning Effect of Forces 2
  • 3. Moments • The turning effect of a force is called its moment or torque Turning Effect of Forces 3
  • 4. Turning Effect of Forces 4
  • 5. Moment factor • The moment of a force is bigger if the force is bigger. • The moment of a force is bigger if it acts further from the pivot. • The moment of force is greatest if it acts at 90ᵒ to the object it acts on Turning Effect of Forces 5
  • 6. Moments • Make calculations using moment of a force = force x perpendicular distance from the pivot and the principle of moments. • . Turning Effect of Forces 6
  • 7. Calculating Moment Turning Effect of Forces 7 Moment of a Force = Force × Perpendicular distance from the line of action of the force to the pivot = F × d
  • 8. Problem Solving 1. Calculate the moment for each of the following Turning Effect of Forces 8 (a) (b)
  • 9. 2. A mechanic uses a 15 cm long spanner and applies a force of 300 N at the end of the spanner to undo a nut. What is the moment he applies? 3. The radius of the wheel of fortune is 1.2 m, and the operator applies a force of 45 N tangentially to get it spinning. What torque has he supplied? 4. A 32 kg child sits on a seesaw. If she is 2.2 m from the pivot, what is the moment that her weight exerts? 5. A force of 40 N is acting at the end of a beam. If the distance of this force from the pivot is 2.0 m, what is the moment by this force? Turning Effect of Forces 9
  • 10. 6. Figure below shows three positions of the pedal on a bicycle which has a crank 0.20 m long. If the cyclist exerts the same vertically downward push of 25 N with his foot, in which case A, B and C, is the turning effect i. 0, ii. between 0 and 5 Nm, iii. 25  0.2 = 5 Nm? Turning Effect of Forces 10
  • 11. 1. If a nut and bolt are difficult to undo, it may be easier to turn the nut by using a longer spanner. This is because the longer spanner gives A. a larger turning moment. B. a smaller turning moment. C. less friction. D. more friction. Turning Effect of Forces 11
  • 12. 2. A horizontal pole is attached to the side of a building. There is a pivot P at the wall and a chain is connected from the end of the pole to a point higher up the wall. There is a tension force F in the chain. What is the moment of the force F about the pivot P? A. F x d B. F x h C. F x l D. F x s Turning Effect of Forces 12
  • 13. 3. A plane lamina is freely suspended from point P. 4. The weight of the lamina is 2.0 N and the centre of mass is at C. 5. The lamina is displaced to the position shown. What is the moment that will cause the lamina to swing? A. 0.60 N m clockwise B. 0.80 N m anticlockwise C. 1.0 N m clockwise D. 1.0 N m anticlockwise Turning Effect of Forces 13
  • 14. Moments • State the principle of moments for a body in equilibrium. Turning Effect of Forces 14
  • 15. Balance Beam • Two forces are causing this see-saw to tip. • The girl’s weight causes it to tip to the left, while her father provides a force to tip it to the right. • He can increase the turning effect of his force by increasing the force, or by pushing down at a greater distance from the pivot. Turning Effect of Forces 15 weight of girl father’s push
  • 16. Principle of Moments • Moment can be clockwise or anticlockwise. • When an object is in equilibrium, the sum of clockwise moments about any point is equal to the sum of anticlockwise moments about the same point. Turning Effect of Forces 16
  • 17. Turning Effect of Forces 17
  • 18. Turning Effect of Forces 18
  • 19. Example Turning Effect of Forces 19 1. For the beam balance below, work out the unknown weight? 2. Figure below shows three weights on a beam that is balanced at its centre. Calculate the distance d from the 0.5 N weight to the pivot.
  • 20. Turning Effect of Forces 20 4. The diagram shows a uniform rod balance at its centre. Use the principle of moments to calculate the weight W. 3. A boy weighing 600 N sits on the see-saw at a distance of 1.5 m from the pivot. What is the force F required at the other end to balance the see-saw?
  • 21. 5. Figure below, someone is trying to balance a plank with stones. The plank has negligible weight. Turning Effect of Forces 21
  • 22. a. Calculate the moment of the 4 N force about O. b. Calculate the moment of the 6 N force about O. c. Will the plank balance? If not which way will it tip? d. What extra force is needed at point P to balance the plank? e. In which direction must the force at P act? Turning Effect of Forces 22
  • 23. Turning Effect of Forces 23 6. The board shown is hinged at A and supported by a vertical rope at B, 3.0 m from A. A boy weighing 600 N stands at the end D of the board, which is 4.0 m from the hinge. Neglecting the weight of the board, calculate the force F on the rope.
  • 24. Conditions for equilibrium • If an object is in equilibrium, the forces on it must balance as well as their turning effect. • So: • The sum of the forces in one direction must equal to the sum of the forces in the opposite direction. • The principle of moments must apply. Turning Effect of Forces 24
  • 25. 1. Figure below shows a balanced beam. Calculate the unknown forces X and Y. Turning Effect of Forces 25 Y X 400 N 2.5 m1.0 m
  • 26. 2. Figure below shows a beam, balanced at its midpoint. The weight of the beam is 40 N. Calculate the unknown force Z, and the length of the beam. Turning Effect of Forces 26 30 N Z 0.5 m 20 N
  • 27. 3. Figure below shows a balanced beam. Calculate the unknown forces X and Y. Turning Effect of Forces 27 Y X600 N
  • 28. Moments • Describe how to verify the principle of moments Turning Effect of Forces 28
  • 29. Experiment • Aim: To verify the principle of moments • Apparatus: 1. Retort stand 2. Metre rule with drill hole at the 50 cm mark. 3. Pivot 4. 10 g slotted mass with hanger labelled W1 5. 100 g slotted mass with hanger labelled W2 Turning Effect of Forces 29
  • 30. • Procedure: 1. Arrange the apparatus as shown Turning Effect of Forces 30
  • 31. • Procedure: 2. Suspend different weights, W1 and W2 at different distances d1 and d2 from the pivot. 3. Carefully adjust the distances d1 and d2 until the rule balances horizontally. 4. Record the values of W1,W2,d1 and d2. 5. Repeat procedure 2, 3 and 4 for different values of W1,W2,d1 and d2. Turning Effect of Forces 31
  • 32. • Results • For each set of results, calculate (W1 × d1) and (W2 × d2). • Conclusion • For each set of readings, within the limits of experimental accuracy, (W1 × d1) and (W2 × d2) will be equal for each set of readings. • Hence clockwise moment equal anticlockwise moment. Turning Effect of Forces 32
  • 33. 1. What are the conditions for equilibrium? Turning Effect of Forces 33 D
  • 34. 2. A heavy beam is resting on two supports, so that there are three forces acting on it. The beam is in equilibrium. Which statement is correct? A. All the forces are equal in value. B. The forces are in one direction and their turning effects are in the opposite direction. C. The resultant force is zero and the resultant turning effect is zero. D. The total upward force is twice the total downward force. Turning Effect of Forces 34
  • 35. 3. Two blocks are placed on a beam which balances on a pivot at its centre. The weight of the beam is negligible. Turning Effect of Forces 35
  • 36. 1. Which diagram shows the forces acting on the beam? 2. (The length of each arrow represents the size of a force.) Turning Effect of Forces 36 B
  • 37. 4. The weights of four objects, 1 to 4, are compared using a balance. Which object is the lightest? A. object 1 B. object 2 C. object 3 D. object 4 Turning Effect of Forces 37
  • 38. 5. Three children, X, Y and Z, are using a see-saw to compare their weights. 6. Which line in the table shows the correct order of the children’s weights? Turning Effect of Forces 38 C
  • 39. 6. Two equal forces F act on each of four planks. Which plank turns? Turning Effect of Forces 39 D
  • 40. 7. The diagrams show a uniform rod with its midpoint on a pivot. 8. Two equal forces F are applied to the rod, as shown. 9. Which diagram shows the rod in equilibrium? Turning Effect of Forces 40 C
  • 41. 8. Forces are applied to a uniform beam pivoted at its centre. 9. Which beam is balanced? Turning Effect of Forces 41 D
  • 42. 9. The diagram shows a uniform half-metre rule balanced at its mid-point. 1. What is the weight of the metal block? A. 50 N B. 75 N C. 100 N D. 150 N Turning Effect of Forces 42
  • 43. 10. The diagram shows a boy of weight 500 N sitting on a see-saw. He sits 2.0 m from the pivot. 1. What is the force F needed to balance the see-saw? Turning Effect of Forces 43 A 250 N B 750 N C 1000 N D 3000 N A
  • 44. 11. A beam is pivoted at its centre. Two masses are suspended at equal distances from the pivot as shown in the diagram. Which statement is correct? A. If X has a mass of exactly 2 kg, it will rise. B. If X has a mass of less than 2 kg, it will fall. C. If X has a mass of more than 2 kg, it will fall. D. If X has a mass of more than 2 kg, it will rise. Turning Effect of Forces 44
  • 45. 12. In an experiment, five identical bags of rice are balanced by a 10 kg mass. Two bags of rice are added to the other five. What mass will now balance the bags? A. 3.5 kg B. 7.0 kg C. 10 kg D. 14 kg Turning Effect of Forces 45
  • 46. 13. In an experiment, six identical bags of flour are balanced by a 9 kg mass. 14. Two bags of flour are removed. What mass will balance the remaining bags? A. 3 kg B. 6 kg C. 7 kg D. 9 kg Turning Effect of Forces 46
  • 47. 14. A simple balance has two pans suspended from the ends of arms of equal length. When it is balanced, the pointer is at 0. 15. Four masses (in total) are placed on the pans, with one or more on pan X and the rest on pan Y. 16. Which combination of masses can be used to balance the pans? A. 1 g, 1 g, 5 g, 10 g B. 1 g, 2 g, 2 g, 5 g C. 2 g, 5 g, 5 g, 10 g D. 2 g, 5 g, 10 g, 10 g Turning Effect of Forces 47
  • 48. 15. A load is to be moved using a wheelbarrow. The total mass of the load and wheelbarrow is 60 kg. The gravitational field strength is 10 N / kg. What is the size of force F needed just to lift the loaded wheelbarrow? A. 350 N B. 430 N C. 600 N D. 840 N Turning Effect of Forces 48
  • 49. 16. The diagram shows a wheelbarrow and its load, which have a total weight of 150 N. This is supported by a vertical force F at the ends of the handles. What is the value of F? A. 75 N B. 150 N C. 225 N D. 300 N Turning Effect of Forces 49
  • 50. 17. A driver’s foot presses with a steady force of 20 N on a pedal in a car as shown. What is the force F pulling on the piston? A. 2.5 N B. 10 N C. 100 N D. 160 N Turning Effect of Forces 50
  • 51. Centre of mass • Describe how to determine the position of the centre of mass of a plane lamina. Turning Effect of Forces 51
  • 52. Centre of Mass • The weight of an object is due to the attraction of the Earth on all these particles. • The centre of mass is the point through which the entire weight of the object appears to act. Turning Effect of Forces 52
  • 53. • Above diagram shows the positions of the centre of gravity for regular-shaped objects with uniform thickness. • If the line of action of the weight of an object does not go through the pivot, then a moment exists makes the object to turn. • The object will turn until where it reaches where there is no moment. • This fact enable us to find the centre of gravity of an irregular shaped object. Turning Effect of Forces 53
  • 54. Experiment • Aim: To determine the centre of mass of a plane lamina • Apparatus: • Retort stand • Cork • Plumb line • Lamina Turning Effect of Forces 54
  • 55. • Procedure: • On the lamina, make three holes near the edge of the lamina. • Suspend the lamina through one of the holes. • Hang the plumb line on the pin. • When the plumb line is steady, make a dot on the position of the line at the edge of the lamina • Repeat steps 2-4 for the other two holes • Conclusion • The point where the lines meet is the centre of mass of the body. Turning Effect of Forces 55
  • 56. Turning Effect of Forces 56
  • 57. Applying the Principle of Moment • For a regular object such as uniform metre ruler, the centre of gravity is at its centre and, when supported there the object will be balanced • If it supported at any other point, it will topple because there will be a resultant moment about the point of support. Turning Effect of Forces 57
  • 58. Example 1. The illustration in figure below represents a metre scale balancing on a knife edge at 20 cm mark when a weight of 60 N is suspended from 10 cm mark. Calculate the weight of the ruler. Turning Effect of Forces 58
  • 59. 2. Figure below shows a uniform metre rule weighing 30 N pivoted on a wedge placed under the 40 cm mark and carrying a weight of 70 N hanging from the 10 cm mark. The ruler is balanced horizontally by a weight W hanging from the 100 cm mark. Calculate the value of the weight W. Turning Effect of Forces 59
  • 60. 3. Figure below shows a uniform metre rule pivoted off- centre but maintained in equilibrium by a suspended weight of 2.4 N. The weight is hung 5 cm from one end of the metre rule. What is the weight of the metre rule? Turning Effect of Forces 60
  • 61. 4. Figure below shows a uniform metre rule weighing 3.0 N pivoted on a wedge placed under the 40 cm mark and carrying a weight of 7.0 N hanging from the 10 cm mark. The rule is kept horizontally by a weight W hanging from the 100 cm end. Calculate the value of the weight W. Turning Effect of Forces 61
  • 62. 5. Figure below represents a uniform horizontal rod weighing 10 N and of length 100 cm. The rod is balanced on a knife-edge at C, when a weight of 8 N is suspended from the point D and a solid S, of unknown weight is suspended from A. Calculate the weight of the solid S. Turning Effect of Forces 62
  • 63. 6. The beam shown below is 2.0 m long and has a weight of 20 N. It is pivoted as shown. A force of 10 N acts at one end. What force F must be applied downwards at the other end to balance the beam? Turning Effect of Forces 63
  • 64. 7. Figure below represents a horizontal uniform rod AB of weight 10 N and length 100 cm, pivoted at A. An irregular solid X, is suspended 30 cm from the end B. The end B is supported by a spring balance which reads 19 N a) Calculate the weight of the irregular solid X. b) What is the mass of the solid if g = 10 m s-2 Turning Effect of Forces 64
  • 65. Stability • Describe qualitatively the effect of the position of the centre of mass on the stability of simple objects. Turning Effect of Forces 65
  • 66. Stability • Stability is the measure of a body’s ability to maintain its original position. • The degree of stability in an object's position depends on how must its center of gravity will be changed if it is moved. • There are three states of equilibrium: • Stable equilibrium • Unstable equilibrium • Neutral equilibrium Turning Effect of Forces 66
  • 67. Stable equilibrium • If the body returns to its original position after being displaced slightly it is said to be in stable equilibrium. Turning Effect of Forces 67 If the book is lifted from one edge and then allowed to fall, it will come back to its original position. Explanation Reason of stability When the book is lifted its center of gravity is raised. The line of action of weight passes through the base of the book. A moment due to weight of the book brings it back to the original position.
  • 68. Unstable equilibrium • If the body continues to move away from its original position after being displaced, it is said to be in unstable equilibrium. Turning Effect of Forces 68 Explanation If thin rod standing vertically is slightly disturbed from its position it will not come back to its original position. Reason of instability When the rod is slightly disturbed its center of gravity is lowered . The line of action of its weight lies outside the base of rod. The moment due to weight of the rod toppled it down.
  • 69. Neutral equilibrium • If an object remains wherever it is after being displaced, it is said to be in neutral equilibrium. Turning Effect of Forces 69 Explanation If a ball is pushed slightly to roll, it will neither come back to its original nor it will roll forward rather it will remain at rest. Reason of neutral equilibrium If the ball is rolled, its center of gravity is neither raised nor lowered. This means that its center of gravity is at the same height as before.
  • 70. Designing for Stability • There are two ways to make a body more stable. 1. Lowering its centre of gravity; 2. Increasing the area of its base. Turning Effect of Forces 70
  • 71. 1. A piece of card has its centre of mass at M. 2. Which diagram shows how it hangs when suspended by a thread? Turning Effect of Forces 71 A
  • 72. 2. The diagram shows a flat metal plate that may be hung from a nail so that it can rotate about any of four holes. 3. What is the smallest number of holes from which the flat metal plate should be hung in order to find its centre of gravity? A. 1 B. 2 C. 3 D. 4 Turning Effect of Forces 72
  • 73. 3. A piece of uniform card is suspended freely from a horizontal pin. 4. At which of the points shown is its centre of gravity? Turning Effect of Forces 73 C
  • 74. 4. A tractor is being used on rough ground. 5. What is the safest position for its centre of mass? Turning Effect of Forces 74 D
  • 75. 5. An empty glass is placed on a join between two tables as shown. The glass remains stable. 6. Which point is the centre of mass of the glass? Turning Effect of Forces 75 C
  • 76. 6. A light aircraft stands at rest on the ground. It stands on three wheels, one at the front and two further back. 7. Which point could be its centre of mass? Turning Effect of Forces 76 B
  • 77. 7. The diagram shows sections of four objects of equal mass. The position of the centre of mass of each object has been marked with a cross. 8. Which object is the most stable? Turning Effect of Forces 77 A
  • 78. 8. A student uses a stand and clamp to hold a flask of liquid. 9. Which diagram shows the most stable arrangement? Turning Effect of Forces 78 B
  • 79. 9. Some containers are made from thin glass. 10. Which empty container is the most stable? Turning Effect of Forces 79 A
  • 80. 10. The diagrams show the cross-sections of different glasses. 11. Which one is the least stable when filled with a liquid? Turning Effect of Forces 80 B
  • 81. 11. The diagram shows four models of buses placed on different ramps. How many of these models will fall over? A. 1 B. 2 C. 3 D. 4 Turning Effect of Forces 81
  • 82. 12. The diagram shows four objects standing on a flat surface. 13. The centre of mass of each object is marked M. 14. Which object will fall over? Turning Effect of Forces 82 C
  • 83. 13. A girl uses paper-clips to balance a toy bird on her finger as shown. What is the effect of the paper- clips? A. They help to raise the centre of mass above her finger. B. They help to raise the centre of mass to her finger. C. They help to lower the centre of mass below her finger. D. They do not affect the centre of mass but increase the weight. Turning Effect of Forces 83
  • 84. 14. The stability of a bus is tested by tilting it on a ramp. The diagram shows a bus that is just about to topple over. 15. Where is the centre of mass of the bus? Turning Effect of Forces 84 C
  • 85. 15. Passengers are not allowed to stand on the upper deck of double-decker buses. Turning Effect of Forces 85
  • 86. 1. Why is this? A. They would cause the bus to become unstable. B. They would cause the bus to slow down. C. They would increase the kinetic energy of the bus. D. They would lower the centre of mass of the bus. Turning Effect of Forces 86