SlideShare une entreprise Scribd logo
1  sur  90
Télécharger pour lire hors ligne
ENDOCRINE SYSTEM
Block: 2
CASE 3: BIOLOGY
PBL G5
OBJECTIVES
● Define the endocrine system and explain its general function.
● Explain; How does the endocrine system maintain the Homeostasis in the body.
● Explain the relationship between nervous system and endocrine system.
● Distinguish Between endocrine and exocrine glands.
● Define the term hormone and explain its function and number its types.
● Describe the mechanisms of steroids and non-steroids hormone action.
● Explain the regulation and transmitters of hormones.
● Describe the types, function, location of the glands, and their effects during
oversecretion or undersecretion on the body.
DEFINITION OF ENDOCRINE SYSTEM
The endocrine system is the collection of glands that produce hormones
that regulate metabolism, growth and development, tissue function, sexual
function, reproduction, sleep, and mood, among other things.
The word endocrine derives from the Greek words "endo," meaning
within, and "crinis," meaning to secrete.
Although the hormones circulate throughout the body, each type
of hormone is targeted toward certain organs and tissues.
➢ The endocrine system gets
some help from organs such as
the kidney, liver, heart and
gonads, which have secondary
endocrine functions.
○ The kidney, for example,
secretes hormones such as
erythropoietin and renin.
THE GENERAL FUNCTION
How does the endocrine system maintains the
HOMEOSTASIS?
Homeostasis is happening constantly in our bodies. We eat, sweat, drink,
dance, eat some more, have salty fries, and yet our body composition remains
almost the same. If someone were to draw your blood on ten different days of
a month, the level of glucose, sodium, red blood cells and other blood
components would be pretty much constant, regardless of your behavior
(assuming fasting before drawing blood, of course).
How does the endocrine system maintains the
homeostasis ?
These hormones are sent via the This is the main way we maintain
homeostasis actually, since the endocrine system releases chemicals known as
hormones. These hormones are sent via the blood to specific spots in the body
to control things like blood sugar, heart rate, etc.The Endocrine system is
responsible for homeostasis. The Endocrine system secrete hormones that the
body needs to perform certain functions.
How does the endocrine system maintains the
homeostasis ?
● When glands create hormones, they get transported through either the
bloodstream or the lymph.
● Hormones help the body to act or react to any threat to homeostasis.
Hormones aid throughout reproduction and birth.
● They help people sleep and wake up.
● The adrenal glands give off adrenaline to help a person perform in potential
danger, and they release dopamine linked with the body's reward system.
● In general, the endocrine system plays a major role in helping the body
maintain homeostasis because it gives off the messengers to help the body to
react to any threats to homeostasis
● The Nervous system & Endocrine system are both essential to
the communication and relay of messages throughout the body.
● They work together to regulate(Homeostasis) the activities of
the other systems.
● Both systems use chemical signals when they respond to
changes that might alter (Homeostasis).
RELATIONSHIP BETWEEN NERVOUS SYSTEM & ENDOCRINE
SYSTEM.
Feature Nervous System Endocrine System
Signals Electric impulses
Chemical impulses
(hormones)
Pathways Transmission by neurons Transported by blood
Speed of information fast slow
Duration of effect Short lived Long lived
EXAMPLE:
In a fight or flight response, there is a coordination of both the nervous and endocrine
systems. The nervous system detects stimuli, either inside or out, for example, danger like
an oncoming car about to run someone over, and that in turn sends an impulse to the
endocrine system where a response is carried out. The response in this case is the release
of adrenaline into the bloodstream, by the endocrine glands called adrenal glands. Once
in the bloodstream, this hormone can cause the heart rate to increase, the muscles to
become ready to either react to an emergency situation by fighting or by flight
THE DIFFERENCE BETWEEN
ENDOCRINE AND EXOCRINE GLANDS
ENDOCRINE GLAND: a gland that secretes hormones directly into
the bloodstream; a ductless gland.
EXOCRINE GLAND: a gland that secretes substances into ducts which
then leave the body (i.e. sweat/sebaceous glands) or into an internal
space or lumen (i.e. digestive glands).
★ Exocrine glands are not part of the endocrine system!
DEFINITION OF HORMONES
Hormones are chemical substances that act like messenger molecules in
the body. After being made in one part of the body, they travel to other
parts of the body where they help control how cells and organs do their
work.
Important Functions of hormones include
● Growth and development of Prompting cell or tissue
● Food metabolism
● Initiating and maintaining sexual development and reproduction
● Maintaining body temperature
● Controlling thirst
● Regulating mood and cognitive functioning
TYPES OF HORMONES
Hormones are classified by various criteria:
•By Proximity of their site of synthesis to their site of action.
•By their chemical structure.
•By their degree of solubility in aqueous medium.
3 classes of hormones based on proximity of site of
Synthesis to Site of Action:
1. Autocrine Hormones: those that act on the same cells that
synthesize them.
2. Paracrine Hormones: those that are synthesized very close to
their site of action.
3. Endocrine Hormones: those that are synthesized by endocrine
glands and transported in the blood to target cells that
contain the appropriate receptors.
4 classes of hormones based on chemical structure:
1. Peptides or Protein hormones:
made of amino acids joined by peptide bonds.
most hormones belong to this group except hormones secreted by the gonads
(testis and ovary) and the adrenal cortex.
Examples:
•Thyrotropin Releasing Hormone (TRH), made up of three amino acid
residues.
•Insulin, made up of 51 amino acid residues.
2. Steroid hormones.
● made of fatty acids using cholesterol as a functional group.
● only hormones secreted by the gonads and adrenal cortex
belong to this group .
3. Amino acid derivatives.
4. Fatty acid derivatives.
Two classes of hormones based on solubility in aqueous
medium:-
1. Hydrophilic Hormones.
•Hormones that are soluble in aqueous medium.
•They cannot cross the cell membrane.
Examples: Insulin, Glucagon, Epinephrine.
2. Lipophilic Hormones.
● Hormones that are not soluble in aqueous medium, but soluble in
lipid
● They can easily cross the cell membrane,
Examples: Thyroid hormones, Steroid hormones
● Location of receptors for each class of hormone is different.
MECHANISM OF HORMONES
As there are huge variety of hormones , there are two mechanism by which
hormone trigger changes in cells.They are :
● Direct Gene Activation
● Second-Messenger System
Direct Gene Activation .
● Steroid hormones use the mechanism of direct gene expression because they are
lipid-soluble molecules.
● First, they diffuse through the plasma membranes of their target cells into their
nucleus .
● Then they binds to a specific hormone receptor it then further binds to specific
sites on the cell's DNA
● Which activates certain genes to transcribe messenger RNA . it then translates in
the cytoplasm
● Resulting in the synthesis of new protein .
Second-Messenger System
● Water soluble and non-steroid hormones are unable to enter targeted cells so they
bind to hormone receptor.
● Which is situated on target cell's plasma membrane and utilize a second
-messenger system.
● The hormone binds to the membrane receptor and activated receptor sets off a
series of reaction that activates an enzyme
● The enzyme in turn, catalyze reactions that produce second messenger molecules
also known as cAMP.
● This promotes typical response of the target cell to hormone.
Hormone Regulation: Feedback
Mechanisms
Most hormones are regulated by feedback mechanisms. A
feedback mechanism is a loop in which a product feeds back to
control its own production
Negative feedback occurs when a product feeds back to
.decrease its own production
Positive feedback occurs when a product feeds back to increase
its own production
CONTROL OF HORMONE RELEASE
Endocrine Gland Stimuli
The stimuli that activate the endocrine organs fall into three
major categories—hormonal, humoral, and neural
The most common stimulus
is a hormonal stimulus, in which endocrine
organs are prodded into action by other hormone
HORMONAL STIMULI
HUMORAL STIMULI
Changing blood levels of certain ions
and nutrients may also stimulate
hormone release
In isolated cases, nerve fibers stimulate hormone release, and
the target cells are said to respond to neural stimuli. The
classic example is sympathetic nervous system stimulation of
the adrenal medulla to release norepinephrine and
epinephrine during periods of stress
NEURAL STIMULI
HORMONE TRANSPORT IN BLOOD
Hormones flow through the blood and then bind to their
receptors within the capillaries or diffuse out to reach the
receptors at the target cell.
Water insoluble hormones must bind to plasma protein to be
carried into the plasma, hormones remain bind to these protein
for some time which act as a reservoir for the hormones.
Water soluble hormones which can dissolve into the plasma by
itself and can easily diffuse out to their site of action. Water
soluble hormones act faster in a short period of time.
THE PITUITARY GLAND
Definition:
The main endocrine gland. It is a small structure in the
head. The pituitary gland is about the size of a bean,
and it hangs by a stalk from the hypothalamus.It is
called the master gland because it produces hormones
that control other glands and many body functions
including growth. The pituitary consists of the anterior
and posterior pituitary.
The pituitary glands are made of the anterior lobe
and posterior lobe. The anterior lobe produces and
releases hormones. The posterior lobe does not
produce hormones per se—this is done by nerve cells
in the hypothalamus—but it does release them into the
circulation.
The Anterior Pituitary
The anterior lobe releases hormones upon receiving releasing or inhibiting
hormones from the hypothalamus. These hypothalamic hormones tell the anterior
lobe whether to release more of a specific hormone or stop production of the
hormone.
Anterior Lobe Hormones:
● Growth hormone (GH): GH is essential in early years to maintaining a
healthy body composition and for growth in children. In adults, it aids
healthy bone and muscle mass (increases bone and muscle growth) . It also
affects fat distribution and increases protein synthesis.
● Prolactin (PRL): Prolactin stimulates breast milk production after
childbirth.
● Follicle-stimulating hormone (FSH): FSH works with LH to ensure
normal functioning and development of the ovaries and testes. It stimulates
the production of egg and sperm.
● Luteinizing hormone (LH): LH works with FSH to ensure normal
functioning of the ovaries and testes. It triggers ovulation in females and
stimulates testosterone production in male.
● Adrenocorticotropic hormone (ACTH): ACTH stimulates the adrenal
glands to produce hormones.
● Thyroid-stimulating hormone (TSH): TSH stimulates the thyroid gland
to produce hormones.
The Posterior Pituitary
The posterior pituitary (or neurohypophysis) comprises the posterior lobe of the
pituitary gland and is part of the endocrine system.
The posterior lobe contains the ends of nerve cells coming from the
hypothalamus. The hypothalamus sends hormones directly to the posterior lobe
via these nerves, and then the pituitary gland releases them.
Posterior Lobe Hormones:
● Antidiuretic hormone (ADH): Antidiuretic hormone, also known as
vasopressin, acts to maintain blood pressure, blood volume and tissue water
content by controlling the amount of water and hence the concentration of
urine excreted by the kidney.This hormone prompts the kidneys to increase
water absorption in the blood.
● Oxytocin: Oxytocin is involved in a variety of processes, such as contracting
the uterus during childbirth and stimulating breast milk production.
Hypersecretion- Too much of any hormone secreted into the body is usually
caused by a secretory pituitary gland tumor.
● Secretory tumors produce too much prolactin (the hormone that triggers
milk production in new mothers), which leads to infertility, discharge
from breasts and menstrual abnormality.
● Some tumors may affect the adrenal glands, due to oversecretion of
hormones, which stimulates them and cause a hormone imbalance.
● Tumors can also make excess of growth hormone which stimulate the
thyroid gland, leading to overproduction of the thyroid
hormone.Oversecretion of the pituitary hormone human growth hormone
can cause gigantism if it occurs before growth of the long bones is
complete, or acromegaly if it begins during adulthood.
Hyposecretion -
● Hormones secreted in less amount in the body are commonly
caused by a non-secretory pituitary gland tumor, which interferes
with the ability of the normal pituitary gland to create hormones.
● It can, however, also be caused by a large secretory tumor.
● Hyposecretion can also happen with surgery or radiation therapy
for a pituitary gland tumor.
● Undersecretion of human growth hormone can lead to dwarfism if
experienced during childhood, and decreased endocrine function
accompanied by lethargy and loss of sexual capacity in the adult.
THE PINEAL GLAND
Definition:
The pineal gland, also known as the "pineal
body," is a small endocrine gland.
Location:
It is located on the back portion of the third
cerebral ventricle of the brain, which is a
fluid-filled space in the brain. This gland lies
in-between the two halves of the brain. The
gland is named for its shape, which resembles a
pinecone (in Latin, "pinea").
THE PINEAL GLAND
Functions:
The pineal gland's function in the body is not clearly understood yet.
However, it is known to play a role in regulating female reproduction
and sexual maturation. It also has a part in controlling circadian
rhythms (biological processes), the body’s internal clock that affects
such actions as when we wake and sleep. The pinealocytes create and
secrete melatonin, a hormone that helps maintain the body’s internal
clock. Melatonin also helps regulate female reproductive hormones,
including when women menstruate.
THE PINEAL GLAND
Oversecretion:
The main consequences of swallowing large amounts of
melatonin are drowsiness and reduced core body
temperature. Very large doses have effects on the
performance of the human reproductive system (delay in
sexual maturation).
Undersecretion:
Reduced melatonin production is not known to have any
effect on health.
THYROID GLAND
Location :
The thyroid gland is located at the base of the throat,
just inferior to the Adam’s apple.
Structure :
It is a fairly large gland consisting of two lobes joined
by a central mass, or isthmus .
Hormons :
● Thyroid hormone (thyroxine [T4] and
triiodothyronine [T3]) .
● calcitonin
THYROID GLAND
Thyroid gland is composed of hollow structures
called follicles , which store a sticky colloidal
material.
Thyroid hormone is derived from this colloid. But
calcitonin hormone is made by the parafollicular
cells found in the connective tissue between the
follicles .
THYROID GLAND
Thyroxine (T4): is the major hormone secreted by the thyroid follicles.
Triiodothyronine (T3): is formed at the target tissues by conversion of thyroxine to
triiodothyronine.
Each is constructed from two tyrosine amino acids linked together, but thyroxine has
four bound iodine atoms, whereas triiodothyronine has three .
Function :
● It is the body’s metabolic hormone
● Thyroid hormone controls the rate at which glucose is “burned,” or oxidized, and
converted to body heat and chemical energy.
● necessary for normal growth and development.
Hyperthyroidism
Excessive levels of thyroid hormones in the blood
Graves' disease : is an immune system disorder where the thyroid gland
enlarges and the eyes may bulge, or protrude anteriorly , high basal
metabolic rate, intolerance of heat, rapid heartbeat, weight loss, nervous
and agitated behavior, and a general inability to relax.
Hyporthyroidism
low levels of thyroid hormones in the blood
goiter :It is an enlargement of
the thyroid gland that results
when the diet is deficient in
iodine.
Cretinism : it results in
dwarfism in which adult body
proportions remain childlike.
Myxedema
which is characterized by both
physical and mental sluggishness
,Other signs are puffiness of the
face, fatigue, poor muscle tone,
low body temperature (the
person is always cold), obesity,
and dry skin. (in adult ).
Calcitonin hormone :
● made by the so-called parafollicular cells found in the connective tissue between the
follicles
● decreases blood calcium levels by causing calcium to be deposited in the bones.
● It acts antagonistically to parathyroid hormone,
● It is released directly to the blood in response to increasing levels of blood calcium.
PARATHYROID GLANDS
● The parathyroid glands are four small
glands located on the posterior aspect of
the thyroid gland.
● Low blood levels of calcium stimulate the
parathyroid glands to release parathyroid
hormone (PTH). It causes bone calcium to
be liberated into the blood.
● PTH also stimulates the kidneys and
intestine to absorb more calcium
● Hyposecretion of PTH results in:
tetany:
If blood calcium levels fall too low, neurons become
extremely irritable and overactive. They deliver
impulses to the muscles so rapidly that the muscles go
into uncontrollable spasms (tetany), which may be
fatal.
● Hypersecretion leads to extreme bone wasting
and fractures.
PARATHYROID GLANDS
HYPOTHALAMUS
The hypothalamus is a secretion of the brain responsible for the production of
many of the body's essential hormones .It's not an endocrine gland but regulates
the secretion of some pituitary gland hormones.
Location:
The hypothalamus is located below the thalamus and above the
pituitary gland and brain stem
Functions of hypothalamus
● The primary function of the hypothalamus is homeostasis
● The hypothalamus govern temperature regulation
● The hypothalamus also governs thirst and hunger
● It also governs sleep, mood, and blood pressure
PANCREAS
The pancreas is a large gland that lies alongside the stomach and the small bowel.It is
divided into the head, body and tail.
Functions of the pancreas
It makes digestive juices, which consists of powerful enzyme.
It makes hormones that control blood glucose levels
Primary hormones secreted by the pancreas include:
● Gastrin: this hormone aids digestion by stimulating certain cells
● Glucagon: this helps insulin maintain normal blood glucose by working in the
opposite way of insulin
● Insulin: this hormone regulates blood glucose by allowing many of your body's
cell to absorb and use glucose
Diseases and disorders of the pancreas
● Type 1 diabetes
● Type 2 diabetes
● Hyperglycemia
● Hypoglycemia
● The female and male gonads produce sex cells (an exocrine
function).
● They also produce sex hormones that are identical to those
produced by adrenal cortex cells.
● The major differences from the adrenal sex hormone
production are the source and relative amounts of hormones
produced.
GONADS
● The female sex organ that serves as an endocrine gland
● The female gonads or ovaries, are paired, almond-sized
organs located in the pelvic cavity.
● Ovaries produce female sex cells ( ova or eggs) and two
groups of steroids hormones estrogens and progesterone.
OVARIES
PRODUCTION
● An ovarian follicle (and ovum) start to mature each month following
puberty under the influence of FSH (Follicle-stimulating hormone ) .The
developing follicle secretes estrogen
● Luteinizing hormone (LH) causes the follicle to rupture and release the
ovum (ovulation); the follicle becomes the corpus luteum. The corpus
luteum secretes progesterone
FUNCTIONS
➢ ESTROGENS
a) The estrogens are responsible for the development of sex characteristics in
women (primarily growth and maturation of the reproductive organs)and the
appearance of secondary sex characteristics (hair in the pubic and axillary
regions)at puberty.
b) Acting with progesterone, estrogens promote breast development and cyclic
changes in the uterine lining (the menstrual cycle).
FUNCTIONS
➢ PROGESTERONES
a) Progesterone as already noted, acts with estrogen to bring about the
menstrual cycle.
b) During pregnancy, it quiets the muscles of the uterus so that an implanted
embryo will not be aborted and helps prepare breast tissue for lactation
HYPOSECRETION AND HYPERSECRETION OF OVARIAN
HORMONES
❖ Hyposecretion of the ovarian hormones severely hampers a
woman’s ability to conceive and bear children
❖ Extreme hypersecretion of ovarian hormones by the ovaries is a rare
clinical entity, because excessive secretion of estrogens automatically
decreases the production of gonadotropins by the pituitary, and this
limits the production of ovarian hormones.
● The male sex organ that also serves as an endocrine gland
● The paired oval testes of the male are suspended in a sac, the scrotum, outside
the pelvic cavity.
● Testes produce male sex cells or sperm and male sex hormones testosterone
PRODUCTION
● FSH( follicle-stimulating hormone) causes the production of sperm
● LH causes the production of testosterone
TESTES
FUNCTIONS
TESTOSTERONE
● At puberty, testosterone promotes the growth and maturation of the
reproductive system organs to prepare the young man for reproduction.
● It also causes the male’s secondary sex characteristics (growth of facial hair,
development of heavy bones and muscles, and lowering of the voice) to
appear and stimulates the male sex drive.
● In adults, testosterone is necessary for continuous production of sperm.
HYPOSECRETION OF TESTOSTERONE
Leads to a lack of male sex characteristics.There are two types:
● Primary:
This type of hypogonadism (also known as primary testicular failure) originates from a
problem in the testicles.
Examples: Klinefelter Syndrome, Mumps Orchitis, hemachromatosis
● Secondary:
This type indicates a problem in the Hypothalamus or the pituitary gland.
In cases of hyposecretion, the man becomes sterile; such cases are usually treated by
testosterone injections.
Location: They are flat pyramidal shaped, curved over the top of each kidney.
Structure: Although it looks like a single organ, they are actually two endocrine organs;
Adrenal Medulla and Adrenal Cortex.
Hormones:
● Epinephrine and norepinephrine are released by adrenal medulla.
● 3 classes of hormones are released by the adrenal cortex; Mineralocorticoids,
Glucocorticoids and sex hormones.
ADRENAL GLANDS
Function of Adrenal cortex hormones
Hormones of Adrenal cortex are collectively called corticosteroids.
1. Mineralocorticoids: (mainly Aldosterone).
● Regulares the mineral ( or salt) content of the blood.
● Their target is the kidney tubules.
● When aldosterone is released, Na+
ions are reabsorbed and K+
are released into the
urine.
● When Na+
are reabsorbed, water is reabsorbed too(osmosis).
● In this way, blood volume and B.P are adjusted.
2. Glucocorticoids:(corticosterone, cortisone but mainly cortisol)
● Maintain normal cell metabolism.
● Promote Protein breakdown, lipolysis and gluconeogenesis.
● Helps the body fight long term stressors.
● When glucocorticoids are released, fats and even proteins are broken down to
glucose.
● Anti-Inflammatory: Inhibit WBC hence they slow down wound healing.
● Depression of Immune system: High doses can depress immune response hence
they are prescribed during organ transplant.
3. Sex hormones: (or Androgens)
● In both male and female Androgens are released but in relatively small quantities.
● Mainly testosterone, but some estrogen is also produced.
● In females after menopause, ovarian secretion of estrogen ceases and all estrogen is
derived from adrenal androgens.
Function of Adrenal Medulla hormones
1. Epinephrine: (Adrenaline) and Norepinephrine (noradrenaline)
● Enhances and prolongs the effects of “ fight or flight” response of the sympathetic
nervous system
● Increases Heart rate, B.P, Blood glucose level and dilate small passageways of the
lungs.
● These events result in more oxygen and faster circulation of blood, mainly to brain,
heart and muscles.
Regulation
● Epinephrine and norepinephrine are released when adrenal medulla is stimulated by
the sympathetic nervous system during “fight or flight” response.
● Glucocorticoids are released from adrenal cortex in response to rising levels of
ACTH in blood. Acth is secreted from the anterior pituitary lobe by the release of
CRF from hypothalamus, which is controlled by steroid level in blood.
● Aldosterone release is stimulated by humoral factors, such as fewer Na+
ions in
blood.
-Renin from kidneys also causes release of aldosterone when Blood pressure drops.
-A hormone of heart ANP prevents aldosterone release, to reduce blood pressure.
Deficiency of Adrenal cortex hormones
Under-secretion of all adrenal cortex hormones leads to Addison’s
disease.
Because of low aldosterone, Na+ and water all lost from the body, leading to:
● Electrolyte and water imbalance
● Muscle weakness
● Hypoglycemia
● Arrhythmia
● Lessened ability to, cope with stress. Eg.cold, which is normally easy to
overcome, become life threatening.
Oversecretion of Adrenal cortex hormones:
Hypersecretion may results from a tumor of Pituitary of Adrenal cortex.
Hyperactivity of the outermost cortical area results in
Hyperaldosteronism.
When tumor is in the middle cortical area, Cushing’s syndrome
results.Excessive glucocorticoids results in:
● ‘Buffalo hump’ on the upper back
● High blood pressure
● Hyperglycemia
● Bone weakness
● Severe depression of immune system.
Oversecretion of Adrenal Medulla hormones:
Hypersecretion of epinephrine and norepinephrine leads to a prolonged
“ fight or flight response” including:
● Sweating
● High Blood pressure
● Increased heart rate
● High metabolism
● High Glucose.
THYMUS GLAND
Location:The thymus gland is located in the
thoracic cavity,
behind the sternum.
Hormones:Thymosin and other hormones:
Thymic humoral factor,
thymic factor and Thymopoietin.
Function of Thymus gland:
Promotes the maturation of T-cells WBCs.
Other endocrine Tissues and Organs:
Placenta:
● Human Chorionic Gonadotrophin.
● Estrogen and progesterone.
Kidney
•Renin -restore normal blood pressure,
thereby increasing filtration rates of
water and solutes in the kidney tubules.
•Erythropoietin –stimulates the
production of red blood cells,
Calcitriol- stimulates active transport of
dietary calcium across intestinal cell
membranes in the intestine
Stomach
•Gastrin –stimulates glands to release hydrochloric acid.
Intestine
•Secretin-Pancreas: stimulates release of bicarbonate-rich juice.
Liver: increases release of bile.
Stomach: reduces secretions and motility.
•Cholecystokinin-Pancreas: stimulates release of enzyme-rich juice.
Gallbladder: stimulates expulsion of stored bile.
Duodenal papilla: causes sphincter to relax, allowing bile and pancreatic juice
to enter duodenum.
Heart
•Atrial natriuretic peptide (ANP)-Kidney: inhibits sodium ion
reabsorption and renin release.
Adrenal cortex: inhibits secretion of aldosterone, thereby
decreasing blood volume and blood pressure.
Adipose tissues
•Leptin-suppresses appetite and increases energy expenditure
in the brain.
•Resistin-causes resistance of peripheral tissues to insulin.
● Essentials of human anatomy & physiology , Elaine N. Marieb , Eleventh Edition ,
chapter 9 :The endocrine System , pages 312-314 & 317-319.
● http://www.mayoclinic.org/diseases-conditions/graves-disease/basics/definition
/con-20025811
● http://www.mhhe.com/biosci/ap/holehaap/student/olc2/graphics/shier04ap_s/
ch13/chapt13.pdf
● http://medicinembbs.blogspot.com/2009/12/abnormalities-of-secretion-by-ovari
es.html
● https://www.quora.com/What-is-the-difference-between-hormones-and-neurotra
nsmitters
References :
● http://www.mhhe.com/biosci/ap/holehaap/student/olc2/graphics/shier04ap_s/
ch13/chapt13.pdf CHAPTER 13: ENDOCRINE SYSTEM. Page 266.
● https://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=
rja&uact=8&ved=0ahUKEwjc9L7HpNTSAhVF1xoKHaAvCNcQFghAMAM&url=http
%3A%2F%2Fe.hormone.tulane.edu%2Flearning%2Ftypes-of-hormones.html&usg
=AFQjCNG8oIRtaORwLgTgDF2r7Rc8xUcMeA&sig2=sMqkCr3pTTv79rGTB7cmWA
● http://www.ck12.org/book/CK-12-Biology-Concepts/section/13.25/
● https://www.quora.com/What-is-the-difference-between-hormones-and-neurotra
nsmitters
References :
HAVE A NICE DAY

Contenu connexe

Tendances

The Nervous System (Slide Show)
The Nervous System (Slide Show)The Nervous System (Slide Show)
The Nervous System (Slide Show)William Banaag
 
Human endocrine system
Human endocrine systemHuman endocrine system
Human endocrine systemGotov .kz
 
Anatomy & Physiology of the Male Reproductive System
Anatomy & Physiology of the Male Reproductive SystemAnatomy & Physiology of the Male Reproductive System
Anatomy & Physiology of the Male Reproductive SystemDr. Sarita Sharma
 
Male & female reproductive system
Male & female reproductive system Male & female reproductive system
Male & female reproductive system Tahmid Faisal
 
Male reproductive system
Male reproductive systemMale reproductive system
Male reproductive systemMBBS IMS MSU
 
13 Endocrine System.ppt
13 Endocrine System.ppt13 Endocrine System.ppt
13 Endocrine System.pptShama
 
Endocrine glands and their hormones
Endocrine glands and their hormonesEndocrine glands and their hormones
Endocrine glands and their hormoneschet08
 
Nervous system introduction
Nervous system  introductionNervous system  introduction
Nervous system introductionIdris Siddiqui
 
The Endocrine System
The Endocrine SystemThe Endocrine System
The Endocrine Systembunnyheart28
 
Neuroglial cells _neurons
Neuroglial cells _neuronsNeuroglial cells _neurons
Neuroglial cells _neuronsPersonal
 

Tendances (20)

The Nervous System (Slide Show)
The Nervous System (Slide Show)The Nervous System (Slide Show)
The Nervous System (Slide Show)
 
Endocrine System.ppt
Endocrine System.pptEndocrine System.ppt
Endocrine System.ppt
 
Types of neuron
Types of neuronTypes of neuron
Types of neuron
 
Human endocrine system
Human endocrine systemHuman endocrine system
Human endocrine system
 
Anatomy & Physiology of the Male Reproductive System
Anatomy & Physiology of the Male Reproductive SystemAnatomy & Physiology of the Male Reproductive System
Anatomy & Physiology of the Male Reproductive System
 
The peripheral nervous system
The peripheral nervous systemThe peripheral nervous system
The peripheral nervous system
 
Male & female reproductive system
Male & female reproductive system Male & female reproductive system
Male & female reproductive system
 
Muscle system
Muscle systemMuscle system
Muscle system
 
Male reproductive system
Male reproductive systemMale reproductive system
Male reproductive system
 
Endocrine System
Endocrine SystemEndocrine System
Endocrine System
 
13 Endocrine System.ppt
13 Endocrine System.ppt13 Endocrine System.ppt
13 Endocrine System.ppt
 
Endocrine glands
Endocrine glandsEndocrine glands
Endocrine glands
 
Endocrine system 1
Endocrine system 1Endocrine system 1
Endocrine system 1
 
Endocrine glands and their hormones
Endocrine glands and their hormonesEndocrine glands and their hormones
Endocrine glands and their hormones
 
hormones.ppt
hormones.ppthormones.ppt
hormones.ppt
 
Nervous system introduction
Nervous system  introductionNervous system  introduction
Nervous system introduction
 
Reproductive system
Reproductive systemReproductive system
Reproductive system
 
The Endocrine System
The Endocrine SystemThe Endocrine System
The Endocrine System
 
Neuroglial cells _neurons
Neuroglial cells _neuronsNeuroglial cells _neurons
Neuroglial cells _neurons
 
Endocrine system
Endocrine systemEndocrine system
Endocrine system
 

Similaire à Endocrine system

Introduction to Endocrinology
Introduction to Endocrinology Introduction to Endocrinology
Introduction to Endocrinology Iqra bano Bano
 
Communication iii
Communication iii  Communication iii
Communication iii sandycandy6
 
B.sc. biochemistry sem 1 introduction to biochemistry unit 3.1 hormones
B.sc. biochemistry sem 1 introduction to biochemistry unit 3.1 hormonesB.sc. biochemistry sem 1 introduction to biochemistry unit 3.1 hormones
B.sc. biochemistry sem 1 introduction to biochemistry unit 3.1 hormonesRai University
 
endocrine system Physiology
endocrine system  Physiologyendocrine system  Physiology
endocrine system Physiologyaliagr
 
Endocrine System
Endocrine SystemEndocrine System
Endocrine Systemthana123
 
Diseases of pituitary gland
Diseases of pituitary glandDiseases of pituitary gland
Diseases of pituitary glandLama K Banna
 
Introduction of endocrine
Introduction of endocrineIntroduction of endocrine
Introduction of endocrinemed_students0
 
Endocrine glands3919 2
Endocrine glands3919 2Endocrine glands3919 2
Endocrine glands3919 2Joseph kutty
 
1R087jSNZpeOdPQl500.pptx
1R087jSNZpeOdPQl500.pptx1R087jSNZpeOdPQl500.pptx
1R087jSNZpeOdPQl500.pptxRCGaur1
 
1 introduction endocrinology
1 introduction endocrinology1 introduction endocrinology
1 introduction endocrinologyjehadms
 
Hormonal responses to exercise
Hormonal responses to exerciseHormonal responses to exercise
Hormonal responses to exerciseRizwanAli852012
 
Biochemistry Of Hormones
Biochemistry Of HormonesBiochemistry Of Hormones
Biochemistry Of HormonesDr Sanjay OM
 

Similaire à Endocrine system (20)

Introduction to Endocrinology
Introduction to Endocrinology Introduction to Endocrinology
Introduction to Endocrinology
 
Hormones 26-7-10.ppt
Hormones 26-7-10.pptHormones 26-7-10.ppt
Hormones 26-7-10.ppt
 
Hormones
HormonesHormones
Hormones
 
Communication iii
Communication iii  Communication iii
Communication iii
 
Hormone
HormoneHormone
Hormone
 
Endocrine new.ppt
Endocrine new.pptEndocrine new.ppt
Endocrine new.ppt
 
B.sc. biochemistry sem 1 introduction to biochemistry unit 3.1 hormones
B.sc. biochemistry sem 1 introduction to biochemistry unit 3.1 hormonesB.sc. biochemistry sem 1 introduction to biochemistry unit 3.1 hormones
B.sc. biochemistry sem 1 introduction to biochemistry unit 3.1 hormones
 
endocrine system Physiology
endocrine system  Physiologyendocrine system  Physiology
endocrine system Physiology
 
Endocrine System
Endocrine SystemEndocrine System
Endocrine System
 
Endocrine system
Endocrine systemEndocrine system
Endocrine system
 
Diseases of pituitary gland
Diseases of pituitary glandDiseases of pituitary gland
Diseases of pituitary gland
 
Introduction of endocrine
Introduction of endocrineIntroduction of endocrine
Introduction of endocrine
 
Endocrine glands3919 2
Endocrine glands3919 2Endocrine glands3919 2
Endocrine glands3919 2
 
Endocrine control system
Endocrine control systemEndocrine control system
Endocrine control system
 
1R087jSNZpeOdPQl500.pptx
1R087jSNZpeOdPQl500.pptx1R087jSNZpeOdPQl500.pptx
1R087jSNZpeOdPQl500.pptx
 
1 introduction endocrinology
1 introduction endocrinology1 introduction endocrinology
1 introduction endocrinology
 
Hormonal responses to exercise
Hormonal responses to exerciseHormonal responses to exercise
Hormonal responses to exercise
 
Endocrinology
EndocrinologyEndocrinology
Endocrinology
 
Biochemistry Of Hormones
Biochemistry Of HormonesBiochemistry Of Hormones
Biochemistry Of Hormones
 
Endocrinology
EndocrinologyEndocrinology
Endocrinology
 

Plus de som allul

Comonent of bone
Comonent of boneComonent of bone
Comonent of bonesom allul
 
Mascular system
Mascular systemMascular system
Mascular systemsom allul
 
The skeletal system
The skeletal systemThe skeletal system
The skeletal systemsom allul
 
Nervous system
Nervous systemNervous system
Nervous systemsom allul
 
Action potential
Action potential Action potential
Action potential som allul
 
BUFFER SYSTEM
BUFFER SYSTEMBUFFER SYSTEM
BUFFER SYSTEMsom allul
 
urinary system
urinary systemurinary system
urinary systemsom allul
 
Human reproductive system
Human reproductive systemHuman reproductive system
Human reproductive systemsom allul
 
Cardiovascular system
Cardiovascular systemCardiovascular system
Cardiovascular systemsom allul
 
Equilibrium and levers
Equilibrium and leversEquilibrium and levers
Equilibrium and leverssom allul
 
Acetylcholine and succinylcholine
Acetylcholine and succinylcholineAcetylcholine and succinylcholine
Acetylcholine and succinylcholinesom allul
 
Fluid mechanics
Fluid mechanics Fluid mechanics
Fluid mechanics som allul
 
Lymphatic immune system
Lymphatic immune systemLymphatic immune system
Lymphatic immune systemsom allul
 
Oxidation and reduction
Oxidation and reductionOxidation and reduction
Oxidation and reductionsom allul
 
Dopamine & levodopa
Dopamine & levodopaDopamine & levodopa
Dopamine & levodopasom allul
 
measure of dispersion
measure of dispersion measure of dispersion
measure of dispersion som allul
 

Plus de som allul (20)

Comonent of bone
Comonent of boneComonent of bone
Comonent of bone
 
Mascular system
Mascular systemMascular system
Mascular system
 
The skeletal system
The skeletal systemThe skeletal system
The skeletal system
 
Nervous system
Nervous systemNervous system
Nervous system
 
Action potential
Action potential Action potential
Action potential
 
BUFFER SYSTEM
BUFFER SYSTEMBUFFER SYSTEM
BUFFER SYSTEM
 
urinary system
urinary systemurinary system
urinary system
 
Human reproductive system
Human reproductive systemHuman reproductive system
Human reproductive system
 
Cardiovascular system
Cardiovascular systemCardiovascular system
Cardiovascular system
 
Dna & rna
Dna & rnaDna & rna
Dna & rna
 
Equilibrium and levers
Equilibrium and leversEquilibrium and levers
Equilibrium and levers
 
Acetylcholine and succinylcholine
Acetylcholine and succinylcholineAcetylcholine and succinylcholine
Acetylcholine and succinylcholine
 
Fluid mechanics
Fluid mechanics Fluid mechanics
Fluid mechanics
 
Lymphatic immune system
Lymphatic immune systemLymphatic immune system
Lymphatic immune system
 
isomers
isomersisomers
isomers
 
Oxidation and reduction
Oxidation and reductionOxidation and reduction
Oxidation and reduction
 
Dopamine & levodopa
Dopamine & levodopaDopamine & levodopa
Dopamine & levodopa
 
measure of dispersion
measure of dispersion measure of dispersion
measure of dispersion
 
function
functionfunction
function
 
data
datadata
data
 

Dernier

Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxruthvilladarez
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
EMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxEMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxElton John Embodo
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 

Dernier (20)

Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
EMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxEMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 

Endocrine system

  • 1. ENDOCRINE SYSTEM Block: 2 CASE 3: BIOLOGY PBL G5
  • 2. OBJECTIVES ● Define the endocrine system and explain its general function. ● Explain; How does the endocrine system maintain the Homeostasis in the body. ● Explain the relationship between nervous system and endocrine system. ● Distinguish Between endocrine and exocrine glands. ● Define the term hormone and explain its function and number its types. ● Describe the mechanisms of steroids and non-steroids hormone action. ● Explain the regulation and transmitters of hormones. ● Describe the types, function, location of the glands, and their effects during oversecretion or undersecretion on the body.
  • 3. DEFINITION OF ENDOCRINE SYSTEM The endocrine system is the collection of glands that produce hormones that regulate metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood, among other things. The word endocrine derives from the Greek words "endo," meaning within, and "crinis," meaning to secrete. Although the hormones circulate throughout the body, each type of hormone is targeted toward certain organs and tissues.
  • 4. ➢ The endocrine system gets some help from organs such as the kidney, liver, heart and gonads, which have secondary endocrine functions. ○ The kidney, for example, secretes hormones such as erythropoietin and renin. THE GENERAL FUNCTION
  • 5.
  • 6. How does the endocrine system maintains the HOMEOSTASIS? Homeostasis is happening constantly in our bodies. We eat, sweat, drink, dance, eat some more, have salty fries, and yet our body composition remains almost the same. If someone were to draw your blood on ten different days of a month, the level of glucose, sodium, red blood cells and other blood components would be pretty much constant, regardless of your behavior (assuming fasting before drawing blood, of course).
  • 7. How does the endocrine system maintains the homeostasis ? These hormones are sent via the This is the main way we maintain homeostasis actually, since the endocrine system releases chemicals known as hormones. These hormones are sent via the blood to specific spots in the body to control things like blood sugar, heart rate, etc.The Endocrine system is responsible for homeostasis. The Endocrine system secrete hormones that the body needs to perform certain functions.
  • 8. How does the endocrine system maintains the homeostasis ? ● When glands create hormones, they get transported through either the bloodstream or the lymph. ● Hormones help the body to act or react to any threat to homeostasis. Hormones aid throughout reproduction and birth. ● They help people sleep and wake up. ● The adrenal glands give off adrenaline to help a person perform in potential danger, and they release dopamine linked with the body's reward system. ● In general, the endocrine system plays a major role in helping the body maintain homeostasis because it gives off the messengers to help the body to react to any threats to homeostasis
  • 9. ● The Nervous system & Endocrine system are both essential to the communication and relay of messages throughout the body. ● They work together to regulate(Homeostasis) the activities of the other systems. ● Both systems use chemical signals when they respond to changes that might alter (Homeostasis). RELATIONSHIP BETWEEN NERVOUS SYSTEM & ENDOCRINE SYSTEM.
  • 10. Feature Nervous System Endocrine System Signals Electric impulses Chemical impulses (hormones) Pathways Transmission by neurons Transported by blood Speed of information fast slow Duration of effect Short lived Long lived
  • 11. EXAMPLE: In a fight or flight response, there is a coordination of both the nervous and endocrine systems. The nervous system detects stimuli, either inside or out, for example, danger like an oncoming car about to run someone over, and that in turn sends an impulse to the endocrine system where a response is carried out. The response in this case is the release of adrenaline into the bloodstream, by the endocrine glands called adrenal glands. Once in the bloodstream, this hormone can cause the heart rate to increase, the muscles to become ready to either react to an emergency situation by fighting or by flight
  • 12. THE DIFFERENCE BETWEEN ENDOCRINE AND EXOCRINE GLANDS ENDOCRINE GLAND: a gland that secretes hormones directly into the bloodstream; a ductless gland. EXOCRINE GLAND: a gland that secretes substances into ducts which then leave the body (i.e. sweat/sebaceous glands) or into an internal space or lumen (i.e. digestive glands). ★ Exocrine glands are not part of the endocrine system!
  • 13. DEFINITION OF HORMONES Hormones are chemical substances that act like messenger molecules in the body. After being made in one part of the body, they travel to other parts of the body where they help control how cells and organs do their work.
  • 14. Important Functions of hormones include ● Growth and development of Prompting cell or tissue ● Food metabolism ● Initiating and maintaining sexual development and reproduction ● Maintaining body temperature ● Controlling thirst ● Regulating mood and cognitive functioning
  • 15. TYPES OF HORMONES Hormones are classified by various criteria: •By Proximity of their site of synthesis to their site of action. •By their chemical structure. •By their degree of solubility in aqueous medium.
  • 16. 3 classes of hormones based on proximity of site of Synthesis to Site of Action: 1. Autocrine Hormones: those that act on the same cells that synthesize them. 2. Paracrine Hormones: those that are synthesized very close to their site of action. 3. Endocrine Hormones: those that are synthesized by endocrine glands and transported in the blood to target cells that contain the appropriate receptors.
  • 17.
  • 18. 4 classes of hormones based on chemical structure: 1. Peptides or Protein hormones: made of amino acids joined by peptide bonds. most hormones belong to this group except hormones secreted by the gonads (testis and ovary) and the adrenal cortex. Examples: •Thyrotropin Releasing Hormone (TRH), made up of three amino acid residues. •Insulin, made up of 51 amino acid residues.
  • 19. 2. Steroid hormones. ● made of fatty acids using cholesterol as a functional group. ● only hormones secreted by the gonads and adrenal cortex belong to this group . 3. Amino acid derivatives. 4. Fatty acid derivatives.
  • 20. Two classes of hormones based on solubility in aqueous medium:- 1. Hydrophilic Hormones. •Hormones that are soluble in aqueous medium. •They cannot cross the cell membrane. Examples: Insulin, Glucagon, Epinephrine.
  • 21. 2. Lipophilic Hormones. ● Hormones that are not soluble in aqueous medium, but soluble in lipid ● They can easily cross the cell membrane, Examples: Thyroid hormones, Steroid hormones ● Location of receptors for each class of hormone is different.
  • 22. MECHANISM OF HORMONES As there are huge variety of hormones , there are two mechanism by which hormone trigger changes in cells.They are : ● Direct Gene Activation ● Second-Messenger System
  • 23. Direct Gene Activation . ● Steroid hormones use the mechanism of direct gene expression because they are lipid-soluble molecules. ● First, they diffuse through the plasma membranes of their target cells into their nucleus . ● Then they binds to a specific hormone receptor it then further binds to specific sites on the cell's DNA ● Which activates certain genes to transcribe messenger RNA . it then translates in the cytoplasm ● Resulting in the synthesis of new protein .
  • 24.
  • 25. Second-Messenger System ● Water soluble and non-steroid hormones are unable to enter targeted cells so they bind to hormone receptor. ● Which is situated on target cell's plasma membrane and utilize a second -messenger system. ● The hormone binds to the membrane receptor and activated receptor sets off a series of reaction that activates an enzyme ● The enzyme in turn, catalyze reactions that produce second messenger molecules also known as cAMP. ● This promotes typical response of the target cell to hormone.
  • 26.
  • 28. Most hormones are regulated by feedback mechanisms. A feedback mechanism is a loop in which a product feeds back to control its own production Negative feedback occurs when a product feeds back to .decrease its own production Positive feedback occurs when a product feeds back to increase its own production
  • 29. CONTROL OF HORMONE RELEASE Endocrine Gland Stimuli The stimuli that activate the endocrine organs fall into three major categories—hormonal, humoral, and neural
  • 30.
  • 31. The most common stimulus is a hormonal stimulus, in which endocrine organs are prodded into action by other hormone HORMONAL STIMULI
  • 32.
  • 33. HUMORAL STIMULI Changing blood levels of certain ions and nutrients may also stimulate hormone release
  • 34.
  • 35. In isolated cases, nerve fibers stimulate hormone release, and the target cells are said to respond to neural stimuli. The classic example is sympathetic nervous system stimulation of the adrenal medulla to release norepinephrine and epinephrine during periods of stress NEURAL STIMULI
  • 36. HORMONE TRANSPORT IN BLOOD Hormones flow through the blood and then bind to their receptors within the capillaries or diffuse out to reach the receptors at the target cell. Water insoluble hormones must bind to plasma protein to be carried into the plasma, hormones remain bind to these protein for some time which act as a reservoir for the hormones. Water soluble hormones which can dissolve into the plasma by itself and can easily diffuse out to their site of action. Water soluble hormones act faster in a short period of time.
  • 37. THE PITUITARY GLAND Definition: The main endocrine gland. It is a small structure in the head. The pituitary gland is about the size of a bean, and it hangs by a stalk from the hypothalamus.It is called the master gland because it produces hormones that control other glands and many body functions including growth. The pituitary consists of the anterior and posterior pituitary. The pituitary glands are made of the anterior lobe and posterior lobe. The anterior lobe produces and releases hormones. The posterior lobe does not produce hormones per se—this is done by nerve cells in the hypothalamus—but it does release them into the circulation.
  • 38. The Anterior Pituitary The anterior lobe releases hormones upon receiving releasing or inhibiting hormones from the hypothalamus. These hypothalamic hormones tell the anterior lobe whether to release more of a specific hormone or stop production of the hormone. Anterior Lobe Hormones: ● Growth hormone (GH): GH is essential in early years to maintaining a healthy body composition and for growth in children. In adults, it aids healthy bone and muscle mass (increases bone and muscle growth) . It also affects fat distribution and increases protein synthesis. ● Prolactin (PRL): Prolactin stimulates breast milk production after childbirth.
  • 39. ● Follicle-stimulating hormone (FSH): FSH works with LH to ensure normal functioning and development of the ovaries and testes. It stimulates the production of egg and sperm. ● Luteinizing hormone (LH): LH works with FSH to ensure normal functioning of the ovaries and testes. It triggers ovulation in females and stimulates testosterone production in male. ● Adrenocorticotropic hormone (ACTH): ACTH stimulates the adrenal glands to produce hormones. ● Thyroid-stimulating hormone (TSH): TSH stimulates the thyroid gland to produce hormones.
  • 40.
  • 41. The Posterior Pituitary The posterior pituitary (or neurohypophysis) comprises the posterior lobe of the pituitary gland and is part of the endocrine system. The posterior lobe contains the ends of nerve cells coming from the hypothalamus. The hypothalamus sends hormones directly to the posterior lobe via these nerves, and then the pituitary gland releases them. Posterior Lobe Hormones: ● Antidiuretic hormone (ADH): Antidiuretic hormone, also known as vasopressin, acts to maintain blood pressure, blood volume and tissue water content by controlling the amount of water and hence the concentration of urine excreted by the kidney.This hormone prompts the kidneys to increase water absorption in the blood. ● Oxytocin: Oxytocin is involved in a variety of processes, such as contracting the uterus during childbirth and stimulating breast milk production.
  • 42.
  • 43. Hypersecretion- Too much of any hormone secreted into the body is usually caused by a secretory pituitary gland tumor. ● Secretory tumors produce too much prolactin (the hormone that triggers milk production in new mothers), which leads to infertility, discharge from breasts and menstrual abnormality. ● Some tumors may affect the adrenal glands, due to oversecretion of hormones, which stimulates them and cause a hormone imbalance. ● Tumors can also make excess of growth hormone which stimulate the thyroid gland, leading to overproduction of the thyroid hormone.Oversecretion of the pituitary hormone human growth hormone can cause gigantism if it occurs before growth of the long bones is complete, or acromegaly if it begins during adulthood.
  • 44. Hyposecretion - ● Hormones secreted in less amount in the body are commonly caused by a non-secretory pituitary gland tumor, which interferes with the ability of the normal pituitary gland to create hormones. ● It can, however, also be caused by a large secretory tumor. ● Hyposecretion can also happen with surgery or radiation therapy for a pituitary gland tumor. ● Undersecretion of human growth hormone can lead to dwarfism if experienced during childhood, and decreased endocrine function accompanied by lethargy and loss of sexual capacity in the adult.
  • 45. THE PINEAL GLAND Definition: The pineal gland, also known as the "pineal body," is a small endocrine gland. Location: It is located on the back portion of the third cerebral ventricle of the brain, which is a fluid-filled space in the brain. This gland lies in-between the two halves of the brain. The gland is named for its shape, which resembles a pinecone (in Latin, "pinea").
  • 46. THE PINEAL GLAND Functions: The pineal gland's function in the body is not clearly understood yet. However, it is known to play a role in regulating female reproduction and sexual maturation. It also has a part in controlling circadian rhythms (biological processes), the body’s internal clock that affects such actions as when we wake and sleep. The pinealocytes create and secrete melatonin, a hormone that helps maintain the body’s internal clock. Melatonin also helps regulate female reproductive hormones, including when women menstruate.
  • 47. THE PINEAL GLAND Oversecretion: The main consequences of swallowing large amounts of melatonin are drowsiness and reduced core body temperature. Very large doses have effects on the performance of the human reproductive system (delay in sexual maturation). Undersecretion: Reduced melatonin production is not known to have any effect on health.
  • 48. THYROID GLAND Location : The thyroid gland is located at the base of the throat, just inferior to the Adam’s apple. Structure : It is a fairly large gland consisting of two lobes joined by a central mass, or isthmus . Hormons : ● Thyroid hormone (thyroxine [T4] and triiodothyronine [T3]) . ● calcitonin
  • 49. THYROID GLAND Thyroid gland is composed of hollow structures called follicles , which store a sticky colloidal material. Thyroid hormone is derived from this colloid. But calcitonin hormone is made by the parafollicular cells found in the connective tissue between the follicles .
  • 50. THYROID GLAND Thyroxine (T4): is the major hormone secreted by the thyroid follicles. Triiodothyronine (T3): is formed at the target tissues by conversion of thyroxine to triiodothyronine. Each is constructed from two tyrosine amino acids linked together, but thyroxine has four bound iodine atoms, whereas triiodothyronine has three . Function : ● It is the body’s metabolic hormone ● Thyroid hormone controls the rate at which glucose is “burned,” or oxidized, and converted to body heat and chemical energy. ● necessary for normal growth and development.
  • 51. Hyperthyroidism Excessive levels of thyroid hormones in the blood Graves' disease : is an immune system disorder where the thyroid gland enlarges and the eyes may bulge, or protrude anteriorly , high basal metabolic rate, intolerance of heat, rapid heartbeat, weight loss, nervous and agitated behavior, and a general inability to relax.
  • 52. Hyporthyroidism low levels of thyroid hormones in the blood goiter :It is an enlargement of the thyroid gland that results when the diet is deficient in iodine. Cretinism : it results in dwarfism in which adult body proportions remain childlike. Myxedema which is characterized by both physical and mental sluggishness ,Other signs are puffiness of the face, fatigue, poor muscle tone, low body temperature (the person is always cold), obesity, and dry skin. (in adult ).
  • 53. Calcitonin hormone : ● made by the so-called parafollicular cells found in the connective tissue between the follicles ● decreases blood calcium levels by causing calcium to be deposited in the bones. ● It acts antagonistically to parathyroid hormone, ● It is released directly to the blood in response to increasing levels of blood calcium.
  • 54. PARATHYROID GLANDS ● The parathyroid glands are four small glands located on the posterior aspect of the thyroid gland. ● Low blood levels of calcium stimulate the parathyroid glands to release parathyroid hormone (PTH). It causes bone calcium to be liberated into the blood. ● PTH also stimulates the kidneys and intestine to absorb more calcium
  • 55.
  • 56. ● Hyposecretion of PTH results in: tetany: If blood calcium levels fall too low, neurons become extremely irritable and overactive. They deliver impulses to the muscles so rapidly that the muscles go into uncontrollable spasms (tetany), which may be fatal. ● Hypersecretion leads to extreme bone wasting and fractures. PARATHYROID GLANDS
  • 57. HYPOTHALAMUS The hypothalamus is a secretion of the brain responsible for the production of many of the body's essential hormones .It's not an endocrine gland but regulates the secretion of some pituitary gland hormones. Location: The hypothalamus is located below the thalamus and above the pituitary gland and brain stem
  • 58.
  • 59. Functions of hypothalamus ● The primary function of the hypothalamus is homeostasis ● The hypothalamus govern temperature regulation ● The hypothalamus also governs thirst and hunger ● It also governs sleep, mood, and blood pressure
  • 60. PANCREAS The pancreas is a large gland that lies alongside the stomach and the small bowel.It is divided into the head, body and tail. Functions of the pancreas It makes digestive juices, which consists of powerful enzyme. It makes hormones that control blood glucose levels
  • 61.
  • 62. Primary hormones secreted by the pancreas include: ● Gastrin: this hormone aids digestion by stimulating certain cells ● Glucagon: this helps insulin maintain normal blood glucose by working in the opposite way of insulin ● Insulin: this hormone regulates blood glucose by allowing many of your body's cell to absorb and use glucose
  • 63. Diseases and disorders of the pancreas ● Type 1 diabetes ● Type 2 diabetes ● Hyperglycemia ● Hypoglycemia
  • 64. ● The female and male gonads produce sex cells (an exocrine function). ● They also produce sex hormones that are identical to those produced by adrenal cortex cells. ● The major differences from the adrenal sex hormone production are the source and relative amounts of hormones produced. GONADS
  • 65. ● The female sex organ that serves as an endocrine gland ● The female gonads or ovaries, are paired, almond-sized organs located in the pelvic cavity. ● Ovaries produce female sex cells ( ova or eggs) and two groups of steroids hormones estrogens and progesterone. OVARIES
  • 66. PRODUCTION ● An ovarian follicle (and ovum) start to mature each month following puberty under the influence of FSH (Follicle-stimulating hormone ) .The developing follicle secretes estrogen ● Luteinizing hormone (LH) causes the follicle to rupture and release the ovum (ovulation); the follicle becomes the corpus luteum. The corpus luteum secretes progesterone
  • 67. FUNCTIONS ➢ ESTROGENS a) The estrogens are responsible for the development of sex characteristics in women (primarily growth and maturation of the reproductive organs)and the appearance of secondary sex characteristics (hair in the pubic and axillary regions)at puberty. b) Acting with progesterone, estrogens promote breast development and cyclic changes in the uterine lining (the menstrual cycle).
  • 68. FUNCTIONS ➢ PROGESTERONES a) Progesterone as already noted, acts with estrogen to bring about the menstrual cycle. b) During pregnancy, it quiets the muscles of the uterus so that an implanted embryo will not be aborted and helps prepare breast tissue for lactation
  • 69. HYPOSECRETION AND HYPERSECRETION OF OVARIAN HORMONES ❖ Hyposecretion of the ovarian hormones severely hampers a woman’s ability to conceive and bear children ❖ Extreme hypersecretion of ovarian hormones by the ovaries is a rare clinical entity, because excessive secretion of estrogens automatically decreases the production of gonadotropins by the pituitary, and this limits the production of ovarian hormones.
  • 70. ● The male sex organ that also serves as an endocrine gland ● The paired oval testes of the male are suspended in a sac, the scrotum, outside the pelvic cavity. ● Testes produce male sex cells or sperm and male sex hormones testosterone PRODUCTION ● FSH( follicle-stimulating hormone) causes the production of sperm ● LH causes the production of testosterone TESTES
  • 71. FUNCTIONS TESTOSTERONE ● At puberty, testosterone promotes the growth and maturation of the reproductive system organs to prepare the young man for reproduction. ● It also causes the male’s secondary sex characteristics (growth of facial hair, development of heavy bones and muscles, and lowering of the voice) to appear and stimulates the male sex drive. ● In adults, testosterone is necessary for continuous production of sperm.
  • 72. HYPOSECRETION OF TESTOSTERONE Leads to a lack of male sex characteristics.There are two types: ● Primary: This type of hypogonadism (also known as primary testicular failure) originates from a problem in the testicles. Examples: Klinefelter Syndrome, Mumps Orchitis, hemachromatosis ● Secondary: This type indicates a problem in the Hypothalamus or the pituitary gland. In cases of hyposecretion, the man becomes sterile; such cases are usually treated by testosterone injections.
  • 73. Location: They are flat pyramidal shaped, curved over the top of each kidney. Structure: Although it looks like a single organ, they are actually two endocrine organs; Adrenal Medulla and Adrenal Cortex. Hormones: ● Epinephrine and norepinephrine are released by adrenal medulla. ● 3 classes of hormones are released by the adrenal cortex; Mineralocorticoids, Glucocorticoids and sex hormones. ADRENAL GLANDS
  • 74.
  • 75. Function of Adrenal cortex hormones Hormones of Adrenal cortex are collectively called corticosteroids. 1. Mineralocorticoids: (mainly Aldosterone). ● Regulares the mineral ( or salt) content of the blood. ● Their target is the kidney tubules. ● When aldosterone is released, Na+ ions are reabsorbed and K+ are released into the urine. ● When Na+ are reabsorbed, water is reabsorbed too(osmosis). ● In this way, blood volume and B.P are adjusted.
  • 76. 2. Glucocorticoids:(corticosterone, cortisone but mainly cortisol) ● Maintain normal cell metabolism. ● Promote Protein breakdown, lipolysis and gluconeogenesis. ● Helps the body fight long term stressors. ● When glucocorticoids are released, fats and even proteins are broken down to glucose. ● Anti-Inflammatory: Inhibit WBC hence they slow down wound healing. ● Depression of Immune system: High doses can depress immune response hence they are prescribed during organ transplant.
  • 77. 3. Sex hormones: (or Androgens) ● In both male and female Androgens are released but in relatively small quantities. ● Mainly testosterone, but some estrogen is also produced. ● In females after menopause, ovarian secretion of estrogen ceases and all estrogen is derived from adrenal androgens.
  • 78. Function of Adrenal Medulla hormones 1. Epinephrine: (Adrenaline) and Norepinephrine (noradrenaline) ● Enhances and prolongs the effects of “ fight or flight” response of the sympathetic nervous system ● Increases Heart rate, B.P, Blood glucose level and dilate small passageways of the lungs. ● These events result in more oxygen and faster circulation of blood, mainly to brain, heart and muscles.
  • 79. Regulation ● Epinephrine and norepinephrine are released when adrenal medulla is stimulated by the sympathetic nervous system during “fight or flight” response. ● Glucocorticoids are released from adrenal cortex in response to rising levels of ACTH in blood. Acth is secreted from the anterior pituitary lobe by the release of CRF from hypothalamus, which is controlled by steroid level in blood. ● Aldosterone release is stimulated by humoral factors, such as fewer Na+ ions in blood. -Renin from kidneys also causes release of aldosterone when Blood pressure drops. -A hormone of heart ANP prevents aldosterone release, to reduce blood pressure.
  • 80. Deficiency of Adrenal cortex hormones Under-secretion of all adrenal cortex hormones leads to Addison’s disease. Because of low aldosterone, Na+ and water all lost from the body, leading to: ● Electrolyte and water imbalance ● Muscle weakness ● Hypoglycemia ● Arrhythmia ● Lessened ability to, cope with stress. Eg.cold, which is normally easy to overcome, become life threatening.
  • 81. Oversecretion of Adrenal cortex hormones: Hypersecretion may results from a tumor of Pituitary of Adrenal cortex. Hyperactivity of the outermost cortical area results in Hyperaldosteronism. When tumor is in the middle cortical area, Cushing’s syndrome results.Excessive glucocorticoids results in: ● ‘Buffalo hump’ on the upper back ● High blood pressure ● Hyperglycemia ● Bone weakness ● Severe depression of immune system.
  • 82. Oversecretion of Adrenal Medulla hormones: Hypersecretion of epinephrine and norepinephrine leads to a prolonged “ fight or flight response” including: ● Sweating ● High Blood pressure ● Increased heart rate ● High metabolism ● High Glucose.
  • 83. THYMUS GLAND Location:The thymus gland is located in the thoracic cavity, behind the sternum. Hormones:Thymosin and other hormones: Thymic humoral factor, thymic factor and Thymopoietin.
  • 84. Function of Thymus gland: Promotes the maturation of T-cells WBCs. Other endocrine Tissues and Organs: Placenta: ● Human Chorionic Gonadotrophin. ● Estrogen and progesterone.
  • 85. Kidney •Renin -restore normal blood pressure, thereby increasing filtration rates of water and solutes in the kidney tubules. •Erythropoietin –stimulates the production of red blood cells, Calcitriol- stimulates active transport of dietary calcium across intestinal cell membranes in the intestine
  • 86. Stomach •Gastrin –stimulates glands to release hydrochloric acid. Intestine •Secretin-Pancreas: stimulates release of bicarbonate-rich juice. Liver: increases release of bile. Stomach: reduces secretions and motility. •Cholecystokinin-Pancreas: stimulates release of enzyme-rich juice. Gallbladder: stimulates expulsion of stored bile. Duodenal papilla: causes sphincter to relax, allowing bile and pancreatic juice to enter duodenum.
  • 87. Heart •Atrial natriuretic peptide (ANP)-Kidney: inhibits sodium ion reabsorption and renin release. Adrenal cortex: inhibits secretion of aldosterone, thereby decreasing blood volume and blood pressure. Adipose tissues •Leptin-suppresses appetite and increases energy expenditure in the brain. •Resistin-causes resistance of peripheral tissues to insulin.
  • 88. ● Essentials of human anatomy & physiology , Elaine N. Marieb , Eleventh Edition , chapter 9 :The endocrine System , pages 312-314 & 317-319. ● http://www.mayoclinic.org/diseases-conditions/graves-disease/basics/definition /con-20025811 ● http://www.mhhe.com/biosci/ap/holehaap/student/olc2/graphics/shier04ap_s/ ch13/chapt13.pdf ● http://medicinembbs.blogspot.com/2009/12/abnormalities-of-secretion-by-ovari es.html ● https://www.quora.com/What-is-the-difference-between-hormones-and-neurotra nsmitters References :
  • 89. ● http://www.mhhe.com/biosci/ap/holehaap/student/olc2/graphics/shier04ap_s/ ch13/chapt13.pdf CHAPTER 13: ENDOCRINE SYSTEM. Page 266. ● https://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad= rja&uact=8&ved=0ahUKEwjc9L7HpNTSAhVF1xoKHaAvCNcQFghAMAM&url=http %3A%2F%2Fe.hormone.tulane.edu%2Flearning%2Ftypes-of-hormones.html&usg =AFQjCNG8oIRtaORwLgTgDF2r7Rc8xUcMeA&sig2=sMqkCr3pTTv79rGTB7cmWA ● http://www.ck12.org/book/CK-12-Biology-Concepts/section/13.25/ ● https://www.quora.com/What-is-the-difference-between-hormones-and-neurotra nsmitters References :
  • 90. HAVE A NICE DAY