SlideShare une entreprise Scribd logo
1  sur  275
Télécharger pour lire hors ligne
Fundamentals of Computational Fluid
Dynamics
Harvard Lomax and Thomas H. Pulliam
NASA Ames Research Center
David W. Zingg
University of Toronto Institute for Aerospace Studies
August 26, 1999
Contents
1 INTRODUCTION

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.1 Problem Speci cation and Geometry Preparation . . . . . .
1.2.2 Selection of Governing Equations and Boundary Conditions
1.2.3 Selection of Gridding Strategy and Numerical Method . . .
1.2.4 Assessment and Interpretation of Results . . . . . . . . . . .
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 CONSERVATION LAWS AND THE MODEL EQUATIONS
2.1 Conservation Laws . . . . . . . . . . . .
2.2 The Navier-Stokes and Euler Equations .
2.3 The Linear Convection Equation . . . .
2.3.1 Di erential Form . . . . . . . . .
2.3.2 Solution in Wave Space . . . . . .
2.4 The Di usion Equation . . . . . . . . . .
2.4.1 Di erential Form . . . . . . . . .
2.4.2 Solution in Wave Space . . . . . .
2.5 Linear Hyperbolic Systems . . . . . . . .
2.6 Problems . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

3 FINITE-DIFFERENCE APPROXIMATIONS
3.1 Meshes and Finite-Di erence Notation
3.2 Space Derivative Approximations . . .
3.3 Finite-Di erence Operators . . . . . .
3.3.1 Point Di erence Operators . . .
3.3.2 Matrix Di erence Operators . .
3.3.3 Periodic Matrices . . . . . . . .
3.3.4 Circulant Matrices . . . . . . .
iii

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

1

1
2
2
3
3
4
4
5

7

7
8
12
12
13
14
14
15
16
17

21

21
24
25
25
25
29
30
3.4 Constructing Di erencing Schemes of Any Order . . . . .
3.4.1 Taylor Tables . . . . . . . . . . . . . . . . . . . .
3.4.2 Generalization of Di erence Formulas . . . . . . .
3.4.3 Lagrange and Hermite Interpolation Polynomials
3.4.4 Practical Application of Pade Formulas . . . . . .
3.4.5 Other Higher-Order Schemes . . . . . . . . . . . .
3.5 Fourier Error Analysis . . . . . . . . . . . . . . . . . . .
3.5.1 Application to a Spatial Operator . . . . . . . . .
3.6 Di erence Operators at Boundaries . . . . . . . . . . . .
3.6.1 The Linear Convection Equation . . . . . . . . .
3.6.2 The Di usion Equation . . . . . . . . . . . . . . .
3.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

31
31
34
35
37
38
39
39
43
44
46
47

4 THE SEMI-DISCRETE APPROACH

51

5 FINITE-VOLUME METHODS

71

4.1 Reduction of PDE's to ODE's . . . . . . . . . . . . . . . . . . . . . .
4.1.1 The Model ODE's . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 The Generic Matrix Form . . . . . . . . . . . . . . . . . . . .
4.2 Exact Solutions of Linear ODE's . . . . . . . . . . . . . . . . . . . .
4.2.1 Eigensystems of Semi-Discrete Linear Forms . . . . . . . . . .
4.2.2 Single ODE's of First- and Second-Order . . . . . . . . . . . .
4.2.3 Coupled First-Order ODE's . . . . . . . . . . . . . . . . . . .
4.2.4 General Solution of Coupled ODE's with Complete Eigensystems
4.3 Real Space and Eigenspace . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 De nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 Eigenvalue Spectrums for Model ODE's . . . . . . . . . . . . .
4.3.3 Eigenvectors of the Model Equations . . . . . . . . . . . . . .
4.3.4 Solutions of the Model ODE's . . . . . . . . . . . . . . . . . .
4.4 The Representative Equation . . . . . . . . . . . . . . . . . . . . . .
4.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Model Equations in Integral Form . . . . . . . . . . . . . . . . . . .
5.2.1 The Linear Convection Equation . . . . . . . . . . . . . . .
5.2.2 The Di usion Equation . . . . . . . . . . . . . . . . . . . . .
5.3 One-Dimensional Examples . . . . . . . . . . . . . . . . . . . . . .
5.3.1 A Second-Order Approximation to the Convection Equation
5.3.2 A Fourth-Order Approximation to the Convection Equation
5.3.3 A Second-Order Approximation to the Di usion Equation .
5.4 A Two-Dimensional Example . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.

52
52
53
54
54
55
57
59
61
61
62
63
65
67
68
72
73
73
74
74
75
77
78
80
5.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 TIME-MARCHING METHODS FOR ODE'S

6.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Converting Time-Marching Methods to O E's . . . . . . . . . . . .
6.3 Solution of Linear O E's With Constant Coe cients . . . . . . . .
6.3.1 First- and Second-Order Di erence Equations . . . . . . . .
6.3.2 Special Cases of Coupled First-Order Equations . . . . . . .
6.4 Solution of the Representative O E's . . . . . . . . . . . . . . . .
6.4.1 The Operational Form and its Solution . . . . . . . . . . . .
6.4.2 Examples of Solutions to Time-Marching O E's . . . . . . .
6.5 The ; Relation . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5.1 Establishing the Relation . . . . . . . . . . . . . . . . . . . .
6.5.2 The Principal -Root . . . . . . . . . . . . . . . . . . . . . .
6.5.3 Spurious -Roots . . . . . . . . . . . . . . . . . . . . . . . .
6.5.4 One-Root Time-Marching Methods . . . . . . . . . . . . . .
6.6 Accuracy Measures of Time-Marching Methods . . . . . . . . . . .
6.6.1 Local and Global Error Measures . . . . . . . . . . . . . . .
6.6.2 Local Accuracy of the Transient Solution (er j j er! ) . . .
6.6.3 Local Accuracy of the Particular Solution (er ) . . . . . . .
6.6.4 Time Accuracy For Nonlinear Applications . . . . . . . . . .
6.6.5 Global Accuracy . . . . . . . . . . . . . . . . . . . . . . . .
6.7 Linear Multistep Methods . . . . . . . . . . . . . . . . . . . . . . .
6.7.1 The General Formulation . . . . . . . . . . . . . . . . . . . .
6.7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.7.3 Two-Step Linear Multistep Methods . . . . . . . . . . . . .
6.8 Predictor-Corrector Methods . . . . . . . . . . . . . . . . . . . . . .
6.9 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . .
6.10 Implementation of Implicit Methods . . . . . . . . . . . . . . . . . .
6.10.1 Application to Systems of Equations . . . . . . . . . . . . .
6.10.2 Application to Nonlinear Equations . . . . . . . . . . . . . .
6.10.3 Local Linearization for Scalar Equations . . . . . . . . . . .
6.10.4 Local Linearization for Coupled Sets of Nonlinear Equations
6.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 STABILITY OF LINEAR SYSTEMS
7.1 Dependence on the Eigensystem
7.2 Inherent Stability of ODE's . .
7.2.1 The Criterion . . . . . .
7.2.2 Complete Eigensystems .

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

83

85

86
87
88
89
90
91
91
92
93
93
95
95
96
97
97
98
99
100
101
102
102
103
105
106
107
110
110
111
112
115
117

121

122
123
123
123
7.3

7.4
7.5
7.6

7.7

7.8
7.9

7.2.3 Defective Eigensystems . . . . . . . . . . . . . .
Numerical Stability of O E 's . . . . . . . . . . . . . .
7.3.1 The Criterion . . . . . . . . . . . . . . . . . . .
7.3.2 Complete Eigensystems . . . . . . . . . . . . . .
7.3.3 Defective Eigensystems . . . . . . . . . . . . . .
Time-Space Stability and Convergence of O E's . . . .
Numerical Stability Concepts in the Complex -Plane .
7.5.1 -Root Traces Relative to the Unit Circle . . .
7.5.2 Stability for Small t . . . . . . . . . . . . . . .
Numerical Stability Concepts in the Complex h Plane
7.6.1 Stability for Large h. . . . . . . . . . . . . . . .
7.6.2 Unconditional Stability, A-Stable Methods . . .
7.6.3 Stability Contours in the Complex h Plane. . .
Fourier Stability Analysis . . . . . . . . . . . . . . . .
7.7.1 The Basic Procedure . . . . . . . . . . . . . . .
7.7.2 Some Examples . . . . . . . . . . . . . . . . . .
7.7.3 Relation to Circulant Matrices . . . . . . . . . .
Consistency . . . . . . . . . . . . . . . . . . . . . . . .
Problems . . . . . . . . . . . . . . . . . . . . . . . . . .

8 CHOICE OF TIME-MARCHING METHODS

8.1 Sti ness De nition for ODE's . . . . . . . . . . . .
8.1.1 Relation to -Eigenvalues . . . . . . . . . .
8.1.2 Driving and Parasitic Eigenvalues . . . . . .
8.1.3 Sti ness Classi cations . . . . . . . . . . . .
8.2 Relation of Sti ness to Space Mesh Size . . . . . .
8.3 Practical Considerations for Comparing Methods .
8.4 Comparing the E ciency of Explicit Methods . . .
8.4.1 Imposed Constraints . . . . . . . . . . . . .
8.4.2 An Example Involving Di usion . . . . . . .
8.4.3 An Example Involving Periodic Convection .
8.5 Coping With Sti ness . . . . . . . . . . . . . . . .
8.5.1 Explicit Methods . . . . . . . . . . . . . . .
8.5.2 Implicit Methods . . . . . . . . . . . . . . .
8.5.3 A Perspective . . . . . . . . . . . . . . . . .
8.6 Steady Problems . . . . . . . . . . . . . . . . . . .
8.7 Problems . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

123
124
124
125
125
125
128
128
132
135
135
136
137
141
141
142
143
143
146

149

149
149
151
151
152
153
154
154
154
155
158
158
159
160
160
161
9 RELAXATION METHODS

9.1 Formulation of the Model Problem . . . . . . . . . . . . . .
9.1.1 Preconditioning the Basic Matrix . . . . . . . . . . .
9.1.2 The Model Equations . . . . . . . . . . . . . . . . . .
9.2 Classical Relaxation . . . . . . . . . . . . . . . . . . . . . .
9.2.1 The Delta Form of an Iterative Scheme . . . . . . . .
9.2.2 The Converged Solution, the Residual, and the Error
9.2.3 The Classical Methods . . . . . . . . . . . . . . . . .
9.3 The ODE Approach to Classical Relaxation . . . . . . . . .
9.3.1 The Ordinary Di erential Equation Formulation . . .
9.3.2 ODE Form of the Classical Methods . . . . . . . . .
9.4 Eigensystems of the Classical Methods . . . . . . . . . . . .
9.4.1 The Point-Jacobi System . . . . . . . . . . . . . . . .
9.4.2 The Gauss-Seidel System . . . . . . . . . . . . . . . .
9.4.3 The SOR System . . . . . . . . . . . . . . . . . . . .
9.5 Nonstationary Processes . . . . . . . . . . . . . . . . . . . .
9.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

163

164
164
166
168
168
168
169
170
170
172
173
174
176
180
182
187

10 MULTIGRID

191

11 NUMERICAL DISSIPATION

203

10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.1.1 Eigenvector and Eigenvalue Identi cation with Space Frequencies191
10.1.2 Properties of the Iterative Method . . . . . . . . . . . . . . . 192
10.2 The Basic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
10.3 A Two-Grid Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
10.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
11.1
11.2
11.3
11.4

One-Sided First-Derivative Space Di erencing
The Modi ed Partial Di erential Equation . .
The Lax-Wendro Method . . . . . . . . . . .
Upwind Schemes . . . . . . . . . . . . . . . .
11.4.1 Flux-Vector Splitting . . . . . . . . . .
11.4.2 Flux-Di erence Splitting . . . . . . . .
11.5 Arti cial Dissipation . . . . . . . . . . . . . .
11.6 Problems . . . . . . . . . . . . . . . . . . . . .

12 SPLIT AND FACTORED FORMS

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

204
205
207
209
210
212
213
214

217

12.1 The Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
12.2 Factoring Physical Representations | Time Splitting . . . . . . . . . 218
12.3 Factoring Space Matrix Operators in 2{D . . . . . . . . . . . . . . . . 220
12.4
12.5
12.6
12.7

12.3.1 Mesh Indexing Convention . . . . . . . . . . .
12.3.2 Data Bases and Space Vectors . . . . . . . . .
12.3.3 Data Base Permutations . . . . . . . . . . . .
12.3.4 Space Splitting and Factoring . . . . . . . . .
Second-Order Factored Implicit Methods . . . . . . .
Importance of Factored Forms in 2 and 3 Dimensions
The Delta Form . . . . . . . . . . . . . . . . . . . . .
Problems . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

13 LINEAR ANALYSIS OF SPLIT AND FACTORED FORMS

13.1 The Representative Equation for Circulant Operators . . . . . . .
13.2 Example Analysis of Circulant Systems . . . . . . . . . . . . . . .
13.2.1 Stability Comparisons of Time-Split Methods . . . . . . .
13.2.2 Analysis of a Second-Order Time-Split Method . . . . . .
13.3 The Representative Equation for Space-Split Operators . . . . . .
13.4 Example Analysis of 2-D Model Equations . . . . . . . . . . . . .
13.4.1 The Unfactored Implicit Euler Method . . . . . . . . . . .
13.4.2 The Factored Nondelta Form of the Implicit Euler Method
13.4.3 The Factored Delta Form of the Implicit Euler Method . .
13.4.4 The Factored Delta Form of the Trapezoidal Method . . .
13.5 Example Analysis of the 3-D Model Equation . . . . . . . . . . .
13.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

220
221
221
223
226
226
228
229

233

233
234
234
237
238
242
242
243
243
244
245
247

A USEFUL RELATIONS AND DEFINITIONS FROM LINEAR ALGEBRA
249
A.1
A.2
A.3
A.4
A.5

Notation . . . . . . . . . .
De nitions . . . . . . . . .
Algebra . . . . . . . . . .
Eigensystems . . . . . . .
Vector and Matrix Norms

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

B SOME PROPERTIES OF TRIDIAGONAL MATRICES
B.1
B.2
B.3
B.4

Standard Eigensystem for Simple Tridiagonals . .
Generalized Eigensystem for Simple Tridiagonals .
The Inverse of a Simple Tridiagonal . . . . . . . .
Eigensystems of Circulant Matrices . . . . . . . .
B.4.1 Standard Tridiagonals . . . . . . . . . . .
B.4.2 General Circulant Systems . . . . . . . . .
B.5 Special Cases Found From Symmetries . . . . . .
B.6 Special Cases Involving Boundary Conditions . .

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

249
250
251
251
254

257

257
258
259
260
260
261
262
263
C THE HOMOGENEOUS PROPERTY OF THE EULER EQUATIONS265
Chapter 1
INTRODUCTION
1.1

Motivation

The material in this book originated from attempts to understand and systemize numerical solution techniques for the partial di erential equations governing the physics
of uid ow. As time went on and these attempts began to crystallize, underlying
constraints on the nature of the material began to form. The principal such constraint
was the demand for uni cation. Was there one mathematical structure which could
be used to describe the behavior and results of most numerical methods in common
use in the eld of uid dynamics? Perhaps the answer is arguable, but the authors
believe the answer is a rmative and present this book as justi cation for that belief. The mathematical structure is the theory of linear algebra and the attendant
eigenanalysis of linear systems.
The ultimate goal of the eld of computational uid dynamics (CFD) is to understand the physical events that occur in the ow of uids around and within designated
objects. These events are related to the action and interaction of phenomena such
as dissipation, di usion, convection, shock waves, slip surfaces, boundary layers, and
turbulence. In the eld of aerodynamics, all of these phenomena are governed by
the compressible Navier-Stokes equations. Many of the most important aspects of
these relations are nonlinear and, as a consequence, often have no analytic solution.
This, of course, motivates the numerical solution of the associated partial di erential
equations. At the same time it would seem to invalidate the use of linear algebra for
the classi cation of the numerical methods. Experience has shown that such is not
the case.
As we shall see in a later chapter, the use of numerical methods to solve partial
di erential equations introduces an approximation that, in e ect, can change the
form of the basic partial di erential equations themselves. The new equations, which
1
CHAPTER 1. INTRODUCTION

2

are the ones actually being solved by the numerical process, are often referred to as
the modi ed partial di erential equations. Since they are not precisely the same as
the original equations, they can, and probably will, simulate the physical phenomena
listed above in ways that are not exactly the same as an exact solution to the basic
partial di erential equation. Mathematically, these di erences are usually referred to
as truncation errors. However, the theory associated with the numerical analysis of
uid mechanics was developed predominantly by scientists deeply interested in the
physics of uid ow and, as a consequence, these errors are often identi ed with a
particular physical phenomenon on which they have a strong e ect. Thus methods are
said to have a lot of arti cial viscosity" or said to be highly dispersive. This means
that the errors caused by the numerical approximation result in a modi ed partial
di erential equation having additional terms that can be identi ed with the physics
of dissipation in the rst case and dispersion in the second. There is nothing wrong,
of course, with identifying an error with a physical process, nor with deliberately
directing an error to a speci c physical process, as long as the error remains in some
engineering sense small". It is safe to say, for example, that most numerical methods
in practical use for solving the nondissipative Euler equations create a modi ed partial
di erential equation that produces some form of dissipation. However, if used and
interpreted properly, these methods give very useful information.
Regardless of what the numerical errors are called, if their e ects are not thoroughly understood and controlled, they can lead to serious di culties, producing
answers that represent little, if any, physical reality. This motivates studying the
concepts of stability, convergence, and consistency. On the other hand, even if the
errors are kept small enough that they can be neglected (for engineering purposes),
the resulting simulation can still be of little practical use if ine cient or inappropriate
algorithms are used. This motivates studying the concepts of sti ness, factorization,
and algorithm development in general. All of these concepts we hope to clarify in
this book.
1.2

Background

The eld of computational uid dynamics has a broad range of applicability. Independent of the speci c application under study, the following sequence of steps generally
must be followed in order to obtain a satisfactory solution.

1.2.1 Problem Speci cation and Geometry Preparation

The rst step involves the speci cation of the problem, including the geometry, ow
conditions, and the requirements of the simulation. The geometry may result from
1.2. BACKGROUND

3

measurements of an existing con guration or may be associated with a design study.
Alternatively, in a design context, no geometry need be supplied. Instead, a set
of objectives and constraints must be speci ed. Flow conditions might include, for
example, the Reynolds number and Mach number for the ow over an airfoil. The
requirements of the simulation include issues such as the level of accuracy needed, the
turnaround time required, and the solution parameters of interest. The rst two of
these requirements are often in con ict and compromise is necessary. As an example
of solution parameters of interest in computing the ow eld about an airfoil, one may
be interested in i) the lift and pitching moment only, ii) the drag as well as the lift
and pitching moment, or iii) the details of the ow at some speci c location.

1.2.2 Selection of Governing Equations and Boundary Conditions

Once the problem has been speci ed, an appropriate set of governing equations and
boundary conditions must be selected. It is generally accepted that the phenomena of
importance to the eld of continuum uid dynamics are governed by the conservation
of mass, momentum, and energy. The partial di erential equations resulting from
these conservation laws are referred to as the Navier-Stokes equations. However, in
the interest of e ciency, it is always prudent to consider solving simpli ed forms
of the Navier-Stokes equations when the simpli cations retain the physics which are
essential to the goals of the simulation. Possible simpli ed governing equations include
the potential- ow equations, the Euler equations, and the thin-layer Navier-Stokes
equations. These may be steady or unsteady and compressible or incompressible.
Boundary types which may be encountered include solid walls, in ow and out ow
boundaries, periodic boundaries, symmetry boundaries, etc. The boundary conditions
which must be speci ed depend upon the governing equations. For example, at a solid
wall, the Euler equations require ow tangency to be enforced, while the Navier-Stokes
equations require the no-slip condition. If necessary, physical models must be chosen
for processes which cannot be simulated within the speci ed constraints. Turbulence
is an example of a physical process which is rarely simulated in a practical context (at
the time of writing) and thus is often modelled. The success of a simulation depends
greatly on the engineering insight involved in selecting the governing equations and
physical models based on the problem speci cation.

1.2.3 Selection of Gridding Strategy and Numerical Method

Next a numerical method and a strategy for dividing the ow domain into cells, or
elements, must be selected. We concern ourselves here only with numerical methods requiring such a tessellation of the domain, which is known as a grid, or mesh.
CHAPTER 1. INTRODUCTION

4

Many di erent gridding strategies exist, including structured, unstructured, hybrid,
composite, and overlapping grids. Furthermore, the grid can be altered based on
the solution in an approach known as solution-adaptive gridding. The numerical
methods generally used in CFD can be classi ed as nite-di erence, nite-volume,
nite-element, or spectral methods. The choices of a numerical method and a gridding strategy are strongly interdependent. For example, the use of nite-di erence
methods is typically restricted to structured grids. Here again, the success of a simulation can depend on appropriate choices for the problem or class of problems of
interest.

1.2.4 Assessment and Interpretation of Results

Finally, the results of the simulation must be assessed and interpreted. This step can
require post-processing of the data, for example calculation of forces and moments,
and can be aided by sophisticated ow visualization tools and error estimation techniques. It is critical that the magnitude of both numerical and physical-model errors
be well understood.
1.3

Overview

It should be clear that successful simulation of uid ows can involve a wide range of
issues from grid generation to turbulence modelling to the applicability of various simpli ed forms of the Navier-Stokes equations. Many of these issues are not addressed
in this book. Some of them are presented in the books by Anderson, Tannehill, and
Pletcher 1] and Hirsch 2]. Instead we focus on numerical methods, with emphasis
on nite-di erence and nite-volume methods for the Euler and Navier-Stokes equations. Rather than presenting the details of the most advanced methods, which are
still evolving, we present a foundation for developing, analyzing, and understanding
such methods.
Fortunately, to develop, analyze, and understand most numerical methods used to
nd solutions for the complete compressible Navier-Stokes equations, we can make use
of much simpler expressions, the so-called model" equations. These model equations
isolate certain aspects of the physics contained in the complete set of equations. Hence
their numerical solution can illustrate the properties of a given numerical method
when applied to a more complicated system of equations which governs similar physical phenomena. Although the model equations are extremely simple and easy to
solve, they have been carefully selected to be representative, when used intelligently,
of di culties and complexities that arise in realistic two- and three-dimensional uid
ow simulations. We believe that a thorough understanding of what happens when
1.4. NOTATION

5

numerical approximations are applied to the model equations is a major rst step in
making con dent and competent use of numerical approximations to the Euler and
Navier-Stokes equations. As a word of caution, however, it should be noted that,
although we can learn a great deal by studying numerical methods as applied to the
model equations and can use that information in the design and application of numerical methods to practical problems, there are many aspects of practical problems
which can only be understood in the context of the complete physical systems.
1.4

Notation

The notation is generally explained as it is introduced. Bold type is reserved for real
physical vectors, such as velocity. The vector symbol ~ is used for the vectors (or
column matrices) which contain the values of the dependent variable at the nodes
of a grid. Otherwise, the use of a vector consisting of a collection of scalars should
be apparent from the context and is not identi ed by any special notation. For
example, the variable u can denote a scalar Cartesian velocity component in the Euler
and Navier-Stokes equations, a scalar quantity in the linear convection and di usion
equations, and a vector consisting of a collection of scalars in our presentation of
hyperbolic systems. Some of the abbreviations used throughout the text are listed
and de ned below.
PDE
ODE
O E
RHS
P.S.
S.S.
k-D
~
bc

O( )

Partial di erential equation
Ordinary di erential equation
Ordinary di erence equation
Right-hand side
Particular solution of an ODE or system of ODE's
Fixed (time-invariant) steady-state solution
k-dimensional space
Boundary conditions, usually a vector
A term of order (i.e., proportional to)
6

CHAPTER 1. INTRODUCTION
Chapter 2
CONSERVATION LAWS AND
THE MODEL EQUATIONS
We start out by casting our equations in the most general form, the integral conservation-law form, which is useful in understanding the concepts involved in nite-volume
schemes. The equations are then recast into divergence form, which is natural for
nite-di erence schemes. The Euler and Navier-Stokes equations are brie y discussed
in this Chapter. The main focus, though, will be on representative model equations,
in particular, the convection and di usion equations. These equations contain many
of the salient mathematical and physical features of the full Navier-Stokes equations.
The concepts of convection and di usion are prevalent in our development of numerical methods for computational uid dynamics, and the recurring use of these
model equations allows us to develop a consistent framework of analysis for consistency, accuracy, stability, and convergence. The model equations we study have two
properties in common. They are linear partial di erential equations (PDE's) with
coe cients that are constant in both space and time, and they represent phenomena
of importance to the analysis of certain aspects of uid dynamic problems.

2.1 Conservation Laws
Conservation laws, such as the Euler and Navier-Stokes equations and our model
equations, can be written in the following integral form:
Z

V (t2 )

QdV ;

Z

V (t1 )

QdV +

Z t2 I

t1

S (t)

n:FdSdt =

Z t2 Z

t1

V (t)

PdV dt

(2.1)

In this equation, Q is a vector containing the set of variables which are conserved,
e.g., mass, momentum, and energy, per unit volume. The equation is a statement of
7
8

CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS

the conservation of these quantities in a nite region of space with volume V (t) and
surface area S (t) over a nite interval of time t2 ; t1 . In two dimensions, the region
of space, or cell, is an area A(t) bounded by a closed contour C (t). The vector n is
a unit vector normal to the surface pointing outward, F is a set of vectors, or tensor,
containing the ux of Q per unit area per unit time, and P is the rate of production
of Q per unit volume per unit time. If all variables are continuous in time, then Eq.
2.1 can be rewritten as
d Z QdV + I n:FdS = Z PdV
(2.2)
dt V (t)
S (t)
V (t)
Those methods which make various numerical approximations of the integrals in Eqs.
2.1 and 2.2 and nd a solution for Q on that basis are referred to as nite-volume
methods. Many of the advanced codes written for CFD applications are based on the
nite-volume concept.
On the other hand, a partial derivative form of a conservation law can also be
derived. The divergence form of Eq. 2.2 is obtained by applying Gauss's theorem to
the ux integral, leading to
@Q + r:F = P
(2.3)
@t
where r: is the well-known divergence operator given, in Cartesian coordinates, by
!
@ +j @ +k @ :
(2.4)
r: i @x @y @z
and i j, and k are unit vectors in the x y, and z coordinate directions, respectively.
Those methods which make various approximations of the derivatives in Eq. 2.3 and
nd a solution for Q on that basis are referred to as nite-di erence methods.

2.2 The Navier-Stokes and Euler Equations
The Navier-Stokes equations form a coupled system of nonlinear PDE's describing
the conservation of mass, momentum and energy for a uid. For a Newtonian uid
in one dimension, they can be written as
@Q + @E = 0
(2.5)
@t @x
with
2 3
2
3
u 3 2
0
6
6
Q=6
6
6
4

7
7
u7
7
7
5

e

E

6
6
=6
6
6
4

7 6
7 6
2+p 7;6
u
7 6
7 6
5 4

u(e + p)

4 @u
3 @x
4
3

u @u +
@x

@T
@x

7
7
7
7
7
5

(2.6)
2.2. THE NAVIER-STOKES AND EULER EQUATIONS

9

where is the uid density, u is the velocity, e is the total energy per unit volume, p is
the pressure, T is the temperature, is the coe cient of viscosity, and is the thermal
conductivity. The total energy e includes internal energy per unit volume (where
is the internal energy per unit mass) and kinetic energy per unit volume u2=2.
These equations must be supplemented by relations between and and the uid
state as well as an equation of state, such as the ideal gas law. Details can be found
in Anderson, Tannehill, and Pletcher 1] and Hirsch 2]. Note that the convective
uxes lead to rst derivatives in space, while the viscous and heat conduction terms
involve second derivatives. This form of the equations is called conservation-law or
conservative form. Non-conservative forms can be obtained by expanding derivatives
of products using the product rule or by introducing di erent dependent variables,
such as u and p. Although non-conservative forms of the equations are analytically
the same as the above form, they can lead to quite di erent numerical solutions in
terms of shock strength and shock speed, for example. Thus the conservative form is
appropriate for solving ows with features such as shock waves.
Many ows of engineering interest are steady (time-invariant), or at least may be
treated as such. For such ows, we are often interested in the steady-state solution of
the Navier-Stokes equations, with no interest in the transient portion of the solution.
The steady solution to the one-dimensional Navier-Stokes equations must satisfy
@E = 0
(2.7)
@x
If we neglect viscosity and heat conduction, the Euler equations are obtained. In
two-dimensional Cartesian coordinates, these can be written as
@Q + @E + @F = 0
(2.8)
@t @x @y
with
2 3 2 3
2
2
q1
u 3
v 3
6 7 6 7
6 2+ 7
6
7
Q = 6 q2 7 = 6 u 7 E = 6 u uv p 7 F = 6 v2uv p 7
6 7 6 7
6
7
6
(2.9)
4 q3 5 4 v 5
4
5
4
5
+ 7
q4
e
u(e + p)
v ( e + p)
where u and v are the Cartesian velocity components. Later on we will make use of
the following form of the Euler equations as well:
@Q + A @Q + B @Q = 0
(2.10)
@t
@x
@y
@E
@F
The matrices A = @Q and B = @Q are known as the ux Jacobians. The ux vectors
given above are written in terms of the primitive variables, , u, v, and p. In order
10

CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS

to derive the ux Jacobian matrices, we must rst write the ux vectors E and F in
terms of the conservative variables, q1 , q2, q3 , and q4 , as follows:

E

F

2
3
6
7 6
7 6
7 6
7 6
7 6
7=6
7 6
7 6
7 6
7 6
7 6
5 6
6
4

2
6
6
6
6
6
=6
6
6
6
6
6
4

E1

2
6
6
6
6
6
=6
6
6
6
6
6
4

3 2
F1 7 6
7 6
7 6
6
F2 7 6
7 6
7=6
7 6
7 6
F3 7 6
7 6
7 6
5 6
4
F4

E2
E3
E4

3
7
7
7
2
2 7
3; q2 ; ;1 q3 7
; 1)q4 + 2 q1 2 q1 7
7
7
7
q3 q2
7
7
q1
7
7
7
5
3
2q
q4 q2 ; ;1 q2 + q3 2
2
2
q1
2 q1
q1

(2.11)

3
7
7
7
7
7
7
7
7
2 7
;1 q2 7
2 q1 7
7
7
5
3
q3
2
q1

(2.12)

q2

(

q3
q3 q2
q1

( ; 1)q4 + 3;
2
q4 q 3
q1

;

2
q3
q1

2q
;1 q2 2 3

2

q1

;
+

We have assumed that the pressure satis es p = ( ; 1) e ; (u2 + v2)=2] from the
ideal gas law, where is the ratio of speci c heats, cp=cv . From this it follows that
the ux Jacobian of E can be written in terms of the conservative variables as

A=

2
6
6
6
6
6
@Ei = 6
6
6
@qj 6
6
6
6
6
4

0

1

0

0

a21

(1 ; ) q3
q1
q2
q1

;1

q
; q2 q1
q1 3

(3 ; ) q2
q1
q
q3
1

a41

a42

a43

q2
q1

where

a21 =

!

; 1 q3 2 ; 3 ;
2 q1
2

q2
q1

!2

0

3
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.13)
2.2. THE NAVIER-STOKES AND EULER EQUATIONS
2
; 1)4

+ q3
q1

!2

q4 ; ; 1 43 q2
a42 =
q1
2
q1
!
!
q2 q3
a43 = ;( ; 1) q q
1
1
and in terms of the primitive variables as

!2

a41 = (

q2
q1

!3

2

!

2
6
6
6
6
6
A=6
6
6
6
6
6
4

0

1

q2
q1

!3
5;

+ q3
q1

!2 3
5

0

0

;uv

v

u

0

a41

a42

a43

u

a21 =

q4
q1

!

q2
q1

!

(2.14)

a21 (3 ; )u (1 ; )v ( ; 1)

where

11

3
7
7
7
7
7
7
7
7
7
7
7
5

(2.15)

; 1 v2 ; 3 ; u2
2
2

a41 = ( ; 1)u(u2 + v2) ; ue
a42 =

e ; ; 1 (3u2 + v2 )
2

a43 = (1 ; )uv
(2.16)
Derivation of the two forms of B = @F=@Q is similar. The eigenvalues of the ux
Jacobian matrices are purely real. This is the de ning feature of hyperbolic systems
of PDE's, which are further discussed in Section 2.5. The homogeneous property of
the Euler equations is discussed in Appendix C.
The Navier-Stokes equations include both convective and di usive uxes. This
motivates the choice of our two scalar model equations associated with the physics
of convection and di usion. Furthermore, aspects of convective phenomena associated with coupled systems of equations such as the Euler equations are important in
developing numerical methods and boundary conditions. Thus we also study linear
hyperbolic systems of PDE's.
12

CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS

2.3 The Linear Convection Equation
2.3.1 Di erential Form

The simplest linear model for convection and wave propagation is the linear convection
equation given by the following PDE:
@u + a @u = 0
(2.17)
@t @x
Here u(x t) is a scalar quantity propagating with speed a, a real constant which may
be positive or negative. The manner in which the boundary conditions are speci ed
separates the following two phenomena for which this equation is a model:
(1) In one type, the scalar quantity u is given on one boundary, corresponding
to a wave entering the domain through this in ow" boundary. No boundary condition is speci ed at the opposite side, the out ow" boundary. This
is consistent in terms of the well-posedness of a 1st-order PDE. Hence the
wave leaves the domain through the out ow boundary without distortion or
re ection. This type of phenomenon is referred to, simply, as the convection
problem. It represents most of the usual" situations encountered in convecting systems. Note that the left-hand boundary is the in ow boundary when
a is positive, while the right-hand boundary is the in ow boundary when a is
negative.
(2) In the other type, the ow being simulated is periodic. At any given time,
what enters on one side of the domain must be the same as that which is
leaving on the other. This is referred to as the biconvection problem. It is
the simplest to study and serves to illustrate many of the basic properties of
numerical methods applied to problems involving convection, without special
consideration of boundaries. Hence, we pay a great deal of attention to it in
the initial chapters.
Now let us consider a situation in which the initial condition is given by u(x 0) =
u0(x), and the domain is in nite. It is easy to show by substitution that the exact
solution to the linear convection equation is then
u(x t) = u0(x ; at)
(2.18)
The initial waveform propagates unaltered with speed jaj to the right if a is positive
and to the left if a is negative. With periodic boundary conditions, the waveform
travels through one boundary and reappears at the other boundary, eventually returning to its initial position. In this case, the process continues forever without any
2.3. THE LINEAR CONVECTION EQUATION

13

change in the shape of the solution. Preserving the shape of the initial condition
u0(x) can be a di cult challenge for a numerical method.

2.3.2 Solution in Wave Space

We now examine the biconvection problem in more detail. Let the domain be given
by 0 x 2 . We restrict our attention to initial conditions in the form
u(x 0) = f (0)ei x
(2.19)
where f (0) is a complex constant, and is the wavenumber. In order to satisfy the
periodic boundary conditions, must be an integer. It is a measure of the number of
wavelengths within the domain. With such an initial condition, the solution can be
written as
u(x t) = f (t)ei x
(2.20)
where the time dependence is contained in the complex function f (t). Substituting
this solution into the linear convection equation, Eq. 2.17, we nd that f (t) satis es
the following ordinary di erential equation (ODE)
df = ;ia f
(2.21)
dt
which has the solution
f (t) = f (0)e;ia t
(2.22)
Substituting f (t) into Eq. 2.20 gives the following solution
u(x t) = f (0)ei (x;at) = f (0)ei( x;!t)
(2.23)
where the frequency, !, the wavenumber, , and the phase speed, a, are related by
!= a
(2.24)
The relation between the frequency and the wavenumber is known as the dispersion
relation. The linear relation given by Eq. 2.24 is characteristic of wave propagation
in a nondispersive medium. This means that the phase speed is the same for all
wavenumbers. As we shall see later, most numerical methods introduce some dispersion that is, in a simulation, waves with di erent wavenumbers travel at di erent
speeds.
An arbitrary initial waveform can be produced by summing initial conditions of
the form of Eq. 2.19. For M modes, one obtains

u(x 0) =

M
X
m=1

fm (0)ei mx

(2.25)
14

CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS

where the wavenumbers are often ordered such that 1 2
M . Since the
wave equation is linear, the solution is obtained by summing solutions of the form of
Eq. 2.23, giving

u(x t) =

M
X

m=1

fm (0)ei m(x;at)

(2.26)

Dispersion and dissipation resulting from a numerical approximation will cause the
shape of the solution to change from that of the original waveform.

2.4 The Di usion Equation
2.4.1 Di erential Form

Di usive uxes are associated with molecular motion in a continuum uid. A simple
linear model equation for a di usive process is

@u = @ 2 u
(2.27)
@t
@x2
where is a positive real constant. For example, with u representing the temperature, this parabolic PDE governs the di usion of heat in one dimension. Boundary
conditions can be periodic, Dirichlet (speci ed u), Neumann (speci ed @u=@x), or
mixed Dirichlet/Neumann.
In contrast to the linear convection equation, the di usion equation has a nontrivial
steady-state solution, which is one that satis es the governing PDE with the partial
derivative in time equal to zero. In the case of Eq. 2.27, the steady-state solution
must satisfy
@2u = 0
(2.28)
@x2

Therefore, u must vary linearly with x at steady state such that the boundary conditions are satis ed. Other steady-state solutions are obtained if a source term g(x)
is added to Eq. 2.27, as follows:

@u =
@t

" 2
@u
@x2

; g(x)

#

(2.29)

giving a steady state-solution which satis es

@ 2 u ; g(x) = 0
@x2

(2.30)
2.4. THE DIFFUSION EQUATION

15

In two dimensions, the di usion equation becomes
"
#
@u = @ 2 u + @ 2 u ; g(x y)
(2.31)
@t
@x2 @y2
where g(x y) is again a source term. The corresponding steady equation is
@ 2 u + @ 2 u ; g(x y) = 0
(2.32)
@x2 @y2
While Eq. 2.31 is parabolic, Eq. 2.32 is elliptic. The latter is known as the Poisson
equation for nonzero g, and as Laplace's equation for zero g.

2.4.2 Solution in Wave Space

We now consider a series solution to Eq. 2.27. Let the domain be given by 0 x
with boundary conditions u(0) = ua, u( ) = ub. It is clear that the steady-state
solution is given by a linear function which satis es the boundary conditions, i.e.,
h(x) = ua + (ub ; ua)x= . Let the initial condition be

u(x 0) =

M
X
m=1

fm(0) sin m x + h(x)

(2.33)

where must be an integer in order to satisfy the boundary conditions. A solution
of the form
M
X
u(x t) = fm(t) sin mx + h(x)
(2.34)
m=1

satis es the initial and boundary conditions. Substituting this form into Eq. 2.27
gives the following ODE for fm :
dfm = ; 2 f
(2.35)
m m
dt
and we nd
m
fm(t) = fm(0)e; 2 t
(2.36)
Substituting fm(t) into equation 2.34, we obtain

u(x t) =

M
X
m=1

m
fm (0)e; 2 t sin m x + h(x)

(2.37)

The steady-state solution (t ! 1) is simply h(x). Eq. 2.37 shows that high wavenumber components (large m) of the solution decay more rapidly than low wavenumber
components, consistent with the physics of di usion.
CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS

16

2.5 Linear Hyperbolic Systems

The Euler equations, Eq. 2.8, form a hyperbolic system of partial di erential equations. Other systems of equations governing convection and wave propagation phenomena, such as the Maxwell equations describing the propagation of electromagnetic
waves, are also of hyperbolic type. Many aspects of numerical methods for such systems can be understood by studying a one-dimensional constant-coe cient linear
system of the form
@u + A @u = 0
(2.38)
@t
@x
where u = u(x t) is a vector of length m and A is a real m m matrix. For
conservation laws, this equation can also be written in the form
@u + @f = 0
(2.39)
@t @x
@f
where f is the ux vector and A = @u is the ux Jacobian matrix. The entries in the
ux Jacobian are
@f
aij = @ui
(2.40)
j
The ux Jacobian for the Euler equations is derived in Section 2.2.
Such a system is hyperbolic if A is diagonalizable with real eigenvalues.1 Thus
= X ;1AX
(2.41)
where is a diagonal matrix containing the eigenvalues of A, and X is the matrix
of right eigenvectors. Premultiplying Eq. 2.38 by X ;1 , postmultiplying A by the
product XX ;1, and noting that X and X ;1 are constants, we obtain

@X ;1u

z }| {
@ X ;1AX X ;1u

=0
(2.42)
@t +
@x
With w = X ;1u, this can be rewritten as
@w + @w = 0
(2.43)
@t
@x
When written in this manner, the equations have been decoupled into m scalar equations of the form
@wi + @wi = 0
(2.44)
i
@t
@x
1

See Appendix A for a brief review of some basic relations and de nitions from linear algebra.
2.6. PROBLEMS

17

The elements of w are known as characteristic variables. Each characteristic variable
satis es the linear convection equation with the speed given by the corresponding
eigenvalue of A.
Based on the above, we see that a hyperbolic system in the form of Eq. 2.38 has a
solution given by the superposition of waves which can travel in either the positive or
negative directions and at varying speeds. While the scalar linear convection equation
is clearly an excellent model equation for hyperbolic systems, we must ensure that
our numerical methods are appropriate for wave speeds of arbitrary sign and possibly
widely varying magnitudes.
The one-dimensional Euler equations can also be diagonalized, leading to three
equations in the form of the linear convection equation, although they remain nonlinear, of course. The eigenvalues of the ux Jacobian matrix, or wave speeds, are
q
u u + c, and u ; c, where u is the local uid velocity, and c = p= is the local
speed of sound. The speed u is associated with convection of the uid, while u + c
and u ; c are associated with sound waves. Therefore, in a supersonic ow, where
juj > c, all of the wave speeds have the same sign. In a subsonic ow, where juj < c,
wave speeds of both positive and negative sign are present, corresponding to the fact
that sound waves can travel upstream in a subsonic ow.
The signs of the eigenvalues of the matrix A are also important in determining
suitable boundary conditions. The characteristic variables each satisfy the linear convection equation with the wave speed given by the corresponding eigenvalue. Therefore, the boundary conditions can be speci ed accordingly. That is, characteristic
variables associated with positive eigenvalues can be speci ed at the left boundary,
which corresponds to in ow for these variables. Characteristic variables associated
with negative eigenvalues can be speci ed at the right boundary, which is the inow boundary for these variables. While other boundary condition treatments are
possible, they must be consistent with this approach.

2.6 Problems
1. Show that the 1-D Euler equations can be written in terms of the primitive
variables R = u p]T as follows:
@R + M @R = 0
@t
@x
where
2
3
u
0
M = 6 0 u ;1 7
4
5
0 p u
18

CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS
Assume an ideal gas, p = ( ; 1)(e ; u2=2).
2. Find the eigenvalues and eigenvectors of the matrix M derived in question 1.
3. Derive the ux Jacobian matrix A = @E=@Q for the 1-D Euler equations resulting from the conservative variable formulation (Eq. 2.5). Find its eigenvalues
and compare with those obtained in question 2.
4. Show that the two matrices M and A derived in questions 1 and 3, respectively,
are related by a similarity transform. (Hint: make use of the matrix S =
@Q=@R.)
5. Write the 2-D di usion equation, Eq. 2.31, in the form of Eq. 2.2.
6. Given the initial condition u(x 0) = sin x de ned on 0 x 2 , write it in the
form of Eq. 2.25, that is, nd the necessary values of fm (0). (Hint: use M = 2
with 1 = 1 and 2 = ;1.) Next consider the same initial condition de ned
only at x = 2 j=4, j = 0 1 2 3. Find the values of fm(0) required to reproduce
the initial condition at these discrete points using M = 4 with m = m ; 1.
7. Plot the rst three basis functions used in constructing the exact solution to
the di usion equation in Section 2.4.2. Next consider a solution with boundary
conditions ua = ub = 0, and initial conditions from Eq. 2.33 with fm(0) = 1
for 1 m 3, fm (0) = 0 for m > 3. Plot the initial condition on the domain
0 x . Plot the solution at t = 1 with = 1.
8. Write the classical wave equation @ 2 u=@t2 = c2 @ 2 u=@x2 as a rst-order system,
i.e., in the form
@U + A @U = 0
@t
@x
where U = @u=@x @u=@t]T . Find the eigenvalues and eigenvectors of A.
9. The Cauchy-Riemann equations are formed from the coupling of the steady
compressible continuity (conservation of mass) equation
@ u+@ v =0
@x @y
and the vorticity de nition
@v
! = ; @x + @u = 0
@y
2.6. PROBLEMS

19

where ! = 0 for irrotational ow. For isentropic and homenthalpic ow, the
system is closed by the relation
= 1 ; ; 1 u2 + v2 ; 1
2

1

;1

Note that the variables have been nondimensionalized. Combining the two
PDE's, we have
@f (q) + @g(q) = 0
@x
@y
where
v
q= u
f = ;v u
g = ;u
v
;
One approach to solving these equations is to add a time-dependent term and
nd the steady solution of the following equation:
@q + @f + @g = 0
@t @x @y
(a) Find the ux Jacobians of f and g with respect to q.
(b) Determine the eigenvalues of the ux Jacobians.
(c) Determine the conditions (in terms of and u) under which the system is
hyperbolic, i.e., has real eigenvalues.
(d) Are the above uxes homogeneous? (See Appendix C.)
20

CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS
¡
¢ 
¦  
H ‰B d 4 Y H h 5 D h H h H H 2 2 5B D T D 5 2 h 2 T Y 7 d H D H F D H 2 n H h 5 D Y R Y DB 7 d H  H d R ` n YB F D q 5 2 5B
†X‚QW6IkGÆQI6QIÅ8EGVG¢I¬I¢–9W6GeIW‰II6IkG‘IwGE9W6s‚I8U…EIG‘¢Å8EGD
r 4 H  Y 2B 2 i ’ ¥ H d R `B ¤ 2B 2 @ 5 F Y YB H 4 T  Y h 2 T H 7B D F D 5 ‰ ` 2B by 5 b 2B F Y H 7 D Y Hy  7B Y H F
–Q†WIEe™j’   p™WI8EvX‰CcIWvXuQVUWeIV9XGŽW¢†…IXx„88oX‚Q9Š‚6XI9X‚Iut
¶ Ã ¹ » ´ » Ã
9Q”av–ÄÂ

± Á ¶ ± À ± ¿ ¹ ½ ¼ ± » ¹ ¶ ¹
‘ej)6¾hfv6egº¸

· ¶ ´ ² ± ³ ²
ewµ”±

°

¯ ®
c­

’ 2 5B D T 4By   T y T 4B D 4 T d
‹8EGVQXEII¢›VgXW6¢WI
` 2B Y 5y d 5 H bB D 4B d D Y H d iy R h 2 R ` 2B H ‰ D R 5 F DB
IX‚8X98‰8EW6EWGfQ‚¬EIIpIrIEQ†9p8IWEC@ QGfx‚«VƒW6Gf¢ŠªQ6¢U‚XISQ©¢‚Iv@
7 H DY i Y 2 TB Y H Dd T  h H 4 T  YB R P H 2 T H Y R H
YB Y iy T 2 T i 4 T d R 4 4 T ` 2B @ 5yy 5q H F D q 5 F 4 R 7 2B t 2 5 Y T H d YB F D d 5 ¤ ’ Y 2 5B D T R P H h H 7 d 5q Y 2 T d
XWx„¢U¢6VGI6Q¢IECcXX¢•9IWŠ¢ƒI…AX§‹8WVgWwXpG8UeQp8XWVUSQAQ9W8•fI¢WGD
H F D q 5 Y D 2 HB 4 ¨ H 5 4 Hy ‰ TB d T b 5 D 2B h H ‰ d 5 Y ‰ T YB 2 5B D TB d T b 4B d D H 7 5 H ` H F D yy T ’ 7 d 5qB 2 R YB }   œ
pGpVvGo6XQ9‡˜6”XIVƒWV¢CGoEwQ†W¢WI¢§E8XWVƒ‚¢V”XWW698Q¢vIW¢XV¢‰W8•„II˜Xhƒxp3ž
 ¢†lŸš¢£x†™lƒIu§8E˜”Wp8XvuEwCcI‚›¢s‡ƒxp3V¢†lŸš¢£x†™lƒ#QEX¢Q3V‚uuX‹E¢V‚QWoXB
 „ ‡yx x ¢ œ { ‡  H F t ’ ¦’ ¥ H d R `B ¤ 2B 2 @ 5 F Y Y T t }   œž    „ ‡yx x ¢ œ { ‡  h Hyy T 4r 5 Y T 2B Yy T b d H D 2
h H 4 T  YB R P H F DB @ F Y H 7 2 TB Y H D d T  7 d 5qB 2 R T 5 D h H 7 d 5q Y 2 T d D H ‰ 2 T 4 }   œ ž    y ž  ‚ œ 2
Q6¢U‚XISQG„CW6#¢ƒ‚QW‚¢Š¡‚8•EpI††GAQ9W8•fI¢GW9†rVgƒxp3v¢WŸ‡cxUeXB
Y H D T 2B h d 5 5 4 d T H 2ByB b d R 4 y T d H 2 H ` 2B h H Y Y H d  — H Y H F Y H 7 q 5 Y H Y Y Ty 4 y T d H 2 H ` H DB R P D T F D D 4 T
6GVIXI‚8˜6Š¢QIXEXx‚I6›¢G6IQ¢‰EeQ‚WQ‚I˜‡‘QI‚Q9vVf6WWVƒQ›VGQpQ8uG„ISCVUW‘‡¢šq
H F D H ŒB Y T F  7 H H ™ ’ 7 H D Y i Y 2 TB Y H D d T  T 2B h H D 2 H Y H d  YB @ 5y H ‰ y TB d H D T 7 H F D q 5 yy
pG…QEW¢II#6…w‰QW‚x‚e¢XW6G‚VŠeXAQWS6W6WIEsEQ†˜¢ƒ‚QGld‘IWj¢vE™i
’ — d H D  T F  2B h H Y Y R 4 YB h H ‰ yyB @ Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h r H DB 2 n H Y H F
If6GpVU•‰X6W‚IQ‚XIu†hXEC•I8EGV#X˜gWpI¢uQpQW6h„I3–G„IUuWQpGD
` 2B iy   T d 5q Y HB ` H D T d D ” ’ “ d H D  T F  2B h H D T H d D H d T Y H bB D T bB d H h H 7B D ’ Y H bB D T bB d H h y TB D T 
pXxEIp¢u8••6X86GVWGx€˜CQG˜¢U•‰Xe6GVQWWW¢u68„GVVE‚QIf#EGp6Q¢EGl¢„W6Ih¢XGVIWY
2 5 YB d H D  T F  YB F D 2B YB Y T F  7 H d R “ ’ Y H bB D T bB d H h H 7B D d 5 Y H bB D T bB d H h y TB D T  Y 5 D d H F DB
8‘X™QG˜¢U•EIG‰XfXWVUI9Q™p™Q68„GVVE‚QIw9XGC8fQ8„GVV„WQpm¢XGVIWdWf6IG„QH
h HBy   T H ‰ 2 T 4 H Y H F t ’ h H D 2 H Y H d  YB Y H bB D T bB d H h y TB D d T  5 D Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB
6XEII¢#sr¢gŽ‚QIu†‹QWoQW6WIuEwQ¢EWVVEW6Ij¢XG‚VUWI8XWV#X˜gWIIVŽQpQW6h„Ih
r H DB 2 n q 5 D  H 4 2 5 4 H F D t d H D  T F 4 YB F D 2 1 ’ H d H F h H ŒB Y T F  7 H F 4 T 5 d   T H F D YB YB F t ’ h H by 5
‡G„IUm¢p6QI¢QwIGUQ6GpVUƒfEIG3ŠVWQpQ6X‚¢UI9Q†ƒ¢oWpI¢aIGuXCEIuŠ‹68E¢WY
H ‰ 2 T 4 F 4B F @ Y 2 5B D T R P H H 4 2 H d H gB h q 5 D H Y T Y H 4 R h 5 d  F 4B F @ ˆ ‡ ‚x } { … „y ‚  €  { ~ } {yx
†rVg)ƒEICwp8XWVUSQ9QI6W6h„IŠ¢w6‚‰wQQpI˜‚IrƒEIC9QU|‡d†x|xƒG¢93‡d|zkT
5 D ` 2B h T Hy t D — H 2 h H D T 7B — 5 d   T H d T Y H bB D T bB d H h H 7B D H F t ’ Y 2 5B D T R P H y TB D 2 H d H gB h i d T 2B
WwIEI¢QXpQx‡I#QGldEpg‚II¢™W¢vQ¢EGl¢„W6If9XWfIuj6I8EGVUS6†VƒGo6WQsEp–‚¢UEIh
r d 5 q 5 7 H D Y i Y T ` 2B 4 R h 5 d  i ‰ H d H F D t D Y d n Y H bB D T bB d H h y TB D T  Y H F D H D T 7B — 5 d   T 2 T 4 H 2
f8ˆ¢pQGfx‚depXQpI˜‚Io6WQpGhQ‚WI™Q¢EGl¢„W6ImVƒGlUW…pGuGV#X˜gWIp¢k¢gwI85
t8„Q8„GVIWQWEfjQI8EGVIx6QpQW6h„IwpXG„IW6WfIG™¢E8‚eQIWdI¢9„WI¢QI¢GEIwXW™WQpGD
iy H bB D T 2 d H Dy i ’ Y 2 5B D T R P H H 4 2 H d H gB h ` 2B Dy R Y H d H F D H by 5 Y 2 H F D h 2 T iy Y R 5 H 2 T Dy R 7B Y H Y H F
H D T 7B — 5 d   T 2 T 4 H 2 “ ’ H 7B D h 2 T H 4 T  Y F D 5 ‰ 5 D D 4 H  Y H d F DB @ Y H bB D T bB d H h y TB D d T  2B T D 2 5
GV#X˜gWIp¢–¢g•I”V#EG…I¢C6¢U‚‘G¢†Gˆ‡Q†WQ‚…G„CvQ¢EWVVEW6Ix¢ƒW‚¢UwX¢GS¢Q4
Y 2 5B D T R P H y H h 5 7 d R 5 t @ 5 q hB R q i h T H D Y 2 R ` 2B 2 d H b 5 ` Y 2 5B D T R P H H F D F DB @ 2 5 7 7 5 4 2
p8XWVUSQ€QIx9wI8vusIrXIIpVgGfIIeIEIW68c8aI8XWVUSQ#IGGECA89#86)31

0



'
)


£


%

$







(

'


#!



$





 ©
¨



%




¦
§¥

¤



£
’ D 2 H 2 5  — H 2
QoQI8†˜‡‰¢T ¢W•Š„‰‚XI¢IXW‚Xp9Wf6WQpGoQ‚¢U
7 5 dq DB F YB R ` 2B D YB h 5 D Y H Y H F D 2 H d T
F DB @ h H Y 5y 4 2 H iyy T R Y R YB h 2 T D B d 4 Y d H  R Y T Y i T @y T YB H 7B D t d H F D H ` 5 D h H Y R 2 H F @ D R
WECÅQ‚8X6IQEE¢UWp…X¬I¢9˜XW6W‚Q†IW–xgŠ„¢‘EŽ#EGjQ6IG‡88W¬6WIÆQpC‘pI‰
t D B d 4 Y ‰ R Y T Y T d T H   T Y H 4B h 2B H 4 T  Y h 2 T H 7B D H F D F D 5 ‰ t H 2 5y T h H Y R 2 H F @ D T F D H 4B D 5
QpX‚Q‚IIW‘C¢‘¢Qsp¢uQ6XIpXwQ¢U‚I¢9XWupGeG¢†pVI8E¢6WI‰QICulUG6XGVfò
ç ’ ¥
8¥ pšæ

  ü ¢í
¡‚£Ý
¤ý ü
¥Icï
  ü í Ý ä ç ß îû þ ø ù æ
¡‚xÿˆs‘XŽÆ™ê ‚mÝ
ý ü ï Ý ä ç ñ û õ ø ìù æ
IgUðˆë|x©9ú‚mÝ

ä ç ñ õ ø Þà ß î þ ø ßæ
¡†p«˜‚˜‘¬‘|mÝ
ä ç ß î þ ø ßæ
¾s…¬‘|vÝ
ä ç ñ õ ø Þæ
¡†p«‹•mÝ

Û Y @ 5yy 5q Y T YB ` 2B — H h 2B D B d 4 Y d H  R Y h 2 T D B d 4 Y ‰ R Y d 5q 2 5B D 2 H b 2 5 4 H F
QCcXE8•u¢CX–IE˜‡IIE‘pX‚QW‚Q†IW‰I¢fpEW6WII‚u8•†¢XGo68o8QwIut
’ Y R 5B b ‰ 5 ` 2B 2 T H 7 H F D H ÷ T 7 hy R 5 F
6I8E˜o8‘pXI¢Q#uIW¢¢#XI8pWY
Dx‡Wo8Qu¢Q˜EC‡p‚¢WW6QQp96#EG‡#8‚#EºƒXpC•e6W8†WpI#6IGV#8•©QWp†‚¢ƒs–8£vì
— H D 2 5 4 y T 4 5y t ç i d T Y Y H 4 H 2 Y H 7B D H 7 5 Y YB F 4B F @æ Y H Y 5  d R  d H F D 5 d 5q h H Y R H d T ö à õ à êà
2 H F ™ ’ i T @ d TyB 7B Y T 2B â h 2 T á d 5q h H Y R H d T ö h 2 T õ d H D T ô ’ D R 5 F ` R 5 d F D Þ î ä ñ D T F
Qpª•8g•v¢XX9XW–†X#†I¢Ž‘¢•Q‚IuW¢j†I¢6GV˜vgp¢I8I8‚IG•‘óe™VIGD
HD 5 ò
W¢f‘’   pwWp8Xv†XeCcI‚™¢s–XdpXQVUWaIGu…p¢A†EdIEQ¢U‚wIWuXk…‘W6IC@
’ ¥ H d R `B ¤ 2B 2 @ 5 F Y Y T t Þ 2B ` 2B 4 T  Y H F D Þ î h 2 T ß 2B ` 2B 4 T  Y H F D YB ß î H d H F
ß î ê ä í
…S«uxß

ç ¦’ ¥
cEpšæ

ñ ì ä Þ î ì ä ï
›ª€…‹ða3Þ

ç   pšæ
’ ¥

ä
¡Þ
ä

ß

hB d ` h H 4 T  YB R P H 2 T 2 5 2 H F t ’ ì ž   è   YB
X‚86Q¢IWXpx6¢¢Qpujv•s¢€é¢wEŠÞ
d 5q D T F D h 2 T t ê ž   è   YB ß d 5q — H h 2B F Y H 7 H F t ’ h H 7 R Y Y T YB d H F D 5 H F D 2 5 H 4 2 H h 2 H  H
¢•uVUG‰I¢ëUˆc¢€é¢wXC¢•e‡IpX‚Q9apu•‹6#I‚W¢CEf6IGVwpG8…QpQII6s6Ih
t h H D 5 2 H h YB Hy ‰ TB d T b H 2 5 iy 2 5 2 H F ™ ’ ç Þ à ßæ Ý ä Ý H Y T 4 ã r ¦ H F D iyB d T 7B d  d H hB Y 2 5 4 H
hQGVIQI™XwXI¢XW¢Vwp8„I8kQpªu–‚W˜•måe‘W¢QÏÔ6eIWd„XWVdEWI6IX‚I8Q‘v@
Y d H D  T F 4 y T d H b H Y D Y d n H F D d 5 ¤ ’ â à á à ß h 2 T t Þ Y Hy ‰ TB d T b D 2 H h 2 H  H h 2B H F D q 5 Y 2 5B D 4 2 Rq H d
W6GpVUƒh¢WQ¢6W•‚‚UfIWj8Ujpƒ†G˜dIVp–jQEI¢XW¢VŠoQpIQ†QIpX™pG‹¢vI8EG6pI•‘‚¢T
t Hy  7 T — H d 5q t Ý t Y Hy ‰ TB d T b D 2 H h 2 H  H h H F D ty T d H 2 H ` 2 1 ’ Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h H DB 2
¢Xp#¢p–Š8•˜˜˜QQEI¢XW¢VCoQII6s6IIW˜ŸVGQpQ83”6I8XWV#X˜gWIIVuQI6WQsEpG„IUn
’ Y H 4 T  Y y T 2 5B D T D R  7 5 4 h 2 T y T 4B Y i F
Q6Q¢IWhVU8XWVƒ˜I#¢Q‰I¢˜¢QXWxojÜ

Û ¦’ ¥ H d R `B
8„puWI¢Xv¤

x
y

Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È
u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç

 
8 
ç 9’ ¥
¢%pšæ

’ 4D
¢W6H

’ 7 d 5qB 2 R YB ` 2B 4 T  Y H F D t ß î d 5 Þ î 2 5 D B d 4 Y ‰ R Y 5 2 YB H d H F D 2 H F
†‚8•EpIuX–IEQ¢U‚uIGU˜…C8Š…‰8fpX‚Q‚IIW–IuEa‚QIW‰6Iª™
à ï Ý 6 4 ü ï Ý ä ï Ý
˜UÅ85cUªaë‘î

à í ß 6 4 üí ß ä í ß
sxr'5‚xªCx…î

à ïÞ 6 4 ü ï
I3r75c3Þ

ä ïÞ
a3…î

D T F D F 4 R Y h H 2 n H h YB F 4B F @ t î y 5 ‰ 7 i
VUW†ƒI‚QpU6IuE†ƒEICIe˜8†…x‚Y
H F D YB 2 5B D  H 4 — H H 2 5 H F t ’ ` 2B 2 T H 7 H YB 4 H d  Y DB H 2B 7 d H D H h 5 D h H Y R H d T Y i T @ d H F D “ ’
pGXk8EGp6Q˜‡‘p8‘IuuIIEI¢g9‘WEQ6WIWE…pX9WQW6IWk6WI‘‚¢wxc•QpG™…S(
y 5 ‰ 7 i Y H F D 2B h HB d d T 4 D 5 2 YB 2 5B D T 7B — 5 d   T H F D q 5 ç d H h d 5 h 2 Tæ H d R D T 2 H YB 4 H d  H F D D R
8sw˜fuIGŽE‰6X‚W¢QC¢IuXd8XWVdE˜c‚II¢upG§¢•ƒ6IW8‰I¢š9WIWVUuWEQ6WIuIWupI‰

  0 
¥21¥ (

ç ’ ¥
8“ pšæ

à 321 (
  0

t Hy  7 T — H d 5q t D T F D F 4 R Y H bB D T bB d H h T 5 D 2 5B D T 7B — 5 d   T H 4 2 H d H gB h
¢Xp#¢p–u8•pglUG‰ƒIWu8„GVV„WQp–9Wd8XWV#X˜gWIIVw6IQ‚QsEI‘T
D 2 H Y H d  H d 5 D h H Y R YB ( y 5 ‰ 7 i Y H F D D T F D 2 T H 7 H @ YB F D i  ’ H R PB 2 R D 5 2 YB DB ç 2 5B D  H 4 — H H 2
oQ‚QWpQW‘GaQWp§Eu)¢s…xfvIWmlUGu¢g9•v›XIWv'VISXIpv¢p§E§E›ë8XWpQ6˜‡€I85
F DB @æ D R ‰ i F  5 Y 5yB F  H 7 T Y H F D Y @ 5yy 5q Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h d 5q 2 5B D T D 5 2 H F
WEC•pI…Sp8W8EXIpf9¢G‘IW”CsEX8•”p8XWVdE˜c‚II¢™QI6W6h„Iˆ8•‘8XWVƒ¢p™Iut
’ ß 5 D D 4 H  Y H d F DB @ Ý q 5 H bB D T bB d H h D Y d n H F D D 2 H Y H d  H d 5 D h H Y R H ‰ D 5 2 yyB
˜9W‘‡Q†W6W‰GEC‰vV8EWVVE‚QI‘‚‚UIGfoQW6WI6W–G‰Q‚Is‘¢phXEC@  ‘ISut
Ý Y R F
’ Y H bB D T bB d H h Y Y H d  — H 5 D h H Y R d H b H 2 H d T Y Hy ‰ TB d T b D 2 H h 2 H  H h 2 5 Y D B d 4 Y ‰ R Y D — H D YB F D 2
QQ¢EWVVEW6IuW6WI˜‡dGQ‚IQ¢6IaW¢fQEI¢XW¢VoQIpQ†QI¢GpEWQ‚II‚x‡GCXpG31
Þ

ç $’ ¥
¢%pšæ



Ý

 ä
#˜!Ý

H Y R H @   ã “ q 5 i h R D Y H F D 2B H bB D T bB d H h H 7B D i d T 2B h d 5 H F D d 5
‚Iu•uY u”¢ppG‚uIWeX8„GVV„WQp#EG#‚¢UEIW¢wpGŠ8U¤
ç ’ ¥
o— pšæ

’ 4D
¢W6H

à

 ß 
Ý 


ä  
eÝ ¥
à

Þ 

ä 
eÝ 

Ý 

à

ß 
Ý 

ä 
eÝ 

iy ‰ T H ` 2 T F 4 d H D 2B H Y R H @ H 7B D d 5 H 4 T  Y 2B Y H bB D T bB d H
„I¢Q8I¢Uƒ‚QWSEa‚Iw•™9XWŠ8wQ¢U‚eXCQ¢EWVVEW6Ih
y TB D d T  d 5q Y R F t ’ Y 2 5B D 2 H b 2 5 4 y T R Y R H F D 5 D ` 2B h d 5 4 4
¢ƒW‚¢I‘8•#ISu©QI8EGoQ¢o8QC¢U‚IIGeWAIEIW¢QQVT Q‚WQ‚I˜‡WV#68„GVVE‚Qã
h H Y Y H d  — H H d T Y H bB D T bB d H
’ D 2 H 7 H ` 2 T d d T hB d ` H 7B Dr H 4 T 
goQ9Q¢I¢G‚¢X‚89XGŸ‡6¢U˜”

©

j

j+1

©

j-1

j-2

j+2

x

Û   p‚I8Ev¤
’ ¥ H d R `B

©

n-1

∆t

n

∆x

n+1

Grid or
Node
Points
t

¥  

Ó × Ò Ë É Ë ×
u‡§™IawÓ

¨

Ì Ç Ó Ì Í Ì Ñ Ñ Ò ÖÕ Ì Ë Ò Ó Ò Ñ Ö Ó É Ú Ì È Ú Ì Ù Ð ¦Ð
”…ˆfˆ”vԐŸˆmQfÔv™™‰€™˜v†º8§xÎ
ç   „pzæ
¦’ ¥

ç  …zd“ø
ß îæ ’

ß
…î  

4 €í Ý 6 4 üí
AxÅ‚5‚˜Ý

ä

í W ß 
V
Ý 

7 d 5q H F D 2B h H D 2 H Y H d  Dy R Y H d i d T 7 7 R Y H F
‚8•IGeXQGo6WQ‚ICEpWQ‚Žf¢d9I‚wpGD
Y H H Y 2 H Dq 5 H 2 5 h 2 T t 2 5B D T 7B — 5 d   T H 4 2 H d H gB h h H d H D 2 H 4 D 2B 5 r H H d F D H F D Y T 5 D h H d d Hq H d Y
Q6W9QW|¢fp8#p¢o‹8EGV#X˜gWpI¢fQI6WQsEpeQW6GoQ6ˆoX8†3–QWpGCIGˆ¢aG#6W‚Q•6‚ˆXB
d H D D Ty H F t ’ H bB D T bB d H h D Y d n T 5 D 2 5B D T 7B — 5 d   T d H h d 5 r h 2 5 4 H Y T YB ç ß
QG‚Vƒpu”¢¢EGl¢„W6Iu‚‚Uw‘W#8EGV#X˜gWIp¢CQI‚83xI8Q6Ww•Xvs…î   IÔAxk£5‚xšæ
æ rç4 € í Ý 6 4 üí Ý
u
D T F D Y @ 5 F Y ¦ ¦’ ¥ ’ P  t iy d TyB 7B ”
lUGjCcIWu¢EpSëj‘8„W¢XX9X˜”’ y í x‰Ww8XWV#X˜gWIIVˆQI‚83f‚WI™ˆX#‘V6˜935‚xšæ
w u t 5 D 2 5 B D T 7 B — 5 d   T d H h d 5 r D Y d n T Y B ß î r ç í Ý 6 4 ü í Ý
2 5B Y Y H d  — H H F D D T F D H H Y H @
8EWW6WI˜–uIGmVUGŠ6WuvVt ¡ Ep8†jˆ8‚ëv‹xIG‡#ŠpGë¢v6IW¢uIGv68„8jQvcsjfQvcXy
¦’ ¥ ’ P  7 5 d ¤ ’ h 5 F D H 7 H F D q 5 d H h d 5 H F D Y H bB ` d H @ 5  D Y H @ 5
H F D 5 D ` 2B 4 T  Y hB d ` H F D ` 2B 2B T D 2 5 4 7 d H D d 5 d d H H F t ’ d H h d 5 2B T D d H 4 T 5 D ` 2B 4 T  Y hB d
pGWIX6¢U‚rX‚8dpGIXIE¢ƒo86¾‚QWw8‚W6ŽIu6QI‚8rE¢ƒfQ6WIX6¢U‚rX‚8`
H F D 2 5 Y h 2 H  H h d 5 d d H H F D D T F D d T Hy 4 5 Yy T YB D1 ’ 2 `B Y y T R P H H F D q 5 H hB Y D F `B d H F D 2
pG¬8#pIQ†QI–8‚W6‰pG‘VUW…¢gEQkWE¢–X9£Å‹¢XWC¢Ix6IG‘¢IX‚‘o8X‚IG¬85
Y d T H   T F 4B F @ d 5 d d H q 5 D 2 R 5 7 T 2B T D d H 4 T F DB @ H bB D T bB d H h D Y d n T D 2 H Y H d  H d 2 5B D T R P H H F
‚¢g†I¢dƒXICj8‚W6‹¢ˆoI89¢#X¢G‚6QudWECu8„GVVE‚QI€fWUuoQ‚Q‚IQ‚#8EGVIx6fpGD
q 5 H hB Y Dq Hy H F D 2 5 Y 7 d H D H D H d 4 YB h H F D D T F D d T Hy 4 YB DB t d H 2 2 T 7 YB F D 2B h H Y Y H d  — H 2 H F
¢uIEWC|6EapG8C#‚QGW6W6WEIapGCVUWŠ¢gEQCXC„UQQpI¢#‘EIGeEeQW‚Q‚I˜‡6Iª™
ç ¦ ¦’ ¥
s8„pzæ

‡x‡x‡8í W † ß 
¡
V  ¦
V … ß
…î
Ý 
¦
†
ø

í W „ ß 
“
V  ‘î
ß
Ý 
¦
„

í W ß 
ß
…î  
V
ƒ6
Ý 
4 €í Ý 6 4 üí
¥x)‚5WxÝ
ä

2 5B D T R P H ` 2B @ 5yy 5
8XWVUSQwIXCcXE8•q
H F
pGD ‚8•ÆWeEI‚Q‚ApGªI8W¢QWðI¢«9p8†¢‰8GVWQ9ISkIGD X9W6GeIGðI¢U˜v
7 d 5q 5 D Dy R Y H d H F D  R 5 d ` H d h 2 T ê D R 5 ‰ T d 5 D T d H 7 R 2 H F 2B Y 7 d H D H F D h 2 T  —
’‡s…î   pf¥xÅ75‚xšA8EGV#X˜gWIp¢w6IQ‚QsEIwQVUWuIW‘6IX‚I8Qfx‡‘ˆŸXVd‚uXe…î
ç ß
æ r ç 4 € í Ý 6 4 ü í Ýæ 2 5B D T 7B — 5 d   T H 4 2 H d H gB h H 4 T  Y H F D d H hB Y 2 5 4 D — H ò ’yy T 7 Y YB ß
u
y w u t d 5 q 2 5 B D T 7 B — 5 d   T H y ‰ T 2 5 Y T H d T Y B ß î r ç í Ý 6 4 ü í Ý æ 2 5 B Y Y H d  — H H F D Y R F
Y T ` 2 5y Y
VI8Ev¢T í xv18•w¢XGldEpg‚II¢vXIVU8WVgWfvE#…¢sQxaq5Wxš‰¢XW‚Q‚I˜‡ŠIWvISut
ç ¡ „pzæ
¦’ ¥

Y Y Y
aa`ø

í W  ß 
 
V ç ß î
¡s…šæ
Ý  
¦
ø

í Wpß 
ß
‘î
V
iä
í Ý 6 4 üí
x)85‚˜Ý
Ý 

2B T D ‰ 5 5 D ß î i ‰ H hB bB h h 2 T í Ý D 4 T d D ‰ R
X¢Gp89G†‘eSpXxEI‰I¢™˜‘‡¢GWpIWY
ç h’ ¥
8dpšæ

d T H 2B
¢gpXXy

@ 5
cfò

í W
í 
í W
b
ï ß  V s…šæ 8ì saagø W ß  V  s‘šæ   ø ß  ¡s…šæ ”xªj5‚xÝ
Y Y Y
aa`ø
ø Y Y Y
V ç ß î ø í Ý ä 4 üí
ç ß î
ç ß î
¦
¦
Ý 
Ý  ï
Ý  
ï
Û 4 ü í Ý d 5q 2 5B Y 2 T  — H Y HB d H Y d 5y i T t H F D d H hB Y 2 5 4 t Hy  7 T — H d 5
ƒ5‚xu8•‰¢XWp¢U˜‡‘QEWQ‚u8XxgmwpGuQIEWI¢QIVXI9¢p‡u8U¤
’Y Y Y
„aaSà   ¥8–f#‘8•fIWxI¢xm¢ŠI8EGVIXI…¢Q4
e à ¦ e ä õ d 5q ý ü í Ý h 2 T í Ý q 5 Y 2 5B D T 2B ‰ 7 5
7 5 dq h H 7 d 5q H ‰ 2 T 4 H bB D T bB d H h y TB D d T  2 H bB ` T 5 D Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h y T 4 5
8W•uQ9W8•j†aVgˆ8„GVVE‚QI¢¢ƒW‚¢UwQ¢E8C‘G‹I¢XGldEpg‚II¢€QpQW6h„Io¢Q˜›ô

í W
í 
í W
b
ï ß  V s…pŸæ 7ì caa`ø W ß  V  s…pzæ   ø Xß  ¡s…pzæ v˜ðCIWxÝ
ç8dpšmaa`ø
c’ ¥ æ Y Y Y
ç ß î õ
ø Y Y Y
ç ß î õ
V ç ß î õ ø í Ý ä ý üí
Ý  ï
¦
Ý 
¦
Ý 

ï
Y H bB ` ß D R 5 ‰ T 7 d H D d H D D Ty H F D ` 2B h 2 T  —  ’ ý ü í Ý ä ç ß î
Q¢E8up8†¢µW6G•6G‚VƒuIW9IEII¢IpvUsIWxÿˆs…põ
ø ß î êæ
#…x„mÝ ™s‘˜ð#|mAp¢)…Sê ‹p¥ p‰G…„p˜QSjTXkQ¢E8A8EGoQ¢S¢Qe8EGVG¢I2
ä ç ß î õ ø ßæ Ý h 2 T ß î
ä ß t ’ ¥ 5 D ¦’ ¥ ’ Y P  2B 2 H bB ` 2 5B D 2 H b 2 5 4 2 5B D T D 5
H F D ` 2B @ 5yy 5q t 2 H F t ’ h H — n Þ F DB @ ç Þ à ßæ Ý d H hB Y 2 5 4 t Hy  7 T — H d 5
pGkIXCcXE8•u‹Qpuó‹Q˜p‘©GEC‘‚W˜•m#QIEWI86u¢EI#VI–#¢ë¤ ‹8EWI¢Ip–ŽQEW6WY
’ 2 5B Y 2 T  — H Y HB d H
d 5y i T t Hy  7B Y T q 5 Y 2 T H 7 i ‰ h H D T Ry T b H d 5 h H D T d H 2 H ` H ‰ 2 T 4 2 5B D T 7B — 5 d   T H 4 2 H d H gB h
¢XxgvjEI#EW‘ë¢vp¢g9wSaQWVUXV¢‡m¢…QWVG6IQ8€†…¢gu8EGV#X˜gWpI¢Š6IQ‚QsEIÆi
² ¶ Ã ¹ »
e#6ja´

R ¹ P Ã À C C
S†QjeIHG

± E ¹ » ´ E ¹ À
9FjwwFˆ±
½

± Á ´ C
‘wDB

Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È
u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç

@®
A­
—  
° ¯Ÿ § ¢ « ¨ © ¢ « § ­ ¢ › ® « › ¥ž § ­ ¥ž ¢ ›     ¬ « ª › © › ¨ § › ¥ž ¢ ›   ŸŸž œ › š
¦d““¦q“£¦“A¤sF'¦d“¥¥d“sa1‘¦£s“q“7¦d¤£a¡ddv‡o™
H ™ ’ F Y H 7 H F D 2B D 2B 5  i d H b H D T $ ¦’ ¥ ’ P  i ‰ 2 H bB ` 2 5B D T 7B — 5 d   T H 4 2 H d H gB h h H d H D 2 H
•‹‚Q9apGX‘oX8†fQ¢6‘V–qE˜sëj˜oQ¢E8e¢XGldEpg‚II¢aQI6W6h„IeQ‚QGo6Q4
H F D HY R h 2 T —
pGeWI¬IVu•Ý 9˜–m‘s•Ý ‘ç ¡ mjQp8XWEII¢QÅf¢UII¢sa6EIƒX‚XŽ‚8†#EB cfò
ä ç æ Ý à ”
ä
æ Ý t Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ D Hy F 4B dB ã H Y 5  7 @ 5
ç ¦
sªø

Œ



‘æ r  ä ß î ’ F Y H 7 D 2B 5  d R 5
“I‚’‰…vhWQ9uoX¢suI¢ë¤

—

6

‘

Y
¥

6

Y
 

6

¦
¦

6
¡

‹

ä
‘ê
ä
eß

’ Y HB d T h 2 R 5 ‰ H F
6QEW¢UpI8†wpGD
` 2B h Ry 4 — H Y D 2B 5  € ‡y € }x „y q 5 d H ‰ 7 R 2 H F D 2 T H 7 H @ t Ž F Y H 7 T 2B Y D 2B 5  q 5 d H ‰ 7 R 2 H F
IEIIEQ˜‡CGoE8s•lŸ‡‡3U|ŠVf6s…pxwIW‰¢Q#wvëpW6#–ECGoX8†”V‘6swISaIWD 
q¢‰¢g†W‘veQICfVUWwQEG¢‘ucXQ†kCcIWuTI¢‰VGoX8††‚¢UpI8†G„CWQ97
5 ÷ T H  Y H @ 2 H F @ D T F D H 4B D 5 ò ’ @ 5y H ‰ 2 @ 5 F Y Œ h 2 T ‹ D T Y D 2B 5  i d T h 2 R 5 ‰ F DB @ F Y H
DSE8†‘p8•wpGCQIEWI8•€h8XWVdE˜c‚II¢a9¢GuIWC¢•†8EGVGS6W6WI6WC8GlGQ†8wŠ‡š¢9{
2B 5  d R 5q H F D d H hB Y 2 5  ’ 2 5B D T 7B — 5 d   T H 7 T Y H F D d 5q 2 5B D T D 2 H Y H d  H d d 5 D T d H  5 ‰y €x 
T H bB d H h Y R D Hy @ 5 ò ’ H bB D T bB d H h h 2 5 4 H Y T 5 D 2 5B D T 7B — 5 d   T H 4 2 H d H gB h D 2B 5  T YB F 4B F
¢E‚QIuI•6Eÿc‘j¢¢EGl¢„W6II8Q6W…‘W#8EGV#X˜gWpI¢6IQ‚QsEI•SE8†wuXeƒEIC@
ç $ ¦’ ¥
8q„pzæ

 ß…î
¦

ç4 € í Ý ø í
fAxÆv˜Ý   85Wxšæ
6 4 üí Ý

ä íç  (
ŠzsÝ ¥ ˆæ
2 5B D Ty H d H F D d H hB Y 2 5
8XWVƒ6WuIGu6IX‚I8•

} r e j | r p y w p t i p r p ng l „g r j
U¡7‚‡mxvu‚‚{†f…o!¡7|

ƒ

‚— –—
o˜–

’ 2 5B D Ty R 7 d 5q h H D T 4B D YB F  5
h8XWVƒIwW8•eQWVgEGfXII¢WY
H d 5 7 T Y H dB R P H d 2 5B D T 7 d 5q 2B y T 2 5B DB h h T F 4 R ” ’ h H 4 d 5q 2 H H d T Y 2 5B DB h 2 5 4 i d T h 2 R 5
W89#™QWEISQ‚e8XWVd‚8•pE›¢U8EGEpI¢eƒIx™hQQ‚8•p6a‚¢™p8XWEII¢Q‚VUII8†‰ cIF
@ 5
d 5 h H 4 2 H d H gB h H d T F Y H 7 H F D 2B Y D 2B 5  d H F D
¢rQ6IQ‚QsEI9WV)W6#9IWAEwWoX8†a6IGV5 cIapjXQWaI¢XW‚Q‚I˜‡d‚QIW•¢wQpGE6I2
@ 5 F Y R yy H D Y 2 5B Y Y H d  — H H Y H F D q 5 d H F DB H
t6Q8‡•c‘QGoE8saIXpII8‚WI‚›¢€#‚QG9XŽ‚Q9a#XvoX8†™W6W6WEI™I¢•Vf8„GVV„WQpaT
d H b H @ 5 € ’ Y D 2B 5  ` 2B h 2 R 5 d d R Y q 5 Y 7 d H D 2B F Y H 7 T 2B D 2B 5  H D H d 4 YB h H 2 5 D T H bB D T bB d H h
5 D 2 5B D T 7B — 5 d   T 2 T H bB ` i H F D H 4 2B Y ž € ‡ x  € } œ ‡ }  „ } € } y ˆ x „y ‡ œ d 5q YB Y T ‰ H F D H d T H Y H F
W–¢XGldEpg‚II¢d¢¢E896pGf6IX‚ˆGlÔ¢‚‡Uƒƒh‡G‡ ¢ˆU|lUj8•ˆXWVU™IWf‚¢W6Iut
ç — ¦’ ¥
Sg„pzæ
ç ¥ ¦’ ¥
oc„pzæ

í W  ß 
 ß…î
ç  ß…îz排~ø›çf4€¥í˜Ý¬ø”íxÝ   6845ü‚형æ
Ý
ä
V
¦
Ý 

í W ß 
V
Ý 
ß…î  
¦

ç  …zŽ~›f¥˜r75‚xšæ
ß îæ ’ ø ç4 € í Ý 6 4 üí Ý

ä

Û Y H bB D T bB d H h h 2 5 4 H Y h 2 T D Y d n H F D d 5q Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB hr h H d H D 2 H
4 QQ¢EWVVEW6Ip8Q6WI¢f‚‚UIGŠ¢••I8EGV#X˜gWIp¢…6IQ‚QsEI£˜Q‚QGo6Q4
D 2B 5  r H H d F D H F D H d T Y Ty R 7 d 5q H 4 2 H d H gB hr H DB 2 n q 5 Y Hy  7 T — H 2 5 7 7 5 4 D Y 5 7 H F D Y  T F d H
SE8†3‡6WIWaIWw‚¢‘¢ƒp…W8•6IQ‚QsEI£‡G„IU”Vf6XI9¢p‡‰89#86‘‚89apG™IVUW6mÜ

} r e j | r p y w p t i p r p ng l j ig e
h¡7s{zxvu‚sqo2mkshfd
² À Ã » ´ À ± C
ˆ9”wˆr•”

$  

± Á ¶ ± À ± ¿
CejÅ6¹

Ú Í × Ë É Í Ì Ê
fu•™‘ˆˆu×

™— –—
s˜–

½ ¼ ± » ¹ ¶ ¹
hf”‡egº¸

­ ®
ƒ­

Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Ð
”…ˆ‘€v”ԐŸˆmQfÔm«xÎ xÎ
H d T F Y H 7 D 2B 5 r d R 5q T 2 5 Y 2 5B DB h 2 5
W¢†W6#uoE8s£fI¢•‘‰8up8XWEII¢Q4
i d T h 2 R 5 ‰ D Hy F 4B dB ã F DB @ H bB D T bB d H h h 2 5 4 H Y h 2 T D Y d n T d 5q Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB
‚¢III8†u6EIƒX‚XGEC‘¢EGl¢„W6I)I86Q‚rI¢w‚‚U‰w8•p8XWVdE˜c‚II¢#QpQW6h„Ih
ry T d D 2 H 4 D 2B 5  r H H d F D H F D ` 2B D 2 H Y H d  H d Y d 5 D T d H  5 B d D T 7 H F t ’ H 7 T Y H F D YB Y H 2By H F D q
„¢WGoQ6oX8†3–QWpG…IW‰IEGoQ‚Q‚IQ‚W8WVG6s¢— WWVd–Iuw¢9¢W‘IG™EQpXX‘pGˆ¢5
H 2 5 2 t h 5 F D H 7 y T d D 4 H  Y T ` 2B D 2 H Y H d  H d d 5 D T d H  5 H 4 2 H d H gB h —B d D T 7 H F D q 5 H Y T 4 H 7 H d D —
I¢IU‹xIG‡#§¢GW66s‚#eIEGoQ‚Q‚IQ‚‘¢GVWQ†8w6IQ‚QsEIŽ„WWV#wIWv¢aW¢Qw9QWWx‡H
H F D 2 1 ’ h H nB h 5 7 H ‰ —B d D T 7 H F D q 5  5 D d
pG3”‹QIEIx#†#„‚GV#uIG˜¢8WŠ85 ¢GWVsuIWŠ¢gIu¢uVu6IXEwpGŠVIGGlƒ6EIh
7 5 D D 5 ‰ H F D d T H 2 d 5 D T Y H 2By H F D D T F D H D T D 4B
i T 7 Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ t Hy  7 T — H d 5 ¤ ’ H 7 T Y H F D iyB d T Y Y H 4 H 2 D 5 2 H d T H 2By 5 D H 2B 7 5 d
gdjI¢XG„II86‘‚VUII8†o¢EI9¢p‡j8UjV#¢WCIG…„X‚¢G‚QQ6I€¢Iu‚¢CIXEuGŠIEXy ¢W•q
h H Y R Y d 5 D T d H  5 D 2B 5  H F D D R ‰ t d 5 D T d H  5 H 4 2 H d H gB h D 2B 5  T 2 5 h H Y T ‰ YB d 5 D T d H  5 H 4 2 H d H
Q‚I€W8WVG6s8voX8†™pG€pIxQ8WVG6s8fQI6W6h„I€SE8†ae8dQWVUvEˆ8GVWQ†86IQ‚Q•q
rqB h B d D T 7 T q 5 H 2By F 4 T  ’ d 5 D T d H  5 H 4 2 H d H gB h —B d D T 7 T Y H D T d D Y RyyB Hy  7 T — H YB F
ƒEI‰— WGldŽv¢aIXEƒ¢ˆ½Q¢GVWQ†8‘QI6W6h„I†„WWV#Ž™6GVWG‚pXXE…Xp#¢p–XIut
¡ ’ ¥
ç ¢  pzæ

y AŒ ¼‘D» e² Ý ¥ (
º² t ø ²Ý
ä 
Y T 9 ¦’ ¥ ’ P  H DB d @ H d 2 T 4 H
¢…q„p†ëj‡WE‚C6W¢Qav@

ç h ¦’ ¥
oa„pzæ

ç c ¦’ ¥
oa„pzæ

¹
¦

  6
¦
¦

·

·· ¶
—
!Ý
¹

¡

  6
¦
¦

´µ  ß…î
¦
³´´

¡

·

·· ”
¸¶ !Ý

  6
¦

´µ  ß…î
¦
³´´

  6

ä y ¦Œ t
º²
à

·

ä

»
h 2
I¢T

…
Ý
¹ „ ´µ
Ý ´
 Ý ³´

ä
Ž² Ý

·· 4
¸¶ £Ý

` 2B 4 R h 5 d D 2 1 ’ 7 d 5q y TB 4 H  Y i d H b T Y T F B d D T 7 ` 2B Dy R Y H
IEQIp˜‚Go3”‰W8•‹¢XQ6s‚‚Q¢…fVUŽ— WWVd–IEG„IW6Wd
H F D D T F D t d H F D d Rq h 2 T t 7 d 5q —B d D T 7 r d 5 D 4 H b T 2
pGwVUG§Q6IGfI•Ap¢§†‚8•e„‚GV#3Ô8G‡Q¢‰XB QpGw‚QWpp–r¢QdvuVUG¢QX6wEwEB
7 H F D Y Y H d  — H 2 T 4 H @ D T F D d T Hy 4 YB D
ç 9 ¦’ ¥
8q„pzæ

ß î r
 …¢sç
ß î r
 …¢sç
ß î r
 …¢sç
ß î r
 …¢sç

…

— Ý
!ø

Ý   6
Ý
ø

…

„ Ý
„ Ý   6
„ ø
Ý

æ

 Ý


Ý   ±£Ý
6 4
 ø
Ý
4
£Ý   6

æ

ä
ä

ä
æ

” Ý
!µæ
ä

…
ç 
hÝ ¥
„
ç 
hÝ ¥

ç 
hÝ ¥
4 hÝ ¥
ç 

(“æ
(“æ
(“æ
(
“æ

7 d 5q H bB D Y H ` ` R Y H d 5 7 H F D 2B Y 2 5B D T R P H H Y H F D ` 2B DB d
W8•u8„GfQ88pWW¢#uIWECI8XWVUSQu‚QIW…IXWEW™

…  
„ Ý 
Ý 6 šæ

ç— Ý
3!Æø

ç “ ¦’ ¥
oc„pzæ

…
 Ý 
„
ç ÝÆø Ý   6 šæ
 Ý   8£šæ 
6 4 Ý
„

ç Æø
Ý

 ¬‹vÝ  
Ý ø 4
ç



6 ” Ý
k!šæ

ß…î
¦
ß…î
¦
ß…î
¦
ß…î
¦

…
ä

„
ä

ç  (
sÝ ¥ “æ
ç  (
sÝ ¥ “æ



ç  (
sÝ ¥ “æ

ä

4 sÝ ¥ “æ
ç  (
ä

Û Y 2 5B D T R P H d R 5q H F D D T H bB d d
6I8XWVUSQup8•IGCVu¢EW‚¢T
Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È
u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç

“  
’y T 2 5 ` TB h y T d D 2 H
z¢U8¢¢ƒI›VGGo6Q4
H F D 5 D Y d Hq H d ž   è   H 2 5 y T d D 2 H 4 H F D h 2 T d H ‰ 7 R 2 2B h h 5 Y i T @y T H d T —B d D T 7 h H h 2 T ‰
pGdW™W6•6W‘c¢€é¢ep8v¢WGoQ6…IWI¢™Q†…ISXI˜fxc•EV‘W¢„WWV#eQIIVUdT
d¢••GoQ9I8‚¢uIuj–Q² º c²Œ ë² ‹ Ž¢6W‚QWpp–seVgCII¢IIGaI8XVfWo¢ƒfI8QŠp8IWEC@
5q Y D 2 H 7 R ` d T H F t ’ ç à à æ Á Y T h H Y Y H d  — H H ‰ 2 T 4 Y h 2 T ‰ H F D ` 2 5y T Y D 2 T D Y 2 5 4 D R 5 F DB
—B d D T 7 y T 2 5 ` TB hB d D i ’ i DByB ‰B Y Y 5  T YB Y h 2 T ‰ q 5 d H ‰ 7 R 2 i 2 T F ` R 5 F Dy T —B d D T 7    „ ‡ … y ˆy €
„‚GV#¢VU88¢XIX‚GÅ›83„XEIX‚W8†f§X§IIVUI¢§Q†…ISuo¢a8I8pGEVu„‚GV#‡¢†lxcš¢š‡šx
Hy  7B Y T d 5q 2 H bB ` YB 2 5B D T d D Y RyyB H F D h 2 T y T 2 5B D  5 YB D 2 H 7 R ` d T H F D 2
XI9X‚w•¢•ŽQ8„8•E–8XWVGW‚IEXXfIGŽp¢†¢U8EGp8vX•S6#p8W¢™IG#XB 8¢‚IW6IC@
‘ q 5 HY R HdH F
’
’’

ç ’ ¥
8$   pzæ

‘
¹ Œ
º

·
··

‹

’’
’

··

Œ

··
¸¶
¦

º
Č

‹
º

Œ

´´µ
´´
´´
‹ ³´

ä ç º à Œ à ‹
jQÃsÃëÂÛ

‘æ
¤eÁ

2 5B D T D 5 2 H F D H 4 R h 5 d D 2B h 2 T ‰y €x  { ˆ } ˆ „  À T B d D T 7 T F 4 R Y yy T 4 H ™ ’y T 2 5 ` TB
8EGVG¢IuIG6IIxWGoE‰p¢wŠ–š¢99Wx†¢ƒ˜e— WGld‘ƒpW‹E¢gumŸVU88¢XIh
yVGGo6QpG«Ip8W¢ª6W6G‚pXQ†W¢ªƒEICdIp¢UAI8XVeW8pG#¢•ŽpQ6˜‡Ž8‚Q6‘E¢‚¢T
T d D 2 H 4 H F D h 2 R 5 d T h H d H D Y Ry 4 H d T F 4B F @ Y h 2 T ‰ ` 2 5y T H Y 5 F D d 5q D  H 4 — H Y 5 d H Œ yy T H d
D T F D Y D 2 H 7 Hy H F DB @ B d D T 7 H d T R P Y T YB Y d 5 D T d H  5 H 4 2 H d H gB h —B d D T 7 H Y H F D q 5 F 4 T
lUGGo6#6XQkWEC— WWVd9WVUSWeuXuW¢GVWQ†8–QI6WQsEpe„‚GV#9WQpG€¢rƒ¢ˆ

ç ’ ¥
S—   pzæ

¹
¦

¥
¢r   6
¦

·

··
¸¶

¥¢r  
  6
¦
¦

  6
¦

´µ  ß‘î
¦
³´´

  6

ä ¥ (


i ‰ 2 H bB
o‰Q8„8`
YB D F `B d H F D 2 5 2 5B DB h 2 5 4 2 2 T 7 R H ò T d 5q „ ‡yx  {y ‰ ‡ € œ œ  € } ˆ € ‡ ~ ˆ „ ‡  } ž  h 2 T Y D 2B 5
E–o8X‚‰pG¬8¬8XWEII¢QÆI¢#IQ‘A98•elŸš¢9|8FG†o‡‡x‚lW¢†lƒƒckóp¢9GoX8†
d 5B d H D 2B D T H 7 H F 4 Y ` 2B 4 2 H d H gB hry T d D 2 H 4 D 2B 5 r H H d F D T d 5q d 5 D T d H  5 B d D T 7 H F D 2 H F
8X‚QGoEdV#6IƒWIX6IQ‚QsEI£„¢WGoQ6doX¢s£‡Q‚IGAd8•–8WVG6s8Æ— WWVd†IGº6Iut

— Wß 
V
Ý 

ç ’ ¥
o¥   pzæ

¿¡¾¦ Whß 
V
Ý 
ä

YB 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ H F D H d H F
Xe¢XG„II86e‚VUII8†uIGuW6IC@
  ’ ¥
ç 8  pzæ

D 2B 5  ` 2B @ 5yy 5q H F
SE8†ÅIXCcXE8•kIGD

ç ’ ¥
s¦   pzæ

¹
¦

  6
¦
¦

·

·· ¶

  6

ç

ß
ß
„ r6 … •æ  ‘î ¥ 6 — W ß  V …î ¥
Ý
Ý
¦  
Ý 
¦  
ä

…

ç  (
sÝ ¥ ˆæ

Û‡ç p“ p†8XW6Qxw6˜ŸA¢XG„II86e‚VUII8†‰I¢#IQ‘9C¢•Š8GVWQ†85
’ ’ ¥ 2 5B D 4 H ” H H ”æ 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ 2 2 T 7 R H ò T d 5q d 5 D T d H 
i ‰ “ ¦’ ¥ ’ P  2B H 2By F D d R 5q H F D H 4 Ty  H d t Hy  7 T — H d H F D d Rq T Y
o¬cE˜fëj`XeIEXðGfI8•kIGkQ¢XIQ‚™VXI9¢p‡‰QIW‚I•Å†™i
¦
¦

  6
¦

´µ  ß…î
³´´
¦

  6

9  

¹

ä ¥ ¥à
 (

¦

¡

¦w6
¡

¦w6
¡

¦

·

·· ¶

¦

Ú Í × Ë É Í Ì Ê
fu•™‘ˆˆu×

´µ
³´´

¦w6
¡

ß…î  
¦

ä  (

Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Ð
”…ˆ‘€v”ԐŸˆmQfÔm«xÎ xÎ
° ¬ «ž § ­ ª «
ÂFÕ¤¥sxdŸ
Ÿ ­ ž § ­ ® © ª Ö ž ª › ® © › ¬ « « § ©   ¬ « ® © › ¢ ¢ « ª § ¬ › Ô › Ÿ › ¨ ª ­ › › ª ¬ ž © ¯ Ÿ ¬ « › Ô ž § Ñ « ¬ « ž § ª ¬ Ò Ñ ­ © ÎÐ § ­ ¨ § › § Í
¦d¤¥‘“Xv¸£svˆ1q¦Q¤'q‘F“s¤¤¦†ÉS£É£d£Ï˜FsX£‘dˆqÕ‘¦1kd“v¦Ó¦d“†‘qŠuk%ž Ï¥‘¤p“¦« sÌ
’ iDByB ‰ T D Y q 5 Y 2 5B D T d H hB Y 2 5 4 2B d H D Ty y Rq H Y R H ‰ yyB @ F 4B F @ Y 2 5B D 4 R d D Y 2 5
¢3EEXI¢G‚m¢CI8EGVWQIEWI86eXu6GVX§p•6Wps‹EXCƒXICuI¢XG‡IWW‚I¢Q4
y¢G6IQ8wGEpxˆV‘WI…pGCGE9W6s™QX‚¢UIp8swIG9IXIpXQpXEQUwpGE™GoE8sfI8EW¢Vb
T d H 2 H ` H DB R P q 5 H Y R H F D Y DB 7 d H  Y HB d T h 2 R 5 ‰ H F D ` 2B h Ry 4 2B hy H n H F D 2B Y D 2B 5  Y R 5B d T
H F D D T 2 5B D T 7B — 5 d   T H F D q 5 H d R D T 2 D 4 T — H H F D d 5 D T d H  5 H bB D T bB d H h B d D T 7 H F D 2B iqB 4 H 
pGjVw8XWVdE˜c‚II¢CpGU¢u‚IGVIˆ6¢p‡upGv8WVG6s¢Š8„GVVE‚QIa— WGlduIWwXw|E6Q†WY
5 D i DByB ‰ T H F t ’ Y HB d T h 2 R 5 ‰ H F D D T D  H 4 — H hy H n H F D 2B D 2B 5  i d H b H D T h HBy   T 2 H H ‰ Y T
W#3„XXp¢wpuv6QX‚¢UIp8swIW‘lp6Q˜‡‰X6UIGXCoX¢s‰‚68‡fl†6XEII¢QQ†‘¢UF
d 5 D T d H  5 D 2B 5  H 7 T Y H F D D T F D d T Hy 4 YB DB h 2 T h H nB 4 H  Y iy H R PB 2 R 2 H H ‰ H b T F Y 2 5B DB h 2 5
8GVWQ†8oE8sw9¢G…pG™lUGC¢gEQfXfEIVkQU„QQ†W‰„QISXpIeQ6s…¢gUfp8XWEII¢Q4
id T h 2 R 5 ‰ H F D t ’ ¥ h 2 T
‚¢III8†apGpph   p†I¢‘9   p†QSj˜3€xqE˜sëjDo‰Q8„8u8WVG6s8CoE8suIW‰VUGe8EGD
’ ¥ ’ Y P  2 1 ’ $ ¦’ ¥ ’ P  i ‰ 2 H bB ` d 5 D T d H  5 D 2B 5  H F D 2 T F D 2 5B
r T 7 d 5q 2B H d 5 7 i d d T 4
l#W8•˜X‘W89–‚‚¢gwh   ˜ŽI¢w9   pp6SˆËoŽ68E¢v‚8GVWQ†8‘— WWVdfIG€VUW‘6XW¢fò
’ ¥ h 2 T
’ ¥ ’ Y P  i ‰ 2 H bB ` Y d 5 D T d H  5 B d D T 7 H F D D T F D H 4B D 5

Æ

ʈ— W ß 
V
Ý 

È ß
É ‘î
¥
à Y Y Y
–aaxà ¡ à ¡ s•Ý
à ”
ß
…î  
¦
ä

Æ ûV¢r   6xà6YaYaxà   xà   xà   Šù
¥
Y
6
6
6
Æ V¢r   ‡aax8Q8¦ ù
û ¥ à Y Y Y à ¦ à

²Œ
ä
ä

y ¦Œ t
º²
²‹
Hd H F
W6IC@

y AŒ Çw² Ý sQl²Œ U² ‹ eÁ
º² t ø ç ¦ à à æ

ç ’ ¥
oh   pzæ

 ß…î
¦
ä


² Ý ¥ (

h 2 n H @   ’
IUuvpt 8  p¥
h 2 T
IVŽ—   psQSjfE™¢†¢pXWfo8X‚apG†¢‘p8XWEII¢Q‰‚¢III8†IVdI6fwsEWQ‚Q‚Iwv”£1
’ ¥ ’ Y P  2B Y T t H hB Y D F `B d H F D 2 5 Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ 2 2 T 7 R H ò H ‰B d 4 Y H d  H @ q
ç ’ ¥
oc   pzæ

Æû— Ý à Y Y Y à ”
§Ÿ!Gà ¡ 6aaSà ¡ s!úÝù

 ß…î
¦

ä y AŒ t
º²

Û Y H hB Y D F `B d h 2 T Dq H
6QIEWCo8EWI¢‘|‡Xy
H F D 2 5 Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ D Hy F 4B dB ã H F D ` 2B hy 5 F d 5 D 4 H b H F D d 5q Y h 2 T D
pG)8wI8EGEpI8Q‚VUII8†a6XpƒXWEeIW‰IEIX¢I‘8G‡Q¢dIGw8•wIp¢ƒfY y AŒ ~W6IC@
º² t H d H F

y AŒ ¼w² Ý sgà   x8ÔeÁ
º² t ø ç ¦
6 à ¦æ

ç ’ ¥
89   pzæ

 ß…î
¦

ä 
e² Ý ¥ (

i ‰
o² Ý ¢¢EGl¢„W6II¢QQ‚uIGWVdE˜c‚II¢‰¢Qav@
q 5 H bB D T bB d H h h 2 5 4 H Y H F D H D T 7B — 5 d   T 2 T 4 H

Å
¹ •Ý ´µ
’ ´
’’ ´
· „ Ý ´´
 Ý ³´´

ç ’ ¥
o“   pzæ

ä
² Ý

··
··

4
·· ¶ £Ý

Y T
` 2B 2 n H ã ’ Y Hy  7 T — H Y R 5B b H d  d R 5 H ŒBy T d H 2 H
@ 5 2 2 T 4 H
 V² Ý IXpU6ˆ6QXp#¢p–‘p8Xx6‚ICI86XXVGQpQ8` sp†¢Qur™

c  

Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È
u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç
ç   ¥ pzæ
’ ¥

··

Ý
¥Œ
¹
Ý
Aº
··

† ‹
†Œ
†º

…
…

…
Œ

‹

„ ‹
„Œ
„º

º

··

·· Ý
¸¶ 3‹

4
xº
´µ
´´
´´
 ‹
´´
 Þ¡‹ ³´
Π4
 º SŒ
4

ä ç à à Û “æ Ü
jQ² º s²Œ †² ‹ –zokÁ

i ‰ F Y H 7 D 2B 5 r “ T d 5q 2 H bB ` YB Y HB d D 2
o†‚Q9uoX8†3s#C8•e68E¢uX‘QX‚GoQH W8•„IIS8IWEC@
7 d 5qB 2 R 2 5 2 F DB
d 5 D T d H  5 B d D T 7 y T 2 5 ` TB hB d D 4B h 5B d H  y T 4B  i D i ’ —B d D T 7 y ˆ ‡y € } œ T Y T 5 D h H d d Hq H d YB F Y H
8GVWQ†8— WWVdV¢U8¢¢ƒIEWWvXIxX‚Q†S¢gEIx3¬˜s„‚GV#hŸ¢QŸ‡‡UŠ§¢fGa6W‚Q•6‚˜XwWQ97
4B h 5B d H  T 2 5 Y 2 5B D T R P H d Ty T 4 Y d 5q Y H 7 H F 4 Y ` 2B 4 2 H d H gB h Y D 2 H Y H d  H d D T F D B d D T 7 H F
XIxX‚Q†w#8ˆI8EGVIx6ˆ¢ƒ¢QWj8•€Q9QIƒ‚uIX6IQ‚QsEIŠWoQW6WI6WˆVIG…— WWVd‘Iut

‘ r
xs   e‘€‹‚Q9Xp˜EWQ†Š¢QIXE‘8uWoX8†Co8Xj
ä ß î ’ F Y H 7 4B h 5B d H  d T H 2By T 2 5 Y D 2B 5  D F `B

Y Y
aaY
 

‘
  
6

Y
c

¦

Y
6

9

Y
6

“

Y
6

$

6

Y
—

6

Y
¥

6

¦
 

6

¡
¡

c

¦

6
9

6

ä
‘ê
ä
eß

Y Y
aaY

’‹8EGVQ˜EuIXW‚¢G‚jG„apXI6QQ‚Iv‚I‚ÚoX¢sCIW€lwsIIQH  Eˆ¢wI8E€V•W‚¢G‚uIX‚Q†…IS2
2 5B D T 4 5y ` 2B D d T D Y Y DB ` 2B h H 4 H d  D Y R Û D 2B 5  H F D D T Ž Y h 2
DB Y T ` 2 5y Y T Y D d T D Y ` 2B d H ‰ 7 R
H F D H d H F @ d H D D T 7 iyy T H d  2 Y H 5 h DB t Hy 4 dB 4 T q 5 d H D H 7B d H  H F D 2 5 D R 5 hB Ty YB F Y H 7 H F
pG‘W6ICf6GWld‰EE¢g‚uD ÚWQxI™E‹VXQ‚X6Ž•V™QW69X‚Q†‘IG8p8E¢ƒ™XeW6#‘pGD
2 H F ™ ’ ’ ¥ H d R `B ¤ 2B Y T F Y H 7 d Ty R 4 dB 4 T 2 5 iy H bB D Y H ` ` R Y H d 5 7 d 5 t Y HB d D 2 H h H D T H  H d F DB
Qpªmp¥ pu‚I8Xm#Ej¢#WQ9”¢XIQ‚X6u98…EQ¢EW‚Q¢8IW•W89j8SQ6XWWoQ9QGlg†QW–WEC@
F Y H 7 d T H 2By T 2 5 h H D 2 H Y H d  H ‰ d H F DB H 2 T 4 YB F t ’ @ 5y H ‰ 2 @ 5 F Y F Y H 7 4B h 5B d H  D 2B 5 r D F `B
‚Q9v¢QIXE™–89QGo6WQ‚IŠ†”QpGE6‘¢gvXIumusEQ†–CspW–W6#€XIxX‚Q†voE8s£‚o8EQH
H F D d H hB Y 2 5  ’ Y H ` 2 T F 4 d 5 D T d H  5 —B d D T 7 H F D q
pGuQIEWI8•eQQ¢I¢Uƒu8WVG6s8„‚GV#–IGv¢5 W¢•9IW›‡Ÿ¢QŸ‡‡U…‚¢wI8XWEIp8Qef¢T
7 d 5q H F D t y ˆ ‡y € } œ H d T Y 2 5B DB h 2 5 4 i d
r h 2 R 5 ‰ H F D q1 ’ h H — n H d T Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ H F D F 4B F @ 2B Y H Y T 4 h H D T d D Y RyyB H b 5 ‰ T H F
xII8†CIGs£j‹Q˜puWVˆI8XWEIp8Q‘f¢UIp8s‘IW9ƒEIC‘X€QWVg‘QWVGW‚IEXEf¢s†¢fIut

} p tg r j
‚v†!¡7|

ƒ tg Ø eg r p
Ù†QX†!sfd

–— –—
˜˜–

’ í Ý q 5 D 2 HB 4 ¨ H 5
sxm¢‘oQX696xQ4
H F D YB Œ D T F D d T Hy 4 DB Y H ÷ T 7 F 4B F @ D 2 H 7 Hy H F Dq n H F D 2B 5 d H Œ T q 5 2 5B DB h h T H F D H D 5
pGwE9ÓlUGw¢gEQ…„…QV¢#ƃEICwo6#6XQÅW|IŽIWrXe‚QQ†™Vr8EGEpI¢eIWdGVfò

4 üí Ý4 º ø í ÝŒ ø 4 €í Ý4 ‹
5Wxfx“jxƒ“h¥˜f¡~ø  AxÝ  ×ušhÝ  “æ
€í ‹ ä íç (

ç ¡ ¥ pzæ
’ ¥

à 4 º à Œ à 4 ‹ ‹ æ Á ä ²Ý
² Ý ç ¡ ƒa¥c¥‡¡¥à  ˆefŽ5 (

ç ¦ ’ ¥
sp¥ pzæ

Y
XB ¡ ¥ p††j7¢CoQE¢VEISQd„‚GV#uIGCISujQ¢GVWQ†8Ž— WWVduIWeXC|EpWY
’ ¥ ’ P  q 5 D 2 Hy T bB R P H —B d D T 7 H F D Y R F t ’ d 5 D T d H  5 B d D T 7 H F D 2B DqB F
y¢U8¢¢ƒI‰WwII8†W6W‚8Qw8GlGQ†8aoX8†dIWAEw|„IW£¢ê e6I8XWVgxXwI8EW¢V9IGwVT
T 2 5 ` TB h T 5 D Y h 2 5  Y H d d 5 4 d 5 D T d H  5 D 2B 5  H F D 2B DqB F Yr
i ’ Y 2 5B D T 4 5y Y R 5B d T b H F D D
2 5B D 4 2 Rq H F D q 5 Y H Ry T b H F D 5 D Y D F `B H @ H F D ` 2B bB ` Y D 2 HB 4 ¨ H 5 4 H F D Y D 2 H 7 R ` d T Y DB d 5q Y T
8EG‡II•IWm¢u6IXV¢pG‘GuGo8EQvIG…pXxE8CWS6X6#‡˜6IGuWS6#p8W¢ŠGEu¢•Š¢UF
d 5 D T d H  5 B d D T 7 ` 2B h 2 5  Y H d d 5 4 H F t ’ H bB D T bB d H h D Y d n T d 5q d 5 D T d H  5 D 2B 5  H F D H ‰ D F `B
8GVWQ†8‘— WWVdwIEII8†W6WW¢Q™puv¢¢EWVVEW6Iv‚WIu€8•”8WVG6s¢voE8s‘IWC†ˆo8X97

Hy  7 T —
EI9¢p‡H
d8Uj‹8EG6pI•™IW‹¢•6IXV¢uIEW8†S8X6I˜¢€#‚QG#X…vSE8†QI6WQ•‡WfIGvV™¢EWVVEW6Ih
5 ¤ ’ 2 5B D 4 2 Rq H F D q 5 Y H Ry T b ` 2B d 5 ‰ F `B H 2 q 5 Y 7 d H D 2B ê D 2B 5  H 4 2 H d Hq H d H F D D T H bB D T bB d H
H 7 5 Y d 5q 2 H D DB d @ iyy T d H 2 H ` YB d 5 D T d H  5 D 2B 5
98‚u8•‰6G‚EWC#EE¢G6IQ8CEu8GVWQ†8‘oX8† v‰QIWQ6•3‡se¢XGlƒQ‚9‰‚XXp¢ƒfQ9GD
i ’ 7 H F D 2 H H @D H ‰ 2 5B D Ty H d T F YBy ‰ T DY H 5
D 2 T D d 5  7B YB DB t Y d 5 D T d H  5 D 2B 5  h 2 T —B d D T 7 F D 5 ‰ q 5 H Y R Hy ‰ T d H hB Y 2 5 4 H ÷ T 7 H @ H 4 2B
o¢ƒf8s9X§X§„¢Q‚8GlGQ†8§oX8†…IVw„‚GV#wW¢sp¢Š‚IvEI¢WQIEWI86vV¢#•vvQpX˜”

h  

Ú Í × Ë É Í Ì Ê
fu•™‘ˆˆu×

Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Ð
”…ˆ‘€v”ԐŸˆmQfÔm«xÎ xÎ
h 2 T D Y d n T d 5q Y 2 5B D T 7B — 5 d   T ` 2B 4 2 H d H gB h ry T d D 2 H 4 D 2B 5  r H H d F D h d T h 2 T D Y H F D 2 H F
IVu‚‚U•8•”p8XWVdE˜c‚II¢aIEQI6WQsEp3„VGGo6Q€oX8†3–QWpG#‚¢UIVƒ‚fIG#QIª™
’
’’

ç — ’ ¥
S¢¥ pzæ

‘
¹ Œ
º

·

Œ

‹
‹

’’
’

··
··

º

··
¸¶ ‹
¦

º
Œ
º

Œ

´´µ
´´
´´
‹ ³´

ä ç º à Œ à ‹
ˆ6¥c¥UÂÛ

‘æ Ü
“xkÁ

i ‰ 2 H bB
o‰Q8„8`
YB —B d D T 7 D 2 Ty R 4 dB 4 y T 2 5 ` TB hB d D T q 5 H Y T 4 y TB 4 H  Y H F t ’ DB H b 5 ‰ T H 2 5 H F D q 5 D F `B d H F
Ek„‚GV#…o¢XIQ‚X6”¢U8¢¢ƒIEWW†‘¢Ž‚¢g€¢ƒ6Q†WeIu‰g„Ž8c†¢eI¢dIWu¢wo8EWŽpGD
5 D D 2 H 7 Hy H H 2 5 ç ’ ¥ H d R `B ¤ H H Yæ h H DqB F Y YB B d D T 7 D 2 Ty R 4 dB 4 T q
WfoQ9QEQwI8uo¥ pwWI8Ev…6W•ÅQW|EI‚fEe— WGld‘o¢ƒpQWEQ9ˆ¢5 cWƒ¢gfVUWw6XGVfò
@ 5 d F 4 T H D T F D H 4B D 5

ä
AŒ „ Œ  æSŒ
Π4
¹
4 Œ ä
x±¥Œ „ Œ  Œ ´´µ
Œ 4 Œ ä
„ Œ ³´
· åS±¥Œ
··
¸¶ „ Œ  åSÄ¥Œ
Œ 4 Œ ä

ç ¥ ’ ¥
o8¥ pzæ

YB — d H h d 5 q 5 —B d D T 7 D 2 Ty R 4 dB 4 y T d H 2 H ` D Y 5 7 H F t ’ d H D T
E–‘6IW¢v¢d„‚GV#Co¢ƒpQWEQ›¢WQI68C‚¢#uIuj6QGlƒy
7 H F D D R 5 ‰ T i T Y 5 D H d 5 7 F 4 R 7 H b T F yyB @ H ™ ’ YB Y iy T 2 T d R 5 2B Hy 5 d y T DB b T i Ty  Y H 4B d D T
QIW€˜8sVdgWwGu‚8#dƒI…™¢gUUXEC‘vQEWxEVU¢vI89XCX8‚U¢ƒ„xw9gƒIˆ6QX‚GV#7
DSVƒI6WX•Žgo¢G‚I86‘W¢aIIVUI8EW¢V‘IGeI¢X¢wGo6#6XQ–IW6ICeQ9W8•‹s„‚GV#7
2 Ty R 4 dB  ’ D 2 T D Y 2 5 4 H d T Y h 2 T ‰ Y R 5B d T b H F D ` 2 5y T Y D 2 H 7 Hy H H F D 2 H F @ h H 7 d 5q t —B d D T
DSVƒI6WX6vpG›X™„‚GV#jXIxX‚Q†‘p¢v6WpIWo¢XQ6s‚‘S6Q8‡•c‘'go¢G‚I¢Q§¢IˆWVu„‚GV#7
2 Ty R 4 dB 4 H F D YB —B d D T 7 4B h 5B d H  T q 5 D H Y ‰ R Y y TB 4 H  Y T t d H b H @ 5 € ’ D 2 T D Y 2 5 4 D 5 2 H d T —B d D T
4B h 5B d H  T q 5 Yy T 2 5 ` TB h H F D ` 2 5y T Y D 2 H 7 Hy H H F D t Hy  7 T — H H F D 2B 2 @ 5 F Y Y T ty T d H 2 H ` 2
XIxX‚Q†Žv¢fE¢U8¢¢ƒI‘pG#p8X¢uWoQ9QX6…IWh¢EI#VI–…IWXACcIWV›Ÿ¢WQI68e31

} p tg r j
sv£!¡7|
’ F Y H 7 d Ty R 4 dB 4 T 2 5 Y D 2B 5  D F `B
‹W6#•¢ƒI6WEQ‘¢uGoX8†Co8Xj

ƒ j i |ã â t rg
mɁ†s†áà

ß— –—
ˆ˜–

Û ’ ¥ H d R `B
p¥ pu‚I8Xm¤

5
6

4
3

7
2

8
1

Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È
u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç

¡ ¥
’ h H D T Ry T b
‹QWVUE¢V6H
H ‰ 5 D YB H bB D T bB d H h H F D F 4B F @ D T D 2B 5  H F D D R 5 ‰
†«WeXA8EWVVE‚QIAIGðƒXIC‰V†oX8†AIGp8†¢T 6WQWoQQÿ8XW6Ip•AIWw¢‰QpX¢Vb
h H d H D 2 H 4 2 5B D 4 2 Rq H F D q 5 Y H Ry T
H H d F D ` 2B Y R H bB D T bB d H
6WIWIEWI†8EWVVE‚QIh I¢QQ‚ru¢Æ8EGV#X˜gWIp¢T ¢#8•XI¢G#8ExcmrWS6W6WI6Wd
h 2 5 4 H Y T q 5 2 5B D T 7B — 5 d  
2 T d 5q Hy ‰ T D d 5y i T t T Y D 2 H Y H d  H
F 4B F @ ¦’ ¥ Hy ‰ T t d H hB Y 2 5 4 t Hy  7 T — H 2 T Y i ’ c’ ¥ ’ P  i ‰ 2 H bB ` 2 5B Y 2 T  — H H F D q 5 H Y
ƒXpC†„pEI¢md6IX‚I8Q•¢Xp#¢p–º¢Žfªpd˜Šëjzoº68„8º8EWI¢Ip–IW¢‚IR
H bB Y 2 H D — H Y H ÷ T 7 F 4 B F @ Žt H y ‰ T D d 5 y i T
8„WI6Gx‡€QV¢#ŽƒXICu¸¢Xp¢ƒˆ8Xxgmt  Š6I‚GfI8QwGˆX€p¢vEIG‘fW¢QaW9g•#‚¢Šf8•q
T D 4 R d D Y 2 5 4 5 D YB D R 5 YB F D i d d T 4 5 D i T @ h d T @ d 5
D F `B T d D Y h 2 T Hy  7B
S¢X¢WG‚ªIVXp#EWY QQpW85 o¢a¢#W8WVG6s¢3‚oE8sQI6WQsEp3‡WEII¬pXG‡IWW‚I¢Q4
i ’ d H hd
i 2 T q 5 Y d 5 D T d H  5r D 2B 5  H 4 2 H d H gB hr H DB 2 n ` 2B D 4 R d D Y 2 5
d 5q Y 2 T H 7 T Y H hB b 5 d  D 2B 5  h H — n T D R 5 ‰ T Y 2 5B D 4 2 Rq q 5 2 5B Y 2 T  — H Y HB d H Y d 5y i T t H F
¢•wI¢Q#–6IXxcWI…SE8†Æ6˜p–p8†¢–I¢XG‡II•C¢¬8EWI¢Ip–‘QEWQ‚…8E˜gmeIut

} pã ø | ö r eã ÷ |
s†ËgU£õvËö

™— ß—
sõˆ–

À ±
·
¼
vÀ

”

ó ¶ G ñ Ã ²
ô¾òÓð±

R ± ³ Á
•B

ï ¶ ¹ Á ¶ ± À ± ¿¹ ½ ï ¶ ¹ » Á î À » ² ¶
ðg‘ejÅ6¾¡ðgjuejme9Ã

í

ì®
£­

’ Y H by H Y 7 H F D Y H 4B d D T 7 H F D 5 D d 5B d H D 2B yy T YB 2 5B D T 7 d 5q 2B YB F D H 4 2B Y Y d 5 D 4 H b 2 5B DB h 2 5
QQ¢E6W9QIWŠQQEWWVduIW‘GŠ8EWQWoXhE¢CXd8XWVd‚8•pEuXIWu6IX‚f‚8G‡Q¢Ž8XWEII¢Q4
i d T h 2 R 5 ‰ 5 2 H d T H d H F D D T F D H 4B D 5 ò ’ iD d H  5 d  y TB 4 H  Y YB F D q 5 H ` T D 2 T b h T H ÷ T D H @ 2
‚¢III8†kIŽWVWQpG…VIGd6XGVf83‚6s¢WIv¢ƒ6Q†W…EIGC¢Ž¢¢ƒo¢Vp¢V¢ƒev)85
d H D T ô ’ Y d 5 D T d H  5 D 2 Ty R 4 dB 4 5 Yy T H d T Y d 5 D T d H  5 4B h 5B d H  q 5 Y H Y T 4 y TB 4 H  Y H Y H F D t iy d T Hy
6GV˜aQ‚8GVWQ†8o¢XIQ‚XQe‚X¢…W¢u‚8GVWQ†8wEIxXW6s€¢u6W¢Qv¢XQQ†W–‚QIWh8„W¢QX•

ç $ ’ ¥
83¥ pzæ

 ß…î
çsQà   6Sà8¦fæxÜkÁ
¦
¦
ä

¹
¦

  6
¦
¦

·

··
¸¶ ¦

  6
¦
¦

¦
  6
¦

´µ  ß…î
¦
³´´

  6

ä Ü ç ¥ “æ
 (

h 2
I¢T

ç ¦ à ¦ 6æ Ü
sQà ¡ 8w£xkÁ

ß…î  
¦

¹
ä

¦

¡

¦w6
¡
¦

·

·· ¦
¸¶ a6

¦

¦

¦w6
¡

´µ
³´´

¦w6
¡

ß…î  
¦

ä Ü ç  “æ
(

7d 5q H F
W¢•upGD
H ÷ T D i H F D t Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ 4B h 5B d H  F DB @ h H Y R H d T t ’ ¥ ’ P  H H Y t H bB D T bB d H h h 2 5 4 H
V¢ƒa6IW¢QI¢XG„II86…f¢UII¢svXIxX‚Q†‘GEC‘6WIu‚¢o8¦   poëjXQ‚8¢¢EGl¢„W6I#p8Q6WY
Í Ì Ö Í
ˆfu×

¦
p¥

ê Ó É Ñ × Ú Ì Ù Ì È Ç
뙬uv†vf”‹Ú qÔvwˆfˆ””ÔÖ {Ô§‘•Ïm˜™uuóx%xÎ
é ÓÒ Ç Ó Ì Í Ì Ñ ÑÒ
é Ó Ò Ë Ç è Í Ë Ú Ó × Ç Ð çÐ
’ YB Y T
6X‚¢U‰ ‚QGeo‰ ‚QW‘†8CQEW6WY
7d H D i
7 d H D T 2 5 Y HB d H
d 5y i T t q 5 Y 2 5B D T 2B ‰ 7 5 4 d T H 2By ` 2B 7 d 5q q 5 i T @ D 2 HB 2 H b 2 5 4 T iy  7B Y YB Hy ‰ T D d 5y i T
¢Xxgv€¢fI8XWVUEI…86™¢QIXEdIE#‚8•ˆ¢egŠuoQEIQ¢o8QŽ†Ep#EWE…XIVƒ™8Excmt i
í W … ß 
ço“8¥ ’p¥zæ«YaYaY`ø
ß
V Y … …î
Ý … 
í W  ß 
V
‚Y  …î
ß
Ý  
¦

í W „ ß 
—  
“
Y … çs¦fæoYɺ“ø
ß
ç ¦æ Y º
V Y „ …î Y „ sfxkø
¦
Ý 
¦
„
í Wpß 
 
¦
V Y ß
‚˜…î hsÔxk“vx‡º
Y ç ¦æ Y º ø í Ý
Ý 
¦

Y  cfxk~ø
ç ¦æ Y º

ä

4 üí Ý
5‚˜–º

Ûƒ5Wx–£V9¢XWp¢U˜‡j6XW6Wj8ExcmuIWGˆII8†W6WW¢QŠEI¢ƒŠpG…X©cWjf¢ƒupG8¢EI9¢p‡H
4 ü í Ý º q 5 2 5B Y 2 T  — H Y HB d H Y d 5y i T t H F D 5 D Y h 2 5  Y H d d 5 4 Hy ‰ T D H F D 2B @ 5 d D Y Ty H F D t Hy  7 T —
d8Uauc‚eIXIp8s‚Q‚W86…IGjV|6E…IWŽGD WQWwIW€Ve8X‚I¢U˜‡™QX‚Q‚8Xxgm…IG†XB
5 ¤ ’ @ 5 d ` 2B h 2 5  Y H d d 5 4 H F D q 5 Dq Hy H F D 5
7 d H D H F D q 5 2 5B Y 2 T  — H Y HB d H Y d 5y i T t H F D 2
2 7 Ry 5 4 ` 2B h 2 5  Y H d d 5 4 H F D q 5  5 D H F D D
9IE8QIEII8†W6W‚8QuIW뢑8GŠpG”VT W6GŠIW†VˆS6X6#‡˜6uIGmX‘fGoQ–ƒ¢ˆ'VXIVƒD
7 d H D H F D q 5 D 2 HB 4 ¨ H 5 4 H F D YB id D 2 H F 4 T  ’ Hy ‰ T
d 5y i T t H F D  R H ÷ T 7 t Y ` 2B h T H F H F D d H h 2 R t H 2 5 D Y 5 7 Dq Hy H F D q 5 D F `B d H F D 5 D Y 2 7 Ry 5 4 H F
¢XxgvuIW9p‘V¢#oQ8IEI¢QICIGjQpIIS¢I¢j‚89G|‡XCIWs¢”S¢XWCIWG”I9IX¢QCIut

Y Y Y à ¦
aaxà   8gà ¡ #õ
ä

í
W ý ß 
V
‡Y …î
ß
ý
ý 
Ý

t YB D T F D t ê D 2B 5  H F D D R 5 ‰
6XCVUWpU€oX8†uIGup¢s¢T WQW†ƒ¢QvV†8EWIVU˜‡H
7 d H D F 4 T H q 5 2 5B Y 2 T  —
H F D 2B Y d R 4 4 5 D T F D d 5 D 4 Tq 2 5 7 7 5 4 H F D Y d T H   T H d H F D 2 7 Ry 5 4 F 4 T H q 5 h T H F H F D D T D T F
pGŽXC‚IQ6˜ulUGŠ8W6¢š#8#986IGŠ‚¢g†I¢u‚QIWŽ#IE8Q‰ƒ¢QmV‰VgIIWuVCVIGD
H 4B D 5 2 2 H F t ’ ’ Hy ‰ T D H F D 5 D 2B D R  H ‰ 5 D Y 7 d H D H F D Y HqBy  7B Y F 4B F
6XW¢Iº6Iu«–ç VXI¢G‰pGkGoX#pI‰sAG–9WQW‰pG…Q•„XI9X‚«ƒEIC@ W6G«ƒ¢QWoXB
7d H D F 4 T H 5D 2
h HBy B Dy R 7 2 H H ‰ Y T
QEXIEGEp…Q6sf¢UF  …h¢WVg‘XIW†XUh8I8IWE¢šŽEI¢GaIW”¢‘|6EwIWfV†9IX86#XB
ß î t H Y T 4 YB F D 2B t F ` R 5 F Dy Tæ Hy ‰ T D H F D q 5 Dq Hy H F D D T 2 7 Ry 5 4 T 2
dVg†I¢#8XWVUSQfIG–Xˆ9WQWfIWh¢UE¢vVUW‘6XGVfe!8EGV#X˜gWIp¢€XIWh¢fWI‘IG–o‰
T H   T 2 5B D T R P H H F D 2B Y 7 d H D H F D q 5 yy T D T F D H 4B D 5 ò ù 2 5B D T 7B — 5 d   T YB F D q 5 H Y R H F D i
h H Y R T 4 d 5 d d H y T 4 5y H F D YB D T F @ t iy H 7 T 2 ’ d H @ Y 2 T 2 T 4 Hy ‰ T D YB F D q 5 i h R D Y T D T F D Y 2 5B D Y H R
Q‚I¢Qj8W‚QpVgxXuIW”XˆVUCV8E6#VUp6Qv‚I¢9¢QŠXp¢ƒ”EIG뢖ppG‚€lUGjI8EGfQISP
HpG€¢–I8wWoQW6WI6WEIu‘ëW¢#¢XGfQISeAG„CA8EW‚QWpp–V#6W9•aXI¢G‘IG€¢5
F D q 5 H 2 5 Y D 2 H Y H d  H d YB F t ’ ÷ d T 7 2 5B D Y H R P T F DB @ 2 5B Y Y H d  — H 2 T H H Y H @ Hy ‰ T D H F D q
 5 D H F D D i ’ h H nBy  7B Y YB T d ‰ H `y T H F D q 5 H 7 5 Y D T F D 5 Y h H D 4 R d D Y 2 5 4 YB Hy ‰ T D H F
8WeIG–Š)‹6UEEI9XW–EGI68X¢†IWf¢e98‚#lUGkWº6G‡IWW‚I86‘XeEI¢ƒIut
’ H bB D T bB d H
¢8„GVV„WQph
h 2 5 4 H Y T 5 D 2 5B D T 7B — 5 d   T 2 TB ` 2 T d ` T ô D 2B 5  r ¥ h H d H D 2 H 4 d 5q Hy ‰ T D d 5y i T t ’ ¦’ ¥ Hy ‰ T
I8Q6WeGr8EGV#X˜gWpI¢¬¢X8I¢W8¢˜–oX8†3sºQ‚QWS6Q‘8•ŽEI¢G…8Xxgv¬8„pEI¢mt

…
4

…

Y … sfSɺ
ç ¦æ Y
Y … sW|x‡‹
ç ¦ræ Y

4

4

4

Ý Y „ sfokº
ç ¦æ Y

Ý Y „ sW|x½‹
ç ¦ræ Y

í y ü ˜Aut
wüu
Y … …î
ß

4



4



4 hsfxhº
Y ç ¦æ Y

Y  sfxkº
ç ¦æ Y
4

º
Œ

4 hsG|S{‹
Y ç ¦ ræ Y

Y  sƒƒx‡‹
ç ¦ ræ Y

‹

4

¦

í y û ¤Auvt
w û u
Y „ …î
ß

í y ú ¤¦uvt
w ú u
Y  …î
ß

í y xuvt
w u
Y ß
…î

 ß…î
¦

ù ä ç4 üí ݺ ø í ÝŒ ø 4 €í Ý ‹
׈f5Wx–“jxƒ“h¥xSˆæ

ø

4 üí Ý Y
5‚xckº
í Ý Y
xckŒ
4 €í Ý Y
¥˜Q{‹
í y ú ¤¦uu t Y  ‘î
w ú
ß

í
xÝ
í W  ß 
V
Ý 


Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È
u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç

  ¥
D Y d n T 5 D 2 5B D T 7B — 5 d   T 2 TB ` 2 T d ` T ô D 2B 5 r
‚‚UÅ©W«8EGV#X˜gWIp¢ª¢ƒ¢I¢G¢¢˜oX8†3l¥

…
…4 
4

Y … sW|x7¡‹
ç ¦ræ Y 4
Y … ç   |xY  ‹
ræ

Ý Y „ sGƒx'¡‹
ç ¦ ræ Y 4
Y „ ç   ƒxY  ‹
ræ

4Ý
4

í y ü u
wü
˜Au t
Y … …î
ß



4
4

í y û u
w û
˜Au t
Y „ …î
ß

Y  cƒ|x8¡‹
ç ¦ ræ Y 4
Y  ç   |xY  ‹
ræ

h d T @ ÷ 4 T ‰ d 5q Hy ‰ T D d 5y i T
W¢•oƒ¢Ue8•EI¢GŽ8Xxgvt

4 UsƒƒS'¡‹
Y ç ¦ ræ Y 4
44 Uç   ƒSY  ‹
Y ræ
4

Œ
4‹
 ‹

¦

í y ú u
w ú
¤¦u t
Y  …î
ß

í y xuu t
w
Y ß
‘î

’¢8„GVV„WQph
H bB D T bB d H
’   pkEI¢mt
’ ¥ Hy ‰ T

í Ý Y
xckŒ

4 €í Ý Y 4
¥xc7¡‹
 ¥xcY  ‹
€í Ý
í y xuu t f…î
w Y ß

í
xÝ

í W ß 
ß
…î
ù ä çí ÝŒ ø 4 €í Ý4 ‹
fˆ6˜ƒ~hAxf¡“ø  AxÝ  –æ
€í ‹
ø
V
Ý 
¦
’   ˜uXI¢mX†CspWuX¢EWVVEW6Ih
’ ¥ Hy ‰ T t 2B 2 @ 5 F Y YB H bB D T bB d H
D Y d n T ` 2B D 2 H Y H d  H d d 5 D T d H  5 ` 2B 4 2 H d H gB h r h d T @ ÷ 4 T ‰ D 2B 5 r ¥ T d 5q Hy ‰ T D d 5y i T t H F
fWUa9IEGoQ‚Q‚IQ‚Š8GlGQ†8‘IEQI6W6h„I3˜‚¢•SƒVUŠoX¢s£l…u8•‘XIVƒ•8ExcmIut
í W  ß 
 …î
ß
V
ço¥ pzæ
c ’ ¥
ç  …zd׈f5‚˜¬”xÝ   ‚¥˜•æ
ß îæ ’ ä ç4 üí Ý ø í
6 4 €í Ý
6
Ý !
¦

H bB D T bB d H
¢EWVVEW6Ih
h 2 5 4 H Y T d 5q d 5 D T d H  5 D 2B 5  ` 2B 4 2 H d H gB h y T d D 2 H 4 D 2B 5 r ¥ d TByB 7 Tq H F D h H bB d H h D Y R Û H b T
I86Q‚wŠ8•ˆ8WVG6s8•oX8†wIEQI6W6h„Ih¢WGoQ6•oE8s£lj¢XXE#¢š‘IGŽ68„WQpu‚I‚8gUF
H ™ ’ D 2 H D YB Y 2 5 4 7 d H D d 5 d d H H F D H ÷ T 7 5 D F ` R 5 d F D h H hB bB h 2 H H ‰ Y T
ugoQW‚EWI86µW6Gu8W‚QaIG¢Vd#G†¢I8WpGQIE˜„I6Q†™¢IF  ……IWCVUGuGVfò
ß î H FD D T F D H D 5
í W … ß 
  ¦
V
ß
Ý …   ‘î

ç 9 ’ ¥
83¥ pzæ

ä

¢
£—

í W … ß 
V ß
5… …î
Ý … 

 
ø

º

—    ¡ ß…î
¦

ä  xþ
ÿ

‹

Y h 2 n H 2 5 h 2 T ç i d D H 7 7 i Y i ‰ F YB 2 T b yyB @ Y 2 7 Ry 5
IIIup8I¢up‚G‡#9x‚oWEI¢VsEXCŠI9IX¢Q4
2 H b H yy T Hy  7 T — H YB F D d 5qæ Hy ‰ T D H F D 2B 2 7 Ry 5 4 F Dq n H F D D T Y d R 4 4
Q¢6uXV†EI9¢p‡–XIW9¢••XIVƒIG¬XÆ#pX86«G|p†IW9lŽWpQQx5  xðWVg9XIW©31
ÿ þ H Y T 4 YB F D 2
’ d 5 d d H Y HB d H Y d 5y i T t H F D Y T D
Q8‚W6‘6X‚QWC8ExcmuIGŠV‘EB
7 R Y ` 2B F YB 2 T b 2 5 2 D Y d n H F D H D T 2 `B Y H h H
IW9IXpWXp¢VS¢I™fWUuIWuWVU8EW6Ia™

5D d Hq Hd h 2 T ÿ þ H ‰ 5
W‘6•6W‰I¢†t  x½†dWD

’ d 5 d d H H F D H D R DB D Y 2 5 4 5 d H Œ 5 D 7 R Y D 5 2 5 h D T F D Y 2 7 Ry 5 4 H F
Q8‚WQuIWGpWEW‚I86#‚Q6#W§IWCVI#pCVUGŠp#IE8QwIut

¹

  6

³´µ

’û ¦
ŸQQà   S8¦ wˆsƒ¥c¥UýS68E¢uXe8EGpE8WwIut
6 à ù 6 ä û º à Œ à ‹ù i ‰ 2 H b B ` Y B 2 5 B D R y 5 Y H F
¡ ¦
¹ º ³´µ ¹ ¦
¡ w6 ³´µ
ä
Œ
¦
¦
·¶ ‹ ·¶ ¦ ¦ ¦

¡

·¶ ¡

2 5B D T R P H H F D iq YB D T Y H @ qB 5 d H ΠH d T Y 2 7 Ry 5
8EGVIx6uIGŽ|fXWVGuvm„#‚QQ‚¢CI9IX¢Q4
H H d F D D Y d n H F D q 5 Y 7 R Y H F D D T F D @ 5 F Y iyB Y T H 2 T 4 H 2 “ ’ 5 d H Œ H ‰ 5 D Y 7 R Y H Y H F D t 4 h 2
6WIWwfWU‘IW•¢u9IW–IWVUWÏcIWEX‚¢gA¢Q#I#I‚QQ–†Gu#I‚#‚QIW›¢AI¢T
t‹ëpj¢wQE8Iƒ‘Q†8WpaIWSëVQW¢•†I¢fo8EW9GC|6Eµ8W•‰QQ6˜‚IwvU‹xIG‡#wIGm¢5
‰ t T q 5 H 4B 5 F 4 d H  5 d  H F D i ‰ t H 4 d 5q h 2 T D F `B d 5 D Dq Hy 7 5 dq h H H 4 5 d  H @ t h 5 F D H 7 H F D q
i 4 T d R 4 4 T q 5 d H h d 5 H F D H ŒB 7B — T 7 5 t ’ Y 2 7 Ry 5 4 H Y H F D q 5 F 4 T H q
6¢WIQ6¢u¢6IW¢#IWa6X9X˜l#†§‘QI9IE8Q9W6IGv¢ƒVgŠV5 IW–IWw6IX‚I8•
7 R Y H F D d H hB Y 2 5

ê Ó É Ñ × Ú Ì Ù Ì È Ç
뙬uv†vf”‹Ú qÔvwˆfˆ””ÔÖ {Ô§‘•Ïm˜™uuóx%xÎ
é ÓÒ Ç Ó Ì Í Ì Ñ ÑÒ
é Ó Ò Ë Ç è Í Ë Ú Ó × Ç Ð çÐ

Í Ì Ö Í
ˆfu×

¥
8¥
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics
Fundamentals of computational fluid dynamics

Contenu connexe

Tendances

Calculus Research Lab 2: Integrals
Calculus Research Lab 2: IntegralsCalculus Research Lab 2: Integrals
Calculus Research Lab 2: IntegralsA Jorge Garcia
 
Efficient Model-based 3D Tracking by Using Direct Image Registration
Efficient Model-based 3D Tracking by Using Direct Image RegistrationEfficient Model-based 3D Tracking by Using Direct Image Registration
Efficient Model-based 3D Tracking by Using Direct Image RegistrationEnrique Muñoz Corral
 
2004 zuckerberg a set theoretic approach to lifting procedures for 0-1 inte...
2004 zuckerberg   a set theoretic approach to lifting procedures for 0-1 inte...2004 zuckerberg   a set theoretic approach to lifting procedures for 0-1 inte...
2004 zuckerberg a set theoretic approach to lifting procedures for 0-1 inte...Alejandro Angulo
 
Partial differential equations, graduate level problems and solutions by igor...
Partial differential equations, graduate level problems and solutions by igor...Partial differential equations, graduate level problems and solutions by igor...
Partial differential equations, graduate level problems and solutions by igor...Julio Banks
 
Stochastic Programming
Stochastic ProgrammingStochastic Programming
Stochastic ProgrammingSSA KPI
 
Applied Stochastic Processes
Applied Stochastic ProcessesApplied Stochastic Processes
Applied Stochastic Processeshuutung96
 
Discrete Mathematics - Mathematics For Computer Science
Discrete Mathematics -  Mathematics For Computer ScienceDiscrete Mathematics -  Mathematics For Computer Science
Discrete Mathematics - Mathematics For Computer ScienceRam Sagar Mourya
 
Elementary mathematical logic stephen g. simpson
Elementary mathematical logic   stephen g. simpsonElementary mathematical logic   stephen g. simpson
Elementary mathematical logic stephen g. simpsonmanrak
 
Best of numerical
Best of numericalBest of numerical
Best of numericalCAALAAA
 

Tendances (16)

phd-2013-dkennett
phd-2013-dkennettphd-2013-dkennett
phd-2013-dkennett
 
Time series Analysis
Time series AnalysisTime series Analysis
Time series Analysis
 
Calculus Research Lab 2: Integrals
Calculus Research Lab 2: IntegralsCalculus Research Lab 2: Integrals
Calculus Research Lab 2: Integrals
 
Efficient Model-based 3D Tracking by Using Direct Image Registration
Efficient Model-based 3D Tracking by Using Direct Image RegistrationEfficient Model-based 3D Tracking by Using Direct Image Registration
Efficient Model-based 3D Tracking by Using Direct Image Registration
 
2004 zuckerberg a set theoretic approach to lifting procedures for 0-1 inte...
2004 zuckerberg   a set theoretic approach to lifting procedures for 0-1 inte...2004 zuckerberg   a set theoretic approach to lifting procedures for 0-1 inte...
2004 zuckerberg a set theoretic approach to lifting procedures for 0-1 inte...
 
Partial differential equations, graduate level problems and solutions by igor...
Partial differential equations, graduate level problems and solutions by igor...Partial differential equations, graduate level problems and solutions by igor...
Partial differential equations, graduate level problems and solutions by igor...
 
Stochastic Programming
Stochastic ProgrammingStochastic Programming
Stochastic Programming
 
Diederik Fokkema - Thesis
Diederik Fokkema - ThesisDiederik Fokkema - Thesis
Diederik Fokkema - Thesis
 
Barret templates
Barret templatesBarret templates
Barret templates
 
Applied Stochastic Processes
Applied Stochastic ProcessesApplied Stochastic Processes
Applied Stochastic Processes
 
Machine learning-cheat-sheet
Machine learning-cheat-sheetMachine learning-cheat-sheet
Machine learning-cheat-sheet
 
Discrete Mathematics - Mathematics For Computer Science
Discrete Mathematics -  Mathematics For Computer ScienceDiscrete Mathematics -  Mathematics For Computer Science
Discrete Mathematics - Mathematics For Computer Science
 
Elementary mathematical logic stephen g. simpson
Elementary mathematical logic   stephen g. simpsonElementary mathematical logic   stephen g. simpson
Elementary mathematical logic stephen g. simpson
 
Cálculo lambda
Cálculo lambdaCálculo lambda
Cálculo lambda
 
Best of numerical
Best of numericalBest of numerical
Best of numerical
 
thesis
thesisthesis
thesis
 

En vedette

Finiteelementmethodsfornavierstokesequations giraultraviart
Finiteelementmethodsfornavierstokesequations giraultraviartFiniteelementmethodsfornavierstokesequations giraultraviart
Finiteelementmethodsfornavierstokesequations giraultraviartDaniel Cabrera
 
Analysis and design of flight vehicles structures
Analysis and design of flight vehicles structuresAnalysis and design of flight vehicles structures
Analysis and design of flight vehicles structuresAghilesh V
 
Aerodynamics by n. f. krasnov
Aerodynamics by n. f. krasnovAerodynamics by n. f. krasnov
Aerodynamics by n. f. krasnovAghilesh V
 
Analysis and design of flight vehicle structures by E.f Bruhn
Analysis and design of flight vehicle structures by E.f BruhnAnalysis and design of flight vehicle structures by E.f Bruhn
Analysis and design of flight vehicle structures by E.f BruhnAghilesh V
 
Modern compressible flow by J.D.Anderson
Modern compressible flow by J.D.AndersonModern compressible flow by J.D.Anderson
Modern compressible flow by J.D.AndersonAghilesh V
 
Propulsion 2 notes
Propulsion 2 notesPropulsion 2 notes
Propulsion 2 notesAghilesh V
 
Mechanical vibraions by V.P. Singh
Mechanical vibraions by V.P. SinghMechanical vibraions by V.P. Singh
Mechanical vibraions by V.P. SinghAghilesh V
 
An introduction to the theory of aeroelasticity by y. c. fung
An introduction to the theory of aeroelasticity by y. c. fungAn introduction to the theory of aeroelasticity by y. c. fung
An introduction to the theory of aeroelasticity by y. c. fungAghilesh V
 
Aerodynamics anderson solution
Aerodynamics anderson solutionAerodynamics anderson solution
Aerodynamics anderson solutionGaurav Vaibhav
 

En vedette (11)

Finiteelementmethodsfornavierstokesequations giraultraviart
Finiteelementmethodsfornavierstokesequations giraultraviartFiniteelementmethodsfornavierstokesequations giraultraviart
Finiteelementmethodsfornavierstokesequations giraultraviart
 
Physical Introduction
Physical IntroductionPhysical Introduction
Physical Introduction
 
CFD Course
CFD CourseCFD Course
CFD Course
 
Analysis and design of flight vehicles structures
Analysis and design of flight vehicles structuresAnalysis and design of flight vehicles structures
Analysis and design of flight vehicles structures
 
Aerodynamics by n. f. krasnov
Aerodynamics by n. f. krasnovAerodynamics by n. f. krasnov
Aerodynamics by n. f. krasnov
 
Analysis and design of flight vehicle structures by E.f Bruhn
Analysis and design of flight vehicle structures by E.f BruhnAnalysis and design of flight vehicle structures by E.f Bruhn
Analysis and design of flight vehicle structures by E.f Bruhn
 
Modern compressible flow by J.D.Anderson
Modern compressible flow by J.D.AndersonModern compressible flow by J.D.Anderson
Modern compressible flow by J.D.Anderson
 
Propulsion 2 notes
Propulsion 2 notesPropulsion 2 notes
Propulsion 2 notes
 
Mechanical vibraions by V.P. Singh
Mechanical vibraions by V.P. SinghMechanical vibraions by V.P. Singh
Mechanical vibraions by V.P. Singh
 
An introduction to the theory of aeroelasticity by y. c. fung
An introduction to the theory of aeroelasticity by y. c. fungAn introduction to the theory of aeroelasticity by y. c. fung
An introduction to the theory of aeroelasticity by y. c. fung
 
Aerodynamics anderson solution
Aerodynamics anderson solutionAerodynamics anderson solution
Aerodynamics anderson solution
 

Similaire à Fundamentals of computational fluid dynamics

Lecture notes on planetary sciences and orbit determination
Lecture notes on planetary sciences and orbit determinationLecture notes on planetary sciences and orbit determination
Lecture notes on planetary sciences and orbit determinationErnst Schrama
 
Business Mathematics Code 1429
Business Mathematics Code 1429Business Mathematics Code 1429
Business Mathematics Code 1429eniacnetpoint
 
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimization
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimizationDavid_Mateos_Núñez_thesis_distributed_algorithms_convex_optimization
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimizationDavid Mateos
 
Optimization and prediction of a geofoam-filled trench in homogeneous and lay...
Optimization and prediction of a geofoam-filled trench in homogeneous and lay...Optimization and prediction of a geofoam-filled trench in homogeneous and lay...
Optimization and prediction of a geofoam-filled trench in homogeneous and lay...Mehran Naghizadeh
 
2012-02-17_Vojtech-Seman_Rigorous_Thesis
2012-02-17_Vojtech-Seman_Rigorous_Thesis2012-02-17_Vojtech-Seman_Rigorous_Thesis
2012-02-17_Vojtech-Seman_Rigorous_ThesisVojtech Seman
 
Nonlinear Simulation of Rotor-Bearing System Dynamics
Nonlinear Simulation of Rotor-Bearing System DynamicsNonlinear Simulation of Rotor-Bearing System Dynamics
Nonlinear Simulation of Rotor-Bearing System DynamicsFrederik Budde
 
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notesQuantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notespolariton
 
Ieml semantic topology
Ieml semantic topologyIeml semantic topology
Ieml semantic topologyAntonio Medina
 
Stochastic Processes and Simulations – A Machine Learning Perspective
Stochastic Processes and Simulations – A Machine Learning PerspectiveStochastic Processes and Simulations – A Machine Learning Perspective
Stochastic Processes and Simulations – A Machine Learning Perspectivee2wi67sy4816pahn
 
Derya_Sezen_POMDP_thesis
Derya_Sezen_POMDP_thesisDerya_Sezen_POMDP_thesis
Derya_Sezen_POMDP_thesisDerya SEZEN
 
Differential Equations for Engineers
Differential Equations for EngineersDifferential Equations for Engineers
Differential Equations for Engineersamelslideshare
 

Similaire à Fundamentals of computational fluid dynamics (20)

Ode2015
Ode2015Ode2015
Ode2015
 
Lecture notes on planetary sciences and orbit determination
Lecture notes on planetary sciences and orbit determinationLecture notes on planetary sciences and orbit determination
Lecture notes on planetary sciences and orbit determination
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Business Mathematics Code 1429
Business Mathematics Code 1429Business Mathematics Code 1429
Business Mathematics Code 1429
 
phd_unimi_R08725
phd_unimi_R08725phd_unimi_R08725
phd_unimi_R08725
 
book.pdf
book.pdfbook.pdf
book.pdf
 
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimization
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimizationDavid_Mateos_Núñez_thesis_distributed_algorithms_convex_optimization
David_Mateos_Núñez_thesis_distributed_algorithms_convex_optimization
 
Optimization and prediction of a geofoam-filled trench in homogeneous and lay...
Optimization and prediction of a geofoam-filled trench in homogeneous and lay...Optimization and prediction of a geofoam-filled trench in homogeneous and lay...
Optimization and prediction of a geofoam-filled trench in homogeneous and lay...
 
Zettili.pdf
Zettili.pdfZettili.pdf
Zettili.pdf
 
2012-02-17_Vojtech-Seman_Rigorous_Thesis
2012-02-17_Vojtech-Seman_Rigorous_Thesis2012-02-17_Vojtech-Seman_Rigorous_Thesis
2012-02-17_Vojtech-Seman_Rigorous_Thesis
 
Nonlinear Simulation of Rotor-Bearing System Dynamics
Nonlinear Simulation of Rotor-Bearing System DynamicsNonlinear Simulation of Rotor-Bearing System Dynamics
Nonlinear Simulation of Rotor-Bearing System Dynamics
 
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notesQuantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
 
Transport
TransportTransport
Transport
 
Thats How We C
Thats How We CThats How We C
Thats How We C
 
Ieml semantic topology
Ieml semantic topologyIeml semantic topology
Ieml semantic topology
 
time_series.pdf
time_series.pdftime_series.pdf
time_series.pdf
 
Stochastic Processes and Simulations – A Machine Learning Perspective
Stochastic Processes and Simulations – A Machine Learning PerspectiveStochastic Processes and Simulations – A Machine Learning Perspective
Stochastic Processes and Simulations – A Machine Learning Perspective
 
math-basics.pdf
math-basics.pdfmath-basics.pdf
math-basics.pdf
 
Derya_Sezen_POMDP_thesis
Derya_Sezen_POMDP_thesisDerya_Sezen_POMDP_thesis
Derya_Sezen_POMDP_thesis
 
Differential Equations for Engineers
Differential Equations for EngineersDifferential Equations for Engineers
Differential Equations for Engineers
 

Plus de Aghilesh V

Theroy of plates and shells by timoshenko
Theroy of plates and shells by timoshenkoTheroy of plates and shells by timoshenko
Theroy of plates and shells by timoshenkoAghilesh V
 
Vibration of plates by Leissa
Vibration of plates  by LeissaVibration of plates  by Leissa
Vibration of plates by LeissaAghilesh V
 
Aircraft propulsion by c.fayette taylor
Aircraft propulsion by c.fayette taylorAircraft propulsion by c.fayette taylor
Aircraft propulsion by c.fayette taylorAghilesh V
 
Computational techniques for fluid dynamics by Fletcher
Computational techniques for fluid dynamics by  FletcherComputational techniques for fluid dynamics by  Fletcher
Computational techniques for fluid dynamics by FletcherAghilesh V
 
Computational fluid dynamics by Anderson
Computational fluid dynamics by  AndersonComputational fluid dynamics by  Anderson
Computational fluid dynamics by AndersonAghilesh V
 
Fundamentals of aerodynamics by J.D.Anderson
 Fundamentals of aerodynamics by J.D.Anderson Fundamentals of aerodynamics by J.D.Anderson
Fundamentals of aerodynamics by J.D.AndersonAghilesh V
 
Aerodynamics aeronautics and flight mechanics
Aerodynamics aeronautics and flight mechanicsAerodynamics aeronautics and flight mechanics
Aerodynamics aeronautics and flight mechanicsAghilesh V
 

Plus de Aghilesh V (8)

Theroy of plates and shells by timoshenko
Theroy of plates and shells by timoshenkoTheroy of plates and shells by timoshenko
Theroy of plates and shells by timoshenko
 
Vibration of plates by Leissa
Vibration of plates  by LeissaVibration of plates  by Leissa
Vibration of plates by Leissa
 
Aircraft propulsion by c.fayette taylor
Aircraft propulsion by c.fayette taylorAircraft propulsion by c.fayette taylor
Aircraft propulsion by c.fayette taylor
 
AE2028 AEMR
AE2028 AEMRAE2028 AEMR
AE2028 AEMR
 
Computational techniques for fluid dynamics by Fletcher
Computational techniques for fluid dynamics by  FletcherComputational techniques for fluid dynamics by  Fletcher
Computational techniques for fluid dynamics by Fletcher
 
Computational fluid dynamics by Anderson
Computational fluid dynamics by  AndersonComputational fluid dynamics by  Anderson
Computational fluid dynamics by Anderson
 
Fundamentals of aerodynamics by J.D.Anderson
 Fundamentals of aerodynamics by J.D.Anderson Fundamentals of aerodynamics by J.D.Anderson
Fundamentals of aerodynamics by J.D.Anderson
 
Aerodynamics aeronautics and flight mechanics
Aerodynamics aeronautics and flight mechanicsAerodynamics aeronautics and flight mechanics
Aerodynamics aeronautics and flight mechanics
 

Dernier

Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 

Dernier (20)

Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 

Fundamentals of computational fluid dynamics

  • 1. Fundamentals of Computational Fluid Dynamics Harvard Lomax and Thomas H. Pulliam NASA Ames Research Center David W. Zingg University of Toronto Institute for Aerospace Studies August 26, 1999
  • 2.
  • 3. Contents 1 INTRODUCTION 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Problem Speci cation and Geometry Preparation . . . . . . 1.2.2 Selection of Governing Equations and Boundary Conditions 1.2.3 Selection of Gridding Strategy and Numerical Method . . . 1.2.4 Assessment and Interpretation of Results . . . . . . . . . . . 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 CONSERVATION LAWS AND THE MODEL EQUATIONS 2.1 Conservation Laws . . . . . . . . . . . . 2.2 The Navier-Stokes and Euler Equations . 2.3 The Linear Convection Equation . . . . 2.3.1 Di erential Form . . . . . . . . . 2.3.2 Solution in Wave Space . . . . . . 2.4 The Di usion Equation . . . . . . . . . . 2.4.1 Di erential Form . . . . . . . . . 2.4.2 Solution in Wave Space . . . . . . 2.5 Linear Hyperbolic Systems . . . . . . . . 2.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 FINITE-DIFFERENCE APPROXIMATIONS 3.1 Meshes and Finite-Di erence Notation 3.2 Space Derivative Approximations . . . 3.3 Finite-Di erence Operators . . . . . . 3.3.1 Point Di erence Operators . . . 3.3.2 Matrix Di erence Operators . . 3.3.3 Periodic Matrices . . . . . . . . 3.3.4 Circulant Matrices . . . . . . . iii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2 2 3 3 4 4 5 7 7 8 12 12 13 14 14 15 16 17 21 21 24 25 25 25 29 30
  • 4. 3.4 Constructing Di erencing Schemes of Any Order . . . . . 3.4.1 Taylor Tables . . . . . . . . . . . . . . . . . . . . 3.4.2 Generalization of Di erence Formulas . . . . . . . 3.4.3 Lagrange and Hermite Interpolation Polynomials 3.4.4 Practical Application of Pade Formulas . . . . . . 3.4.5 Other Higher-Order Schemes . . . . . . . . . . . . 3.5 Fourier Error Analysis . . . . . . . . . . . . . . . . . . . 3.5.1 Application to a Spatial Operator . . . . . . . . . 3.6 Di erence Operators at Boundaries . . . . . . . . . . . . 3.6.1 The Linear Convection Equation . . . . . . . . . 3.6.2 The Di usion Equation . . . . . . . . . . . . . . . 3.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 31 34 35 37 38 39 39 43 44 46 47 4 THE SEMI-DISCRETE APPROACH 51 5 FINITE-VOLUME METHODS 71 4.1 Reduction of PDE's to ODE's . . . . . . . . . . . . . . . . . . . . . . 4.1.1 The Model ODE's . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 The Generic Matrix Form . . . . . . . . . . . . . . . . . . . . 4.2 Exact Solutions of Linear ODE's . . . . . . . . . . . . . . . . . . . . 4.2.1 Eigensystems of Semi-Discrete Linear Forms . . . . . . . . . . 4.2.2 Single ODE's of First- and Second-Order . . . . . . . . . . . . 4.2.3 Coupled First-Order ODE's . . . . . . . . . . . . . . . . . . . 4.2.4 General Solution of Coupled ODE's with Complete Eigensystems 4.3 Real Space and Eigenspace . . . . . . . . . . . . . . . . . . . . . . . . 4.3.1 De nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.2 Eigenvalue Spectrums for Model ODE's . . . . . . . . . . . . . 4.3.3 Eigenvectors of the Model Equations . . . . . . . . . . . . . . 4.3.4 Solutions of the Model ODE's . . . . . . . . . . . . . . . . . . 4.4 The Representative Equation . . . . . . . . . . . . . . . . . . . . . . 4.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Model Equations in Integral Form . . . . . . . . . . . . . . . . . . . 5.2.1 The Linear Convection Equation . . . . . . . . . . . . . . . 5.2.2 The Di usion Equation . . . . . . . . . . . . . . . . . . . . . 5.3 One-Dimensional Examples . . . . . . . . . . . . . . . . . . . . . . 5.3.1 A Second-Order Approximation to the Convection Equation 5.3.2 A Fourth-Order Approximation to the Convection Equation 5.3.3 A Second-Order Approximation to the Di usion Equation . 5.4 A Two-Dimensional Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 52 53 54 54 55 57 59 61 61 62 63 65 67 68 72 73 73 74 74 75 77 78 80
  • 5. 5.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 TIME-MARCHING METHODS FOR ODE'S 6.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Converting Time-Marching Methods to O E's . . . . . . . . . . . . 6.3 Solution of Linear O E's With Constant Coe cients . . . . . . . . 6.3.1 First- and Second-Order Di erence Equations . . . . . . . . 6.3.2 Special Cases of Coupled First-Order Equations . . . . . . . 6.4 Solution of the Representative O E's . . . . . . . . . . . . . . . . 6.4.1 The Operational Form and its Solution . . . . . . . . . . . . 6.4.2 Examples of Solutions to Time-Marching O E's . . . . . . . 6.5 The ; Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.1 Establishing the Relation . . . . . . . . . . . . . . . . . . . . 6.5.2 The Principal -Root . . . . . . . . . . . . . . . . . . . . . . 6.5.3 Spurious -Roots . . . . . . . . . . . . . . . . . . . . . . . . 6.5.4 One-Root Time-Marching Methods . . . . . . . . . . . . . . 6.6 Accuracy Measures of Time-Marching Methods . . . . . . . . . . . 6.6.1 Local and Global Error Measures . . . . . . . . . . . . . . . 6.6.2 Local Accuracy of the Transient Solution (er j j er! ) . . . 6.6.3 Local Accuracy of the Particular Solution (er ) . . . . . . . 6.6.4 Time Accuracy For Nonlinear Applications . . . . . . . . . . 6.6.5 Global Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 6.7 Linear Multistep Methods . . . . . . . . . . . . . . . . . . . . . . . 6.7.1 The General Formulation . . . . . . . . . . . . . . . . . . . . 6.7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7.3 Two-Step Linear Multistep Methods . . . . . . . . . . . . . 6.8 Predictor-Corrector Methods . . . . . . . . . . . . . . . . . . . . . . 6.9 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . 6.10 Implementation of Implicit Methods . . . . . . . . . . . . . . . . . . 6.10.1 Application to Systems of Equations . . . . . . . . . . . . . 6.10.2 Application to Nonlinear Equations . . . . . . . . . . . . . . 6.10.3 Local Linearization for Scalar Equations . . . . . . . . . . . 6.10.4 Local Linearization for Coupled Sets of Nonlinear Equations 6.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 STABILITY OF LINEAR SYSTEMS 7.1 Dependence on the Eigensystem 7.2 Inherent Stability of ODE's . . 7.2.1 The Criterion . . . . . . 7.2.2 Complete Eigensystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 85 86 87 88 89 90 91 91 92 93 93 95 95 96 97 97 98 99 100 101 102 102 103 105 106 107 110 110 111 112 115 117 121 122 123 123 123
  • 6. 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.2.3 Defective Eigensystems . . . . . . . . . . . . . . Numerical Stability of O E 's . . . . . . . . . . . . . . 7.3.1 The Criterion . . . . . . . . . . . . . . . . . . . 7.3.2 Complete Eigensystems . . . . . . . . . . . . . . 7.3.3 Defective Eigensystems . . . . . . . . . . . . . . Time-Space Stability and Convergence of O E's . . . . Numerical Stability Concepts in the Complex -Plane . 7.5.1 -Root Traces Relative to the Unit Circle . . . 7.5.2 Stability for Small t . . . . . . . . . . . . . . . Numerical Stability Concepts in the Complex h Plane 7.6.1 Stability for Large h. . . . . . . . . . . . . . . . 7.6.2 Unconditional Stability, A-Stable Methods . . . 7.6.3 Stability Contours in the Complex h Plane. . . Fourier Stability Analysis . . . . . . . . . . . . . . . . 7.7.1 The Basic Procedure . . . . . . . . . . . . . . . 7.7.2 Some Examples . . . . . . . . . . . . . . . . . . 7.7.3 Relation to Circulant Matrices . . . . . . . . . . Consistency . . . . . . . . . . . . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 8 CHOICE OF TIME-MARCHING METHODS 8.1 Sti ness De nition for ODE's . . . . . . . . . . . . 8.1.1 Relation to -Eigenvalues . . . . . . . . . . 8.1.2 Driving and Parasitic Eigenvalues . . . . . . 8.1.3 Sti ness Classi cations . . . . . . . . . . . . 8.2 Relation of Sti ness to Space Mesh Size . . . . . . 8.3 Practical Considerations for Comparing Methods . 8.4 Comparing the E ciency of Explicit Methods . . . 8.4.1 Imposed Constraints . . . . . . . . . . . . . 8.4.2 An Example Involving Di usion . . . . . . . 8.4.3 An Example Involving Periodic Convection . 8.5 Coping With Sti ness . . . . . . . . . . . . . . . . 8.5.1 Explicit Methods . . . . . . . . . . . . . . . 8.5.2 Implicit Methods . . . . . . . . . . . . . . . 8.5.3 A Perspective . . . . . . . . . . . . . . . . . 8.6 Steady Problems . . . . . . . . . . . . . . . . . . . 8.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 124 124 125 125 125 128 128 132 135 135 136 137 141 141 142 143 143 146 149 149 149 151 151 152 153 154 154 154 155 158 158 159 160 160 161
  • 7. 9 RELAXATION METHODS 9.1 Formulation of the Model Problem . . . . . . . . . . . . . . 9.1.1 Preconditioning the Basic Matrix . . . . . . . . . . . 9.1.2 The Model Equations . . . . . . . . . . . . . . . . . . 9.2 Classical Relaxation . . . . . . . . . . . . . . . . . . . . . . 9.2.1 The Delta Form of an Iterative Scheme . . . . . . . . 9.2.2 The Converged Solution, the Residual, and the Error 9.2.3 The Classical Methods . . . . . . . . . . . . . . . . . 9.3 The ODE Approach to Classical Relaxation . . . . . . . . . 9.3.1 The Ordinary Di erential Equation Formulation . . . 9.3.2 ODE Form of the Classical Methods . . . . . . . . . 9.4 Eigensystems of the Classical Methods . . . . . . . . . . . . 9.4.1 The Point-Jacobi System . . . . . . . . . . . . . . . . 9.4.2 The Gauss-Seidel System . . . . . . . . . . . . . . . . 9.4.3 The SOR System . . . . . . . . . . . . . . . . . . . . 9.5 Nonstationary Processes . . . . . . . . . . . . . . . . . . . . 9.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 164 164 166 168 168 168 169 170 170 172 173 174 176 180 182 187 10 MULTIGRID 191 11 NUMERICAL DISSIPATION 203 10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.1.1 Eigenvector and Eigenvalue Identi cation with Space Frequencies191 10.1.2 Properties of the Iterative Method . . . . . . . . . . . . . . . 192 10.2 The Basic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 10.3 A Two-Grid Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 10.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 11.1 11.2 11.3 11.4 One-Sided First-Derivative Space Di erencing The Modi ed Partial Di erential Equation . . The Lax-Wendro Method . . . . . . . . . . . Upwind Schemes . . . . . . . . . . . . . . . . 11.4.1 Flux-Vector Splitting . . . . . . . . . . 11.4.2 Flux-Di erence Splitting . . . . . . . . 11.5 Arti cial Dissipation . . . . . . . . . . . . . . 11.6 Problems . . . . . . . . . . . . . . . . . . . . . 12 SPLIT AND FACTORED FORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 205 207 209 210 212 213 214 217 12.1 The Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 12.2 Factoring Physical Representations | Time Splitting . . . . . . . . . 218 12.3 Factoring Space Matrix Operators in 2{D . . . . . . . . . . . . . . . . 220
  • 8. 12.4 12.5 12.6 12.7 12.3.1 Mesh Indexing Convention . . . . . . . . . . . 12.3.2 Data Bases and Space Vectors . . . . . . . . . 12.3.3 Data Base Permutations . . . . . . . . . . . . 12.3.4 Space Splitting and Factoring . . . . . . . . . Second-Order Factored Implicit Methods . . . . . . . Importance of Factored Forms in 2 and 3 Dimensions The Delta Form . . . . . . . . . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 LINEAR ANALYSIS OF SPLIT AND FACTORED FORMS 13.1 The Representative Equation for Circulant Operators . . . . . . . 13.2 Example Analysis of Circulant Systems . . . . . . . . . . . . . . . 13.2.1 Stability Comparisons of Time-Split Methods . . . . . . . 13.2.2 Analysis of a Second-Order Time-Split Method . . . . . . 13.3 The Representative Equation for Space-Split Operators . . . . . . 13.4 Example Analysis of 2-D Model Equations . . . . . . . . . . . . . 13.4.1 The Unfactored Implicit Euler Method . . . . . . . . . . . 13.4.2 The Factored Nondelta Form of the Implicit Euler Method 13.4.3 The Factored Delta Form of the Implicit Euler Method . . 13.4.4 The Factored Delta Form of the Trapezoidal Method . . . 13.5 Example Analysis of the 3-D Model Equation . . . . . . . . . . . 13.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 221 221 223 226 226 228 229 233 233 234 234 237 238 242 242 243 243 244 245 247 A USEFUL RELATIONS AND DEFINITIONS FROM LINEAR ALGEBRA 249 A.1 A.2 A.3 A.4 A.5 Notation . . . . . . . . . . De nitions . . . . . . . . . Algebra . . . . . . . . . . Eigensystems . . . . . . . Vector and Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B SOME PROPERTIES OF TRIDIAGONAL MATRICES B.1 B.2 B.3 B.4 Standard Eigensystem for Simple Tridiagonals . . Generalized Eigensystem for Simple Tridiagonals . The Inverse of a Simple Tridiagonal . . . . . . . . Eigensystems of Circulant Matrices . . . . . . . . B.4.1 Standard Tridiagonals . . . . . . . . . . . B.4.2 General Circulant Systems . . . . . . . . . B.5 Special Cases Found From Symmetries . . . . . . B.6 Special Cases Involving Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 250 251 251 254 257 257 258 259 260 260 261 262 263
  • 9. C THE HOMOGENEOUS PROPERTY OF THE EULER EQUATIONS265
  • 10. Chapter 1 INTRODUCTION 1.1 Motivation The material in this book originated from attempts to understand and systemize numerical solution techniques for the partial di erential equations governing the physics of uid ow. As time went on and these attempts began to crystallize, underlying constraints on the nature of the material began to form. The principal such constraint was the demand for uni cation. Was there one mathematical structure which could be used to describe the behavior and results of most numerical methods in common use in the eld of uid dynamics? Perhaps the answer is arguable, but the authors believe the answer is a rmative and present this book as justi cation for that belief. The mathematical structure is the theory of linear algebra and the attendant eigenanalysis of linear systems. The ultimate goal of the eld of computational uid dynamics (CFD) is to understand the physical events that occur in the ow of uids around and within designated objects. These events are related to the action and interaction of phenomena such as dissipation, di usion, convection, shock waves, slip surfaces, boundary layers, and turbulence. In the eld of aerodynamics, all of these phenomena are governed by the compressible Navier-Stokes equations. Many of the most important aspects of these relations are nonlinear and, as a consequence, often have no analytic solution. This, of course, motivates the numerical solution of the associated partial di erential equations. At the same time it would seem to invalidate the use of linear algebra for the classi cation of the numerical methods. Experience has shown that such is not the case. As we shall see in a later chapter, the use of numerical methods to solve partial di erential equations introduces an approximation that, in e ect, can change the form of the basic partial di erential equations themselves. The new equations, which 1
  • 11. CHAPTER 1. INTRODUCTION 2 are the ones actually being solved by the numerical process, are often referred to as the modi ed partial di erential equations. Since they are not precisely the same as the original equations, they can, and probably will, simulate the physical phenomena listed above in ways that are not exactly the same as an exact solution to the basic partial di erential equation. Mathematically, these di erences are usually referred to as truncation errors. However, the theory associated with the numerical analysis of uid mechanics was developed predominantly by scientists deeply interested in the physics of uid ow and, as a consequence, these errors are often identi ed with a particular physical phenomenon on which they have a strong e ect. Thus methods are said to have a lot of arti cial viscosity" or said to be highly dispersive. This means that the errors caused by the numerical approximation result in a modi ed partial di erential equation having additional terms that can be identi ed with the physics of dissipation in the rst case and dispersion in the second. There is nothing wrong, of course, with identifying an error with a physical process, nor with deliberately directing an error to a speci c physical process, as long as the error remains in some engineering sense small". It is safe to say, for example, that most numerical methods in practical use for solving the nondissipative Euler equations create a modi ed partial di erential equation that produces some form of dissipation. However, if used and interpreted properly, these methods give very useful information. Regardless of what the numerical errors are called, if their e ects are not thoroughly understood and controlled, they can lead to serious di culties, producing answers that represent little, if any, physical reality. This motivates studying the concepts of stability, convergence, and consistency. On the other hand, even if the errors are kept small enough that they can be neglected (for engineering purposes), the resulting simulation can still be of little practical use if ine cient or inappropriate algorithms are used. This motivates studying the concepts of sti ness, factorization, and algorithm development in general. All of these concepts we hope to clarify in this book. 1.2 Background The eld of computational uid dynamics has a broad range of applicability. Independent of the speci c application under study, the following sequence of steps generally must be followed in order to obtain a satisfactory solution. 1.2.1 Problem Speci cation and Geometry Preparation The rst step involves the speci cation of the problem, including the geometry, ow conditions, and the requirements of the simulation. The geometry may result from
  • 12. 1.2. BACKGROUND 3 measurements of an existing con guration or may be associated with a design study. Alternatively, in a design context, no geometry need be supplied. Instead, a set of objectives and constraints must be speci ed. Flow conditions might include, for example, the Reynolds number and Mach number for the ow over an airfoil. The requirements of the simulation include issues such as the level of accuracy needed, the turnaround time required, and the solution parameters of interest. The rst two of these requirements are often in con ict and compromise is necessary. As an example of solution parameters of interest in computing the ow eld about an airfoil, one may be interested in i) the lift and pitching moment only, ii) the drag as well as the lift and pitching moment, or iii) the details of the ow at some speci c location. 1.2.2 Selection of Governing Equations and Boundary Conditions Once the problem has been speci ed, an appropriate set of governing equations and boundary conditions must be selected. It is generally accepted that the phenomena of importance to the eld of continuum uid dynamics are governed by the conservation of mass, momentum, and energy. The partial di erential equations resulting from these conservation laws are referred to as the Navier-Stokes equations. However, in the interest of e ciency, it is always prudent to consider solving simpli ed forms of the Navier-Stokes equations when the simpli cations retain the physics which are essential to the goals of the simulation. Possible simpli ed governing equations include the potential- ow equations, the Euler equations, and the thin-layer Navier-Stokes equations. These may be steady or unsteady and compressible or incompressible. Boundary types which may be encountered include solid walls, in ow and out ow boundaries, periodic boundaries, symmetry boundaries, etc. The boundary conditions which must be speci ed depend upon the governing equations. For example, at a solid wall, the Euler equations require ow tangency to be enforced, while the Navier-Stokes equations require the no-slip condition. If necessary, physical models must be chosen for processes which cannot be simulated within the speci ed constraints. Turbulence is an example of a physical process which is rarely simulated in a practical context (at the time of writing) and thus is often modelled. The success of a simulation depends greatly on the engineering insight involved in selecting the governing equations and physical models based on the problem speci cation. 1.2.3 Selection of Gridding Strategy and Numerical Method Next a numerical method and a strategy for dividing the ow domain into cells, or elements, must be selected. We concern ourselves here only with numerical methods requiring such a tessellation of the domain, which is known as a grid, or mesh.
  • 13. CHAPTER 1. INTRODUCTION 4 Many di erent gridding strategies exist, including structured, unstructured, hybrid, composite, and overlapping grids. Furthermore, the grid can be altered based on the solution in an approach known as solution-adaptive gridding. The numerical methods generally used in CFD can be classi ed as nite-di erence, nite-volume, nite-element, or spectral methods. The choices of a numerical method and a gridding strategy are strongly interdependent. For example, the use of nite-di erence methods is typically restricted to structured grids. Here again, the success of a simulation can depend on appropriate choices for the problem or class of problems of interest. 1.2.4 Assessment and Interpretation of Results Finally, the results of the simulation must be assessed and interpreted. This step can require post-processing of the data, for example calculation of forces and moments, and can be aided by sophisticated ow visualization tools and error estimation techniques. It is critical that the magnitude of both numerical and physical-model errors be well understood. 1.3 Overview It should be clear that successful simulation of uid ows can involve a wide range of issues from grid generation to turbulence modelling to the applicability of various simpli ed forms of the Navier-Stokes equations. Many of these issues are not addressed in this book. Some of them are presented in the books by Anderson, Tannehill, and Pletcher 1] and Hirsch 2]. Instead we focus on numerical methods, with emphasis on nite-di erence and nite-volume methods for the Euler and Navier-Stokes equations. Rather than presenting the details of the most advanced methods, which are still evolving, we present a foundation for developing, analyzing, and understanding such methods. Fortunately, to develop, analyze, and understand most numerical methods used to nd solutions for the complete compressible Navier-Stokes equations, we can make use of much simpler expressions, the so-called model" equations. These model equations isolate certain aspects of the physics contained in the complete set of equations. Hence their numerical solution can illustrate the properties of a given numerical method when applied to a more complicated system of equations which governs similar physical phenomena. Although the model equations are extremely simple and easy to solve, they have been carefully selected to be representative, when used intelligently, of di culties and complexities that arise in realistic two- and three-dimensional uid ow simulations. We believe that a thorough understanding of what happens when
  • 14. 1.4. NOTATION 5 numerical approximations are applied to the model equations is a major rst step in making con dent and competent use of numerical approximations to the Euler and Navier-Stokes equations. As a word of caution, however, it should be noted that, although we can learn a great deal by studying numerical methods as applied to the model equations and can use that information in the design and application of numerical methods to practical problems, there are many aspects of practical problems which can only be understood in the context of the complete physical systems. 1.4 Notation The notation is generally explained as it is introduced. Bold type is reserved for real physical vectors, such as velocity. The vector symbol ~ is used for the vectors (or column matrices) which contain the values of the dependent variable at the nodes of a grid. Otherwise, the use of a vector consisting of a collection of scalars should be apparent from the context and is not identi ed by any special notation. For example, the variable u can denote a scalar Cartesian velocity component in the Euler and Navier-Stokes equations, a scalar quantity in the linear convection and di usion equations, and a vector consisting of a collection of scalars in our presentation of hyperbolic systems. Some of the abbreviations used throughout the text are listed and de ned below. PDE ODE O E RHS P.S. S.S. k-D ~ bc O( ) Partial di erential equation Ordinary di erential equation Ordinary di erence equation Right-hand side Particular solution of an ODE or system of ODE's Fixed (time-invariant) steady-state solution k-dimensional space Boundary conditions, usually a vector A term of order (i.e., proportional to)
  • 16. Chapter 2 CONSERVATION LAWS AND THE MODEL EQUATIONS We start out by casting our equations in the most general form, the integral conservation-law form, which is useful in understanding the concepts involved in nite-volume schemes. The equations are then recast into divergence form, which is natural for nite-di erence schemes. The Euler and Navier-Stokes equations are brie y discussed in this Chapter. The main focus, though, will be on representative model equations, in particular, the convection and di usion equations. These equations contain many of the salient mathematical and physical features of the full Navier-Stokes equations. The concepts of convection and di usion are prevalent in our development of numerical methods for computational uid dynamics, and the recurring use of these model equations allows us to develop a consistent framework of analysis for consistency, accuracy, stability, and convergence. The model equations we study have two properties in common. They are linear partial di erential equations (PDE's) with coe cients that are constant in both space and time, and they represent phenomena of importance to the analysis of certain aspects of uid dynamic problems. 2.1 Conservation Laws Conservation laws, such as the Euler and Navier-Stokes equations and our model equations, can be written in the following integral form: Z V (t2 ) QdV ; Z V (t1 ) QdV + Z t2 I t1 S (t) n:FdSdt = Z t2 Z t1 V (t) PdV dt (2.1) In this equation, Q is a vector containing the set of variables which are conserved, e.g., mass, momentum, and energy, per unit volume. The equation is a statement of 7
  • 17. 8 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS the conservation of these quantities in a nite region of space with volume V (t) and surface area S (t) over a nite interval of time t2 ; t1 . In two dimensions, the region of space, or cell, is an area A(t) bounded by a closed contour C (t). The vector n is a unit vector normal to the surface pointing outward, F is a set of vectors, or tensor, containing the ux of Q per unit area per unit time, and P is the rate of production of Q per unit volume per unit time. If all variables are continuous in time, then Eq. 2.1 can be rewritten as d Z QdV + I n:FdS = Z PdV (2.2) dt V (t) S (t) V (t) Those methods which make various numerical approximations of the integrals in Eqs. 2.1 and 2.2 and nd a solution for Q on that basis are referred to as nite-volume methods. Many of the advanced codes written for CFD applications are based on the nite-volume concept. On the other hand, a partial derivative form of a conservation law can also be derived. The divergence form of Eq. 2.2 is obtained by applying Gauss's theorem to the ux integral, leading to @Q + r:F = P (2.3) @t where r: is the well-known divergence operator given, in Cartesian coordinates, by ! @ +j @ +k @ : (2.4) r: i @x @y @z and i j, and k are unit vectors in the x y, and z coordinate directions, respectively. Those methods which make various approximations of the derivatives in Eq. 2.3 and nd a solution for Q on that basis are referred to as nite-di erence methods. 2.2 The Navier-Stokes and Euler Equations The Navier-Stokes equations form a coupled system of nonlinear PDE's describing the conservation of mass, momentum and energy for a uid. For a Newtonian uid in one dimension, they can be written as @Q + @E = 0 (2.5) @t @x with 2 3 2 3 u 3 2 0 6 6 Q=6 6 6 4 7 7 u7 7 7 5 e E 6 6 =6 6 6 4 7 6 7 6 2+p 7;6 u 7 6 7 6 5 4 u(e + p) 4 @u 3 @x 4 3 u @u + @x @T @x 7 7 7 7 7 5 (2.6)
  • 18. 2.2. THE NAVIER-STOKES AND EULER EQUATIONS 9 where is the uid density, u is the velocity, e is the total energy per unit volume, p is the pressure, T is the temperature, is the coe cient of viscosity, and is the thermal conductivity. The total energy e includes internal energy per unit volume (where is the internal energy per unit mass) and kinetic energy per unit volume u2=2. These equations must be supplemented by relations between and and the uid state as well as an equation of state, such as the ideal gas law. Details can be found in Anderson, Tannehill, and Pletcher 1] and Hirsch 2]. Note that the convective uxes lead to rst derivatives in space, while the viscous and heat conduction terms involve second derivatives. This form of the equations is called conservation-law or conservative form. Non-conservative forms can be obtained by expanding derivatives of products using the product rule or by introducing di erent dependent variables, such as u and p. Although non-conservative forms of the equations are analytically the same as the above form, they can lead to quite di erent numerical solutions in terms of shock strength and shock speed, for example. Thus the conservative form is appropriate for solving ows with features such as shock waves. Many ows of engineering interest are steady (time-invariant), or at least may be treated as such. For such ows, we are often interested in the steady-state solution of the Navier-Stokes equations, with no interest in the transient portion of the solution. The steady solution to the one-dimensional Navier-Stokes equations must satisfy @E = 0 (2.7) @x If we neglect viscosity and heat conduction, the Euler equations are obtained. In two-dimensional Cartesian coordinates, these can be written as @Q + @E + @F = 0 (2.8) @t @x @y with 2 3 2 3 2 2 q1 u 3 v 3 6 7 6 7 6 2+ 7 6 7 Q = 6 q2 7 = 6 u 7 E = 6 u uv p 7 F = 6 v2uv p 7 6 7 6 7 6 7 6 (2.9) 4 q3 5 4 v 5 4 5 4 5 + 7 q4 e u(e + p) v ( e + p) where u and v are the Cartesian velocity components. Later on we will make use of the following form of the Euler equations as well: @Q + A @Q + B @Q = 0 (2.10) @t @x @y @E @F The matrices A = @Q and B = @Q are known as the ux Jacobians. The ux vectors given above are written in terms of the primitive variables, , u, v, and p. In order
  • 19. 10 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS to derive the ux Jacobian matrices, we must rst write the ux vectors E and F in terms of the conservative variables, q1 , q2, q3 , and q4 , as follows: E F 2 3 6 7 6 7 6 7 6 7 6 7 6 7=6 7 6 7 6 7 6 7 6 7 6 5 6 6 4 2 6 6 6 6 6 =6 6 6 6 6 6 4 E1 2 6 6 6 6 6 =6 6 6 6 6 6 4 3 2 F1 7 6 7 6 7 6 6 F2 7 6 7 6 7=6 7 6 7 6 F3 7 6 7 6 7 6 5 6 4 F4 E2 E3 E4 3 7 7 7 2 2 7 3; q2 ; ;1 q3 7 ; 1)q4 + 2 q1 2 q1 7 7 7 7 q3 q2 7 7 q1 7 7 7 5 3 2q q4 q2 ; ;1 q2 + q3 2 2 2 q1 2 q1 q1 (2.11) 3 7 7 7 7 7 7 7 7 2 7 ;1 q2 7 2 q1 7 7 7 5 3 q3 2 q1 (2.12) q2 ( q3 q3 q2 q1 ( ; 1)q4 + 3; 2 q4 q 3 q1 ; 2 q3 q1 2q ;1 q2 2 3 2 q1 ; + We have assumed that the pressure satis es p = ( ; 1) e ; (u2 + v2)=2] from the ideal gas law, where is the ratio of speci c heats, cp=cv . From this it follows that the ux Jacobian of E can be written in terms of the conservative variables as A= 2 6 6 6 6 6 @Ei = 6 6 6 @qj 6 6 6 6 6 4 0 1 0 0 a21 (1 ; ) q3 q1 q2 q1 ;1 q ; q2 q1 q1 3 (3 ; ) q2 q1 q q3 1 a41 a42 a43 q2 q1 where a21 = ! ; 1 q3 2 ; 3 ; 2 q1 2 q2 q1 !2 0 3 7 7 7 7 7 7 7 7 7 7 7 7 7 5 (2.13)
  • 20. 2.2. THE NAVIER-STOKES AND EULER EQUATIONS 2 ; 1)4 + q3 q1 !2 q4 ; ; 1 43 q2 a42 = q1 2 q1 ! ! q2 q3 a43 = ;( ; 1) q q 1 1 and in terms of the primitive variables as !2 a41 = ( q2 q1 !3 2 ! 2 6 6 6 6 6 A=6 6 6 6 6 6 4 0 1 q2 q1 !3 5; + q3 q1 !2 3 5 0 0 ;uv v u 0 a41 a42 a43 u a21 = q4 q1 ! q2 q1 ! (2.14) a21 (3 ; )u (1 ; )v ( ; 1) where 11 3 7 7 7 7 7 7 7 7 7 7 7 5 (2.15) ; 1 v2 ; 3 ; u2 2 2 a41 = ( ; 1)u(u2 + v2) ; ue a42 = e ; ; 1 (3u2 + v2 ) 2 a43 = (1 ; )uv (2.16) Derivation of the two forms of B = @F=@Q is similar. The eigenvalues of the ux Jacobian matrices are purely real. This is the de ning feature of hyperbolic systems of PDE's, which are further discussed in Section 2.5. The homogeneous property of the Euler equations is discussed in Appendix C. The Navier-Stokes equations include both convective and di usive uxes. This motivates the choice of our two scalar model equations associated with the physics of convection and di usion. Furthermore, aspects of convective phenomena associated with coupled systems of equations such as the Euler equations are important in developing numerical methods and boundary conditions. Thus we also study linear hyperbolic systems of PDE's.
  • 21. 12 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS 2.3 The Linear Convection Equation 2.3.1 Di erential Form The simplest linear model for convection and wave propagation is the linear convection equation given by the following PDE: @u + a @u = 0 (2.17) @t @x Here u(x t) is a scalar quantity propagating with speed a, a real constant which may be positive or negative. The manner in which the boundary conditions are speci ed separates the following two phenomena for which this equation is a model: (1) In one type, the scalar quantity u is given on one boundary, corresponding to a wave entering the domain through this in ow" boundary. No boundary condition is speci ed at the opposite side, the out ow" boundary. This is consistent in terms of the well-posedness of a 1st-order PDE. Hence the wave leaves the domain through the out ow boundary without distortion or re ection. This type of phenomenon is referred to, simply, as the convection problem. It represents most of the usual" situations encountered in convecting systems. Note that the left-hand boundary is the in ow boundary when a is positive, while the right-hand boundary is the in ow boundary when a is negative. (2) In the other type, the ow being simulated is periodic. At any given time, what enters on one side of the domain must be the same as that which is leaving on the other. This is referred to as the biconvection problem. It is the simplest to study and serves to illustrate many of the basic properties of numerical methods applied to problems involving convection, without special consideration of boundaries. Hence, we pay a great deal of attention to it in the initial chapters. Now let us consider a situation in which the initial condition is given by u(x 0) = u0(x), and the domain is in nite. It is easy to show by substitution that the exact solution to the linear convection equation is then u(x t) = u0(x ; at) (2.18) The initial waveform propagates unaltered with speed jaj to the right if a is positive and to the left if a is negative. With periodic boundary conditions, the waveform travels through one boundary and reappears at the other boundary, eventually returning to its initial position. In this case, the process continues forever without any
  • 22. 2.3. THE LINEAR CONVECTION EQUATION 13 change in the shape of the solution. Preserving the shape of the initial condition u0(x) can be a di cult challenge for a numerical method. 2.3.2 Solution in Wave Space We now examine the biconvection problem in more detail. Let the domain be given by 0 x 2 . We restrict our attention to initial conditions in the form u(x 0) = f (0)ei x (2.19) where f (0) is a complex constant, and is the wavenumber. In order to satisfy the periodic boundary conditions, must be an integer. It is a measure of the number of wavelengths within the domain. With such an initial condition, the solution can be written as u(x t) = f (t)ei x (2.20) where the time dependence is contained in the complex function f (t). Substituting this solution into the linear convection equation, Eq. 2.17, we nd that f (t) satis es the following ordinary di erential equation (ODE) df = ;ia f (2.21) dt which has the solution f (t) = f (0)e;ia t (2.22) Substituting f (t) into Eq. 2.20 gives the following solution u(x t) = f (0)ei (x;at) = f (0)ei( x;!t) (2.23) where the frequency, !, the wavenumber, , and the phase speed, a, are related by != a (2.24) The relation between the frequency and the wavenumber is known as the dispersion relation. The linear relation given by Eq. 2.24 is characteristic of wave propagation in a nondispersive medium. This means that the phase speed is the same for all wavenumbers. As we shall see later, most numerical methods introduce some dispersion that is, in a simulation, waves with di erent wavenumbers travel at di erent speeds. An arbitrary initial waveform can be produced by summing initial conditions of the form of Eq. 2.19. For M modes, one obtains u(x 0) = M X m=1 fm (0)ei mx (2.25)
  • 23. 14 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS where the wavenumbers are often ordered such that 1 2 M . Since the wave equation is linear, the solution is obtained by summing solutions of the form of Eq. 2.23, giving u(x t) = M X m=1 fm (0)ei m(x;at) (2.26) Dispersion and dissipation resulting from a numerical approximation will cause the shape of the solution to change from that of the original waveform. 2.4 The Di usion Equation 2.4.1 Di erential Form Di usive uxes are associated with molecular motion in a continuum uid. A simple linear model equation for a di usive process is @u = @ 2 u (2.27) @t @x2 where is a positive real constant. For example, with u representing the temperature, this parabolic PDE governs the di usion of heat in one dimension. Boundary conditions can be periodic, Dirichlet (speci ed u), Neumann (speci ed @u=@x), or mixed Dirichlet/Neumann. In contrast to the linear convection equation, the di usion equation has a nontrivial steady-state solution, which is one that satis es the governing PDE with the partial derivative in time equal to zero. In the case of Eq. 2.27, the steady-state solution must satisfy @2u = 0 (2.28) @x2 Therefore, u must vary linearly with x at steady state such that the boundary conditions are satis ed. Other steady-state solutions are obtained if a source term g(x) is added to Eq. 2.27, as follows: @u = @t " 2 @u @x2 ; g(x) # (2.29) giving a steady state-solution which satis es @ 2 u ; g(x) = 0 @x2 (2.30)
  • 24. 2.4. THE DIFFUSION EQUATION 15 In two dimensions, the di usion equation becomes " # @u = @ 2 u + @ 2 u ; g(x y) (2.31) @t @x2 @y2 where g(x y) is again a source term. The corresponding steady equation is @ 2 u + @ 2 u ; g(x y) = 0 (2.32) @x2 @y2 While Eq. 2.31 is parabolic, Eq. 2.32 is elliptic. The latter is known as the Poisson equation for nonzero g, and as Laplace's equation for zero g. 2.4.2 Solution in Wave Space We now consider a series solution to Eq. 2.27. Let the domain be given by 0 x with boundary conditions u(0) = ua, u( ) = ub. It is clear that the steady-state solution is given by a linear function which satis es the boundary conditions, i.e., h(x) = ua + (ub ; ua)x= . Let the initial condition be u(x 0) = M X m=1 fm(0) sin m x + h(x) (2.33) where must be an integer in order to satisfy the boundary conditions. A solution of the form M X u(x t) = fm(t) sin mx + h(x) (2.34) m=1 satis es the initial and boundary conditions. Substituting this form into Eq. 2.27 gives the following ODE for fm : dfm = ; 2 f (2.35) m m dt and we nd m fm(t) = fm(0)e; 2 t (2.36) Substituting fm(t) into equation 2.34, we obtain u(x t) = M X m=1 m fm (0)e; 2 t sin m x + h(x) (2.37) The steady-state solution (t ! 1) is simply h(x). Eq. 2.37 shows that high wavenumber components (large m) of the solution decay more rapidly than low wavenumber components, consistent with the physics of di usion.
  • 25. CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS 16 2.5 Linear Hyperbolic Systems The Euler equations, Eq. 2.8, form a hyperbolic system of partial di erential equations. Other systems of equations governing convection and wave propagation phenomena, such as the Maxwell equations describing the propagation of electromagnetic waves, are also of hyperbolic type. Many aspects of numerical methods for such systems can be understood by studying a one-dimensional constant-coe cient linear system of the form @u + A @u = 0 (2.38) @t @x where u = u(x t) is a vector of length m and A is a real m m matrix. For conservation laws, this equation can also be written in the form @u + @f = 0 (2.39) @t @x @f where f is the ux vector and A = @u is the ux Jacobian matrix. The entries in the ux Jacobian are @f aij = @ui (2.40) j The ux Jacobian for the Euler equations is derived in Section 2.2. Such a system is hyperbolic if A is diagonalizable with real eigenvalues.1 Thus = X ;1AX (2.41) where is a diagonal matrix containing the eigenvalues of A, and X is the matrix of right eigenvectors. Premultiplying Eq. 2.38 by X ;1 , postmultiplying A by the product XX ;1, and noting that X and X ;1 are constants, we obtain @X ;1u z }| { @ X ;1AX X ;1u =0 (2.42) @t + @x With w = X ;1u, this can be rewritten as @w + @w = 0 (2.43) @t @x When written in this manner, the equations have been decoupled into m scalar equations of the form @wi + @wi = 0 (2.44) i @t @x 1 See Appendix A for a brief review of some basic relations and de nitions from linear algebra.
  • 26. 2.6. PROBLEMS 17 The elements of w are known as characteristic variables. Each characteristic variable satis es the linear convection equation with the speed given by the corresponding eigenvalue of A. Based on the above, we see that a hyperbolic system in the form of Eq. 2.38 has a solution given by the superposition of waves which can travel in either the positive or negative directions and at varying speeds. While the scalar linear convection equation is clearly an excellent model equation for hyperbolic systems, we must ensure that our numerical methods are appropriate for wave speeds of arbitrary sign and possibly widely varying magnitudes. The one-dimensional Euler equations can also be diagonalized, leading to three equations in the form of the linear convection equation, although they remain nonlinear, of course. The eigenvalues of the ux Jacobian matrix, or wave speeds, are q u u + c, and u ; c, where u is the local uid velocity, and c = p= is the local speed of sound. The speed u is associated with convection of the uid, while u + c and u ; c are associated with sound waves. Therefore, in a supersonic ow, where juj > c, all of the wave speeds have the same sign. In a subsonic ow, where juj < c, wave speeds of both positive and negative sign are present, corresponding to the fact that sound waves can travel upstream in a subsonic ow. The signs of the eigenvalues of the matrix A are also important in determining suitable boundary conditions. The characteristic variables each satisfy the linear convection equation with the wave speed given by the corresponding eigenvalue. Therefore, the boundary conditions can be speci ed accordingly. That is, characteristic variables associated with positive eigenvalues can be speci ed at the left boundary, which corresponds to in ow for these variables. Characteristic variables associated with negative eigenvalues can be speci ed at the right boundary, which is the inow boundary for these variables. While other boundary condition treatments are possible, they must be consistent with this approach. 2.6 Problems 1. Show that the 1-D Euler equations can be written in terms of the primitive variables R = u p]T as follows: @R + M @R = 0 @t @x where 2 3 u 0 M = 6 0 u ;1 7 4 5 0 p u
  • 27. 18 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS Assume an ideal gas, p = ( ; 1)(e ; u2=2). 2. Find the eigenvalues and eigenvectors of the matrix M derived in question 1. 3. Derive the ux Jacobian matrix A = @E=@Q for the 1-D Euler equations resulting from the conservative variable formulation (Eq. 2.5). Find its eigenvalues and compare with those obtained in question 2. 4. Show that the two matrices M and A derived in questions 1 and 3, respectively, are related by a similarity transform. (Hint: make use of the matrix S = @Q=@R.) 5. Write the 2-D di usion equation, Eq. 2.31, in the form of Eq. 2.2. 6. Given the initial condition u(x 0) = sin x de ned on 0 x 2 , write it in the form of Eq. 2.25, that is, nd the necessary values of fm (0). (Hint: use M = 2 with 1 = 1 and 2 = ;1.) Next consider the same initial condition de ned only at x = 2 j=4, j = 0 1 2 3. Find the values of fm(0) required to reproduce the initial condition at these discrete points using M = 4 with m = m ; 1. 7. Plot the rst three basis functions used in constructing the exact solution to the di usion equation in Section 2.4.2. Next consider a solution with boundary conditions ua = ub = 0, and initial conditions from Eq. 2.33 with fm(0) = 1 for 1 m 3, fm (0) = 0 for m > 3. Plot the initial condition on the domain 0 x . Plot the solution at t = 1 with = 1. 8. Write the classical wave equation @ 2 u=@t2 = c2 @ 2 u=@x2 as a rst-order system, i.e., in the form @U + A @U = 0 @t @x where U = @u=@x @u=@t]T . Find the eigenvalues and eigenvectors of A. 9. The Cauchy-Riemann equations are formed from the coupling of the steady compressible continuity (conservation of mass) equation @ u+@ v =0 @x @y and the vorticity de nition @v ! = ; @x + @u = 0 @y
  • 28. 2.6. PROBLEMS 19 where ! = 0 for irrotational ow. For isentropic and homenthalpic ow, the system is closed by the relation = 1 ; ; 1 u2 + v2 ; 1 2 1 ;1 Note that the variables have been nondimensionalized. Combining the two PDE's, we have @f (q) + @g(q) = 0 @x @y where v q= u f = ;v u g = ;u v ; One approach to solving these equations is to add a time-dependent term and nd the steady solution of the following equation: @q + @f + @g = 0 @t @x @y (a) Find the ux Jacobians of f and g with respect to q. (b) Determine the eigenvalues of the ux Jacobians. (c) Determine the conditions (in terms of and u) under which the system is hyperbolic, i.e., has real eigenvalues. (d) Are the above uxes homogeneous? (See Appendix C.)
  • 29. 20 CHAPTER 2. CONSERVATION LAWS AND THE MODEL EQUATIONS
  • 31. ¦   H ‰B d 4 Y H h 5 D h H h H H 2 2 5B D T D 5 2 h 2 T Y 7 d H D H F D H 2 n H h 5 D Y R Y DB 7 d H  H d R ` n YB F D q 5 2 5B †X‚QW6IkGÆQI6QIÅ8EGVG¢I¬I¢–9W6GeIW‰II6IkG‘IwGE9W6s‚I8U…EIG‘¢Å8EGD r 4 H  Y 2B 2 i ’ ¥ H d R `B ¤ 2B 2 @ 5 F Y YB H 4 T  Y h 2 T H 7B D F D 5 ‰ ` 2B by 5 b 2B F Y H 7 D Y Hy  7B Y H F –Q†WIEe™j’   p™WI8EvX‰CcIWvXuQVUWeIV9XGŽW¢†…IXx„88oX‚Q9Š‚6XI9X‚Iut ¶ à ¹ » ´ » à 9Q”av–Ä ± Á ¶ ± À ± ¿ ¹ ½ ¼ ± » ¹ ¶ ¹ ‘ej)6¾hfv6egº¸ · ¶ ´ ² ± ³ ² ewµ”± ° ¯ ® c­ ’ 2 5B D T 4By   T y T 4B D 4 T d ‹8EGVQXEII¢›VgXW6¢WI ` 2B Y 5y d 5 H bB D 4B d D Y H d iy R h 2 R ` 2B H ‰ D R 5 F DB IX‚8X98‰8EW6EWGfQ‚¬EIIpIrIEQ†9p8IWEC@ QGfx‚«VƒW6Gf¢ŠªQ6¢U‚XISQ©¢‚Iv@ 7 H DY i Y 2 TB Y H Dd T  h H 4 T  YB R P H 2 T H Y R H YB Y iy T 2 T i 4 T d R 4 4 T ` 2B @ 5yy 5q H F D q 5 F 4 R 7 2B t 2 5 Y T H d YB F D d 5 ¤ ’ Y 2 5B D T R P H h H 7 d 5q Y 2 T d XWx„¢U¢6VGI6Q¢IECcXX¢•9IWŠ¢ƒI…AX§‹8WVgWwXpG8UeQp8XWVUSQAQ9W8•fI¢WGD H F D q 5 Y D 2 HB 4 ¨ H 5 4 Hy ‰ TB d T b 5 D 2B h H ‰ d 5 Y ‰ T YB 2 5B D TB d T b 4B d D H 7 5 H ` H F D yy T ’ 7 d 5qB 2 R YB }   œ pGpVvGo6XQ9‡˜6”XIVƒWV¢CGoEwQ†W¢WI¢§E8XWVƒ‚¢V”XWW698Q¢vIW¢XV¢‰W8•„II˜Xhƒxp3ž  ¢†lŸš¢£x†™lƒIu§8E˜”Wp8XvuEwCcI‚›¢s‡ƒxp3V¢†lŸš¢£x†™lƒ#QEX¢Q3V‚uuX‹E¢V‚QWoXB  „ ‡yx x ¢ œ { ‡  H F t ’ ¦’ ¥ H d R `B ¤ 2B 2 @ 5 F Y Y T t }   œž    „ ‡yx x ¢ œ { ‡  h Hyy T 4r 5 Y T 2B Yy T b d H D 2 h H 4 T  YB R P H F DB @ F Y H 7 2 TB Y H D d T  7 d 5qB 2 R T 5 D h H 7 d 5q Y 2 T d D H ‰ 2 T 4 }   œ ž    y ž  ‚ œ 2 Q6¢U‚XISQG„CW6#¢ƒ‚QW‚¢Š¡‚8•EpI††GAQ9W8•fI¢GW9†rVgƒxp3v¢WŸ‡cxUeXB Y H D T 2B h d 5 5 4 d T H 2ByB b d R 4 y T d H 2 H ` 2B h H Y Y H d  — H Y H F Y H 7 q 5 Y H Y Y Ty 4 y T d H 2 H ` H DB R P D T F D D 4 T 6GVIXI‚8˜6Š¢QIXEXx‚I6›¢G6IQ¢‰EeQ‚WQ‚I˜‡‘QI‚Q9vVf6WWVƒQ›VGQpQ8uG„ISCVUW‘‡¢šq H F D H ŒB Y T F  7 H H ™ ’ 7 H D Y i Y 2 TB Y H D d T  T 2B h H D 2 H Y H d  YB @ 5y H ‰ y TB d H D T 7 H F D q 5 yy pG…QEW¢II#6…w‰QW‚x‚e¢XW6G‚VŠeXAQWS6W6WIEsEQ†˜¢ƒ‚QGld‘IWj¢vE™i ’ — d H D  T F  2B h H Y Y R 4 YB h H ‰ yyB @ Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h r H DB 2 n H Y H F If6GpVU•‰X6W‚IQ‚XIu†hXEC•I8EGV#X˜gWpI¢uQpQW6h„I3–G„IUuWQpGD ` 2B iy   T d 5q Y HB ` H D T d D ” ’ “ d H D  T F  2B h H D T H d D H d T Y H bB D T bB d H h H 7B D ’ Y H bB D T bB d H h y TB D T  pXxEIp¢u8••6X86GVWGx€˜CQG˜¢U•‰Xe6GVQWWW¢u68„GVVE‚QIf#EGp6Q¢EGl¢„W6Ih¢XGVIWY 2 5 YB d H D  T F  YB F D 2B YB Y T F  7 H d R “ ’ Y H bB D T bB d H h H 7B D d 5 Y H bB D T bB d H h y TB D T  Y 5 D d H F DB 8‘X™QG˜¢U•EIG‰XfXWVUI9Q™p™Q68„GVVE‚QIw9XGC8fQ8„GVV„WQpm¢XGVIWdWf6IG„QH h HBy   T H ‰ 2 T 4 H Y H F t ’ h H D 2 H Y H d  YB Y H bB D T bB d H h y TB D d T  5 D Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB 6XEII¢#sr¢gŽ‚QIu†‹QWoQW6WIuEwQ¢EWVVEW6Ij¢XG‚VUWI8XWV#X˜gWIIVŽQpQW6h„Ih r H DB 2 n q 5 D  H 4 2 5 4 H F D t d H D  T F 4 YB F D 2 1 ’ H d H F h H ŒB Y T F  7 H F 4 T 5 d   T H F D YB YB F t ’ h H by 5 ‡G„IUm¢p6QI¢QwIGUQ6GpVUƒfEIG3ŠVWQpQ6X‚¢UI9Q†ƒ¢oWpI¢aIGuXCEIuŠ‹68E¢WY H ‰ 2 T 4 F 4B F @ Y 2 5B D T R P H H 4 2 H d H gB h q 5 D H Y T Y H 4 R h 5 d  F 4B F @ ˆ ‡ ‚x } { … „y ‚  €  { ~ } {yx †rVg)ƒEICwp8XWVUSQ9QI6W6h„IŠ¢w6‚‰wQQpI˜‚IrƒEIC9QU|‡d†x|xƒG¢93‡d|zkT 5 D ` 2B h T Hy t D — H 2 h H D T 7B — 5 d   T H d T Y H bB D T bB d H h H 7B D H F t ’ Y 2 5B D T R P H y TB D 2 H d H gB h i d T 2B WwIEI¢QXpQx‡I#QGldEpg‚II¢™W¢vQ¢EGl¢„W6If9XWfIuj6I8EGVUS6†VƒGo6WQsEp–‚¢UEIh r d 5 q 5 7 H D Y i Y T ` 2B 4 R h 5 d  i ‰ H d H F D t D Y d n Y H bB D T bB d H h y TB D T  Y H F D H D T 7B — 5 d   T 2 T 4 H 2 f8ˆ¢pQGfx‚depXQpI˜‚Io6WQpGhQ‚WI™Q¢EGl¢„W6ImVƒGlUW…pGuGV#X˜gWIp¢k¢gwI85 t8„Q8„GVIWQWEfjQI8EGVIx6QpQW6h„IwpXG„IW6WfIG™¢E8‚eQIWdI¢9„WI¢QI¢GEIwXW™WQpGD iy H bB D T 2 d H Dy i ’ Y 2 5B D T R P H H 4 2 H d H gB h ` 2B Dy R Y H d H F D H by 5 Y 2 H F D h 2 T iy Y R 5 H 2 T Dy R 7B Y H Y H F H D T 7B — 5 d   T 2 T 4 H 2 “ ’ H 7B D h 2 T H 4 T  Y F D 5 ‰ 5 D D 4 H  Y H d F DB @ Y H bB D T bB d H h y TB D d T  2B T D 2 5 GV#X˜gWIp¢–¢g•I”V#EG…I¢C6¢U‚‘G¢†Gˆ‡Q†WQ‚…G„CvQ¢EWVVEW6Ix¢ƒW‚¢UwX¢GS¢Q4 Y 2 5B D T R P H y H h 5 7 d R 5 t @ 5 q hB R q i h T H D Y 2 R ` 2B 2 d H b 5 ` Y 2 5B D T R P H H F D F DB @ 2 5 7 7 5 4 2 p8XWVUSQ€QIx9wI8vusIrXIIpVgGfIIeIEIW68c8aI8XWVUSQ#IGGECA89#86)31 0 ' ) £ % $ ( ' #! $ © ¨ % ¦ §¥ ¤ £
  • 32. ’ D 2 H 2 5  — H 2 QoQI8†˜‡‰¢T ¢W•Š„‰‚XI¢IXW‚Xp9Wf6WQpGoQ‚¢U 7 5 dq DB F YB R ` 2B D YB h 5 D Y H Y H F D 2 H d T F DB @ h H Y 5y 4 2 H iyy T R Y R YB h 2 T D B d 4 Y d H  R Y T Y i T @y T YB H 7B D t d H F D H ` 5 D h H Y R 2 H F @ D R WECÅQ‚8X6IQEE¢UWp…X¬I¢9˜XW6W‚Q†IW–xgŠ„¢‘EŽ#EGjQ6IG‡88W¬6WIÆQpC‘pI‰ t D B d 4 Y ‰ R Y T Y T d T H   T Y H 4B h 2B H 4 T  Y h 2 T H 7B D H F D F D 5 ‰ t H 2 5y T h H Y R 2 H F @ D T F D H 4B D 5 QpX‚Q‚IIW‘C¢‘¢Qsp¢uQ6XIpXwQ¢U‚I¢9XWupGeG¢†pVI8E¢6WI‰QICulUG6XGVfò ç ’ ¥ 8¥ pšæ   ü ¢í ¡‚£Ý ¤ý ü ¥Icï   ü í Ý ä ç ß îû þ ø ù æ ¡‚xÿˆs‘XŽÆ™ê ‚mÝ ý ü ï Ý ä ç ñ û õ ø ìù æ IgUðˆë|x©9ú‚mÝ ä ç ñ õ ø Þà ß î þ ø ßæ ¡†p«˜‚˜‘¬‘|mÝ ä ç ß î þ ø ßæ ¾s…¬‘|vÝ ä ç ñ õ ø Þæ ¡†p«‹•mÝ Û Y @ 5yy 5q Y T YB ` 2B — H h 2B D B d 4 Y d H  R Y h 2 T D B d 4 Y ‰ R Y d 5q 2 5B D 2 H b 2 5 4 H F QCcXE8•u¢CX–IE˜‡IIE‘pX‚QW‚Q†IW‰I¢fpEW6WII‚u8•†¢XGo68o8QwIut ’ Y R 5B b ‰ 5 ` 2B 2 T H 7 H F D H ÷ T 7 hy R 5 F 6I8E˜o8‘pXI¢Q#uIW¢¢#XI8pWY Dx‡Wo8Qu¢Q˜EC‡p‚¢WW6QQp96#EG‡#8‚#EºƒXpC•e6W8†WpI#6IGV#8•©QWp†‚¢ƒs–8£vì — H D 2 5 4 y T 4 5y t ç i d T Y Y H 4 H 2 Y H 7B D H 7 5 Y YB F 4B F @æ Y H Y 5  d R  d H F D 5 d 5q h H Y R H d T ö à õ à êà 2 H F ™ ’ i T @ d TyB 7B Y T 2B â h 2 T á d 5q h H Y R H d T ö h 2 T õ d H D T ô ’ D R 5 F ` R 5 d F D Þ î ä ñ D T F Qpª•8g•v¢XX9XW–†X#†I¢Ž‘¢•Q‚IuW¢j†I¢6GV˜vgp¢I8I8‚IG•‘óe™VIGD HD 5 ò W¢f‘’   pwWp8Xv†XeCcI‚™¢s–XdpXQVUWaIGu…p¢A†EdIEQ¢U‚wIWuXk…‘W6IC@ ’ ¥ H d R `B ¤ 2B 2 @ 5 F Y Y T t Þ 2B ` 2B 4 T  Y H F D Þ î h 2 T ß 2B ` 2B 4 T  Y H F D YB ß î H d H F ß î ê ä í …S«uxß ç ¦’ ¥ cEpšæ ñ ì ä Þ î ì ä ï ›ª€…‹ða3Þ ç   pšæ ’ ¥ ä ¡Þ ä ß hB d ` h H 4 T  YB R P H 2 T 2 5 2 H F t ’ ì ž   è   YB X‚86Q¢IWXpx6¢¢Qpujv•s¢€é¢wEŠÞ d 5q D T F D h 2 T t ê ž   è   YB ß d 5q — H h 2B F Y H 7 H F t ’ h H 7 R Y Y T YB d H F D 5 H F D 2 5 H 4 2 H h 2 H  H ¢•uVUG‰I¢ëUˆc¢€é¢wXC¢•e‡IpX‚Q9apu•‹6#I‚W¢CEf6IGVwpG8…QpQII6s6Ih t h H D 5 2 H h YB Hy ‰ TB d T b H 2 5 iy 2 5 2 H F ™ ’ ç Þ à ßæ Ý ä Ý H Y T 4 ã r ¦ H F D iyB d T 7B d  d H hB Y 2 5 4 H hQGVIQI™XwXI¢XW¢Vwp8„I8kQpªu–‚W˜•måe‘W¢QÏÔ6eIWd„XWVdEWI6IX‚I8Q‘v@ Y d H D  T F 4 y T d H b H Y D Y d n H F D d 5 ¤ ’ â à á à ß h 2 T t Þ Y Hy ‰ TB d T b D 2 H h 2 H  H h 2B H F D q 5 Y 2 5B D 4 2 Rq H d W6GpVUƒh¢WQ¢6W•‚‚UfIWj8Ujpƒ†G˜dIVp–jQEI¢XW¢VŠoQpIQ†QIpX™pG‹¢vI8EG6pI•‘‚¢T t Hy  7 T — H d 5q t Ý t Y Hy ‰ TB d T b D 2 H h 2 H  H h H F D ty T d H 2 H ` 2 1 ’ Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h H DB 2 ¢Xp#¢p–Š8•˜˜˜QQEI¢XW¢VCoQII6s6IIW˜ŸVGQpQ83”6I8XWV#X˜gWIIVuQI6WQsEpG„IUn ’ Y H 4 T  Y y T 2 5B D T D R  7 5 4 h 2 T y T 4B Y i F Q6Q¢IWhVU8XWVƒ˜I#¢Q‰I¢˜¢QXWxojÜ Û ¦’ ¥ H d R `B 8„puWI¢Xv¤ x y Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç   8 
  • 33. ç 9’ ¥ ¢%pšæ ’ 4D ¢W6H ’ 7 d 5qB 2 R YB ` 2B 4 T  Y H F D t ß î d 5 Þ î 2 5 D B d 4 Y ‰ R Y 5 2 YB H d H F D 2 H F †‚8•EpIuX–IEQ¢U‚uIGU˜…C8Š…‰8fpX‚Q‚IIW–IuEa‚QIW‰6Iª™ à ï Ý 6 4 ü ï Ý ä ï Ý ˜UÅ85cUªaë‘î à í ß 6 4 üí ß ä í ß sxr'5‚xªCx…î à ïÞ 6 4 ü ï I3r75c3Þ ä ïÞ a3…î D T F D F 4 R Y h H 2 n H h YB F 4B F @ t î y 5 ‰ 7 i VUW†ƒI‚QpU6IuE†ƒEICIe˜8†…x‚Y H F D YB 2 5B D  H 4 — H H 2 5 H F t ’ ` 2B 2 T H 7 H YB 4 H d  Y DB H 2B 7 d H D H h 5 D h H Y R H d T Y i T @ d H F D “ ’ pGXk8EGp6Q˜‡‘p8‘IuuIIEI¢g9‘WEQ6WIWE…pX9WQW6IWk6WI‘‚¢wxc•QpG™…S( y 5 ‰ 7 i Y H F D 2B h HB d d T 4 D 5 2 YB 2 5B D T 7B — 5 d   T H F D q 5 ç d H h d 5 h 2 Tæ H d R D T 2 H YB 4 H d  H F D D R 8sw˜fuIGŽE‰6X‚W¢QC¢IuXd8XWVdE˜c‚II¢upG§¢•ƒ6IW8‰I¢š9WIWVUuWEQ6WIuIWupI‰ 0 ¥21¥ ( ç ’ ¥ 8“ pšæ à 321 ( 0 t Hy  7 T — H d 5q t D T F D F 4 R Y H bB D T bB d H h T 5 D 2 5B D T 7B — 5 d   T H 4 2 H d H gB h ¢Xp#¢p–u8•pglUG‰ƒIWu8„GVV„WQp–9Wd8XWV#X˜gWIIVw6IQ‚QsEI‘T D 2 H Y H d  H d 5 D h H Y R YB ( y 5 ‰ 7 i Y H F D D T F D 2 T H 7 H @ YB F D i ’ H R PB 2 R D 5 2 YB DB ç 2 5B D  H 4 — H H 2 oQ‚QWpQW‘GaQWp§Eu)¢s…xfvIWmlUGu¢g9•v›XIWv'VISXIpv¢p§E§E›ë8XWpQ6˜‡€I85 F DB @æ D R ‰ i F  5 Y 5yB F  H 7 T Y H F D Y @ 5yy 5q Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h d 5q 2 5B D T D 5 2 H F WEC•pI…Sp8W8EXIpf9¢G‘IW”CsEX8•”p8XWVdE˜c‚II¢™QI6W6h„Iˆ8•‘8XWVƒ¢p™Iut ’ ß 5 D D 4 H  Y H d F DB @ Ý q 5 H bB D T bB d H h D Y d n H F D D 2 H Y H d  H d 5 D h H Y R H ‰ D 5 2 yyB ˜9W‘‡Q†W6W‰GEC‰vV8EWVVE‚QI‘‚‚UIGfoQW6WI6W–G‰Q‚Is‘¢phXEC@ ‘ISut Ý Y R F ’ Y H bB D T bB d H h Y Y H d  — H 5 D h H Y R d H b H 2 H d T Y Hy ‰ TB d T b D 2 H h 2 H  H h 2 5 Y D B d 4 Y ‰ R Y D — H D YB F D 2 QQ¢EWVVEW6IuW6WI˜‡dGQ‚IQ¢6IaW¢fQEI¢XW¢VoQIpQ†QI¢GpEWQ‚II‚x‡GCXpG31 Þ ç $’ ¥ ¢%pšæ Ý ä #˜!Ý H Y R H @ ã “ q 5 i h R D Y H F D 2B H bB D T bB d H h H 7B D i d T 2B h d 5 H F D d 5 ‚Iu•uY u”¢ppG‚uIWeX8„GVV„WQp#EG#‚¢UEIW¢wpGŠ8U¤ ç ’ ¥ o— pšæ ’ 4D ¢W6H à ß Ý ä eÝ ¥ à Þ ä eÝ Ý à ß Ý ä eÝ iy ‰ T H ` 2 T F 4 d H D 2B H Y R H @ H 7B D d 5 H 4 T  Y 2B Y H bB D T bB d H „I¢Q8I¢Uƒ‚QWSEa‚Iw•™9XWŠ8wQ¢U‚eXCQ¢EWVVEW6Ih y TB D d T  d 5q Y R F t ’ Y 2 5B D 2 H b 2 5 4 y T R Y R H F D 5 D ` 2B h d 5 4 4 ¢ƒW‚¢I‘8•#ISu©QI8EGoQ¢o8QC¢U‚IIGeWAIEIW¢QQVT Q‚WQ‚I˜‡WV#68„GVVE‚Qã h H Y Y H d  — H H d T Y H bB D T bB d H ’ D 2 H 7 H ` 2 T d d T hB d ` H 7B Dr H 4 T  goQ9Q¢I¢G‚¢X‚89XGŸ‡6¢U˜” © j j+1 © j-1 j-2 j+2 x Û   p‚I8Ev¤ ’ ¥ H d R `B © n-1 ∆t n ∆x n+1 Grid or Node Points t ¥   Ó × Ò Ë É Ë × u‡§™IawÓ ¨ Ì Ç Ó Ì Í Ì Ñ Ñ Ò ÖÕ Ì Ë Ò Ó Ò Ñ Ö Ó É Ú Ì È Ú Ì Ù Ð ¦Ð ”…ˆfˆ”vԐŸˆmQfÔv™™‰€™˜v†º8§xÎ
  • 34. ç   „pzæ ¦’ ¥ ç …zd“ø ß îæ ’ ß …î   4 €í Ý 6 4 üí AxÅ‚5‚˜Ý ä í W ß V Ý 7 d 5q H F D 2B h H D 2 H Y H d  Dy R Y H d i d T 7 7 R Y H F ‚8•IGeXQGo6WQ‚ICEpWQ‚Žf¢d9I‚wpGD Y H H Y 2 H Dq 5 H 2 5 h 2 T t 2 5B D T 7B — 5 d   T H 4 2 H d H gB h h H d H D 2 H 4 D 2B 5 r H H d F D H F D Y T 5 D h H d d Hq H d Y Q6W9QW|¢fp8#p¢o‹8EGV#X˜gWpI¢fQI6WQsEpeQW6GoQ6ˆoX8†3–QWpGCIGˆ¢aG#6W‚Q•6‚ˆXB d H D D Ty H F t ’ H bB D T bB d H h D Y d n T 5 D 2 5B D T 7B — 5 d   T d H h d 5 r h 2 5 4 H Y T YB ç ß QG‚Vƒpu”¢¢EGl¢„W6Iu‚‚Uw‘W#8EGV#X˜gWIp¢CQI‚83xI8Q6Ww•Xvs…î   IÔAxk£5‚xšæ æ rç4 € í Ý 6 4 üí Ý u D T F D Y @ 5 F Y ¦ ¦’ ¥ ’ P t iy d TyB 7B ” lUGjCcIWu¢EpSëj‘8„W¢XX9X˜”’ y í x‰Ww8XWV#X˜gWIIVˆQI‚83f‚WI™ˆX#‘V6˜935‚xšæ w u t 5 D 2 5 B D T 7 B — 5 d   T d H h d 5 r D Y d n T Y B ß î r ç í Ý 6 4 ü í Ý 2 5B Y Y H d  — H H F D D T F D H H Y H @ 8EWW6WI˜–uIGmVUGŠ6WuvVt ¡ Ep8†jˆ8‚ëv‹xIG‡#ŠpGë¢v6IW¢uIGv68„8jQvcsjfQvcXy ¦’ ¥ ’ P 7 5 d ¤ ’ h 5 F D H 7 H F D q 5 d H h d 5 H F D Y H bB ` d H @ 5  D Y H @ 5 H F D 5 D ` 2B 4 T  Y hB d ` H F D ` 2B 2B T D 2 5 4 7 d H D d 5 d d H H F t ’ d H h d 5 2B T D d H 4 T 5 D ` 2B 4 T  Y hB d pGWIX6¢U‚rX‚8dpGIXIE¢ƒo86¾‚QWw8‚W6ŽIu6QI‚8rE¢ƒfQ6WIX6¢U‚rX‚8` H F D 2 5 Y h 2 H  H h d 5 d d H H F D D T F D d T Hy 4 5 Yy T YB D1 ’ 2 `B Y y T R P H H F D q 5 H hB Y D F `B d H F D 2 pG¬8#pIQ†QI–8‚W6‰pG‘VUW…¢gEQkWE¢–X9£Å‹¢XWC¢Ix6IG‘¢IX‚‘o8X‚IG¬85 Y d T H   T F 4B F @ d 5 d d H q 5 D 2 R 5 7 T 2B T D d H 4 T F DB @ H bB D T bB d H h D Y d n T D 2 H Y H d  H d 2 5B D T R P H H F ‚¢g†I¢dƒXICj8‚W6‹¢ˆoI89¢#X¢G‚6QudWECu8„GVVE‚QI€fWUuoQ‚Q‚IQ‚#8EGVIx6fpGD q 5 H hB Y Dq Hy H F D 2 5 Y 7 d H D H D H d 4 YB h H F D D T F D d T Hy 4 YB DB t d H 2 2 T 7 YB F D 2B h H Y Y H d  — H 2 H F ¢uIEWC|6EapG8C#‚QGW6W6WEIapGCVUWŠ¢gEQCXC„UQQpI¢#‘EIGeEeQW‚Q‚I˜‡6Iª™ ç ¦ ¦’ ¥ s8„pzæ ‡x‡x‡8í W † ß ¡ V  ¦ V … ß …î Ý ¦ † ø í W „ ß “ V ‘î ß Ý ¦ „ í W ß ß …î   V ƒ6 Ý 4 €í Ý 6 4 üí ¥x)‚5WxÝ ä 2 5B D T R P H ` 2B @ 5yy 5 8XWVUSQwIXCcXE8•q H F pGD ‚8•ÆWeEI‚Q‚ApGªI8W¢QWðI¢«9p8†¢‰8GVWQ9ISkIGD X9W6GeIGðI¢U˜v 7 d 5q 5 D Dy R Y H d H F D  R 5 d ` H d h 2 T ê D R 5 ‰ T d 5 D T d H 7 R 2 H F 2B Y 7 d H D H F D h 2 T  — ’‡s…î   pf¥xÅ75‚xšA8EGV#X˜gWIp¢w6IQ‚QsEIwQVUWuIW‘6IX‚I8Qfx‡‘ˆŸXVd‚uXe…î ç ß æ r ç 4 € í Ý 6 4 ü í Ýæ 2 5B D T 7B — 5 d   T H 4 2 H d H gB h H 4 T  Y H F D d H hB Y 2 5 4 D — H ò ’yy T 7 Y YB ß u y w u t d 5 q 2 5 B D T 7 B — 5 d   T H y ‰ T 2 5 Y T H d T Y B ß î r ç í Ý 6 4 ü í Ý æ 2 5 B Y Y H d  — H H F D Y R F Y T ` 2 5y Y VI8Ev¢T í xv18•w¢XGldEpg‚II¢vXIVU8WVgWfvE#…¢sQxaq5Wxš‰¢XW‚Q‚I˜‡ŠIWvISut ç ¡ „pzæ ¦’ ¥ Y Y Y aa`ø í W ß   V ç ß î ¡s…šæ Ý ¦ ø í Wpß ß ‘î V iä í Ý 6 4 üí x)85‚˜Ý Ý 2B T D ‰ 5 5 D ß î i ‰ H hB bB h h 2 T í Ý D 4 T d D ‰ R X¢Gp89G†‘eSpXxEI‰I¢™˜‘‡¢GWpIWY ç h’ ¥ 8dpšæ d T H 2B ¢gpXXy @ 5 cfò í W í í W b ï ß V s…šæ 8ì saagø W ß V s‘šæ   ø ß ¡s…šæ ”xªj5‚xÝ Y Y Y aa`ø ø Y Y Y V ç ß î ø í Ý ä 4 üí ç ß î ç ß î ¦ ¦ Ý Ý ï Ý ï Û 4 ü í Ý d 5q 2 5B Y 2 T  — H Y HB d H Y d 5y i T t H F D d H hB Y 2 5 4 t Hy  7 T — H d 5 ƒ5‚xu8•‰¢XWp¢U˜‡‘QEWQ‚u8XxgmwpGuQIEWI¢QIVXI9¢p‡u8U¤ ’Y Y Y „aaSà   ¥8–f#‘8•fIWxI¢xm¢ŠI8EGVIXI…¢Q4 e à ¦ e ä õ d 5q ý ü í Ý h 2 T í Ý q 5 Y 2 5B D T 2B ‰ 7 5 7 5 dq h H 7 d 5q H ‰ 2 T 4 H bB D T bB d H h y TB D d T  2 H bB ` T 5 D Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB h y T 4 5 8W•uQ9W8•j†aVgˆ8„GVVE‚QI¢¢ƒW‚¢UwQ¢E8C‘G‹I¢XGldEpg‚II¢€QpQW6h„Io¢Q˜›ô í W í í W b ï ß V s…pŸæ 7ì caa`ø W ß V s…pzæ   ø Xß ¡s…pzæ v˜ðCIWxÝ ç8dpšmaa`ø c’ ¥ æ Y Y Y ç ß î õ ø Y Y Y ç ß î õ V ç ß î õ ø í Ý ä ý üí Ý ï ¦ Ý ¦ Ý ï Y H bB ` ß D R 5 ‰ T 7 d H D d H D D Ty H F D ` 2B h 2 T  — ’ ý ü í Ý ä ç ß î Q¢E8up8†¢µW6G•6G‚VƒuIW9IEII¢IpvUsIWxÿˆs…põ ø ß î êæ #…x„mÝ ™s‘˜ð#|mAp¢)…Sê ‹p¥ p‰G…„p˜QSjTXkQ¢E8A8EGoQ¢S¢Qe8EGVG¢I2 ä ç ß î õ ø ßæ Ý h 2 T ß î ä ß t ’ ¥ 5 D ¦’ ¥ ’ Y P 2B 2 H bB ` 2 5B D 2 H b 2 5 4 2 5B D T D 5 H F D ` 2B @ 5yy 5q t 2 H F t ’ h H — n Þ F DB @ ç Þ à ßæ Ý d H hB Y 2 5 4 t Hy  7 T — H d 5 pGkIXCcXE8•u‹Qpuó‹Q˜p‘©GEC‘‚W˜•m#QIEWI86u¢EI#VI–#¢ë¤ ‹8EWI¢Ip–ŽQEW6WY ’ 2 5B Y 2 T  — H Y HB d H d 5y i T t Hy  7B Y T q 5 Y 2 T H 7 i ‰ h H D T Ry T b H d 5 h H D T d H 2 H ` H ‰ 2 T 4 2 5B D T 7B — 5 d   T H 4 2 H d H gB h ¢XxgvjEI#EW‘ë¢vp¢g9wSaQWVUXV¢‡m¢…QWVG6IQ8€†…¢gu8EGV#X˜gWpI¢Š6IQ‚QsEIÆi ² ¶ à ¹ » e#6ja´ R ¹ P à À C C S†QjeIHG ± E ¹ » ´ E ¹ À 9FjwwFˆ± ½ ± Á ´ C ‘wDB Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç @® A­ —  
  • 35. ° ¯Ÿ § ¢ « ¨ © ¢ « § ­ ¢ › ® « › ¥ž § ­ ¥ž ¢ ›     ¬ « ª › © › ¨ § › ¥ž ¢ ›   ŸŸž œ › š ¦d““¦q“£¦“A¤sF'¦d“¥¥d“sa1‘¦£s“q“7¦d¤£a¡ddv‡o™ H ™ ’ F Y H 7 H F D 2B D 2B 5  i d H b H D T $ ¦’ ¥ ’ P i ‰ 2 H bB ` 2 5B D T 7B — 5 d   T H 4 2 H d H gB h h H d H D 2 H •‹‚Q9apGX‘oX8†fQ¢6‘V–qE˜sëj˜oQ¢E8e¢XGldEpg‚II¢aQI6W6h„IeQ‚QGo6Q4 H F D HY R h 2 T — pGeWI¬IVu•Ý 9˜–m‘s•Ý ‘ç ¡ mjQp8XWEII¢QÅf¢UII¢sa6EIƒX‚XŽ‚8†#EB cfò ä ç æ Ý à ” ä æ Ý t Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ D Hy F 4B dB ã H Y 5  7 @ 5 ç ¦ sªø Œ  ‘æ r  ä ß î ’ F Y H 7 D 2B 5  d R 5 “I‚’‰…vhWQ9uoX¢suI¢ë¤ — 6 ‘ Y ¥ 6 Y   6 ¦ ¦ 6 ¡ ‹ ä ‘ê ä eß ’ Y HB d T h 2 R 5 ‰ H F 6QEW¢UpI8†wpGD ` 2B h Ry 4 — H Y D 2B 5  € ‡y € }x „y q 5 d H ‰ 7 R 2 H F D 2 T H 7 H @ t Ž F Y H 7 T 2B Y D 2B 5  q 5 d H ‰ 7 R 2 H F IEIIEQ˜‡CGoE8s•lŸ‡‡3U|ŠVf6s…pxwIW‰¢Q#wvëpW6#–ECGoX8†”V‘6swISaIWD  q¢‰¢g†W‘veQICfVUWwQEG¢‘ucXQ†kCcIWuTI¢‰VGoX8††‚¢UpI8†G„CWQ97 5 ÷ T H  Y H @ 2 H F @ D T F D H 4B D 5 ò ’ @ 5y H ‰ 2 @ 5 F Y Œ h 2 T ‹ D T Y D 2B 5  i d T h 2 R 5 ‰ F DB @ F Y H DSE8†‘p8•wpGCQIEWI8•€h8XWVdE˜c‚II¢a9¢GuIWC¢•†8EGVGS6W6WI6WC8GlGQ†8wŠ‡š¢9{ 2B 5  d R 5q H F D d H hB Y 2 5  ’ 2 5B D T 7B — 5 d   T H 7 T Y H F D d 5q 2 5B D T D 2 H Y H d  H d d 5 D T d H  5 ‰y €x  T H bB d H h Y R D Hy @ 5 ò ’ H bB D T bB d H h h 2 5 4 H Y T 5 D 2 5B D T 7B — 5 d   T H 4 2 H d H gB h D 2B 5  T YB F 4B F ¢E‚QIuI•6Eÿc‘j¢¢EGl¢„W6II8Q6W…‘W#8EGV#X˜gWpI¢6IQ‚QsEI•SE8†wuXeƒEIC@ ç $ ¦’ ¥ 8q„pzæ ß…î ¦ ç4 € í Ý ø í fAxÆv˜Ý   85Wxšæ 6 4 üí Ý ä íç ( ŠzsÝ ¥ ˆæ 2 5B D Ty H d H F D d H hB Y 2 5 8XWVƒ6WuIGu6IX‚I8• } r e j | r p y w p t i p r p ng l „g r j U¡7‚‡mxvu‚‚{†f…o!¡7| ƒ ‚— –— o˜– ’ 2 5B D Ty R 7 d 5q h H D T 4B D YB F  5 h8XWVƒIwW8•eQWVgEGfXII¢WY H d 5 7 T Y H dB R P H d 2 5B D T 7 d 5q 2B y T 2 5B DB h h T F 4 R ” ’ h H 4 d 5q 2 H H d T Y 2 5B DB h 2 5 4 i d T h 2 R 5 W89#™QWEISQ‚e8XWVd‚8•pE›¢U8EGEpI¢eƒIx™hQQ‚8•p6a‚¢™p8XWEII¢Q‚VUII8†‰ cIF @ 5 d 5 h H 4 2 H d H gB h H d T F Y H 7 H F D 2B Y D 2B 5  d H F D ¢rQ6IQ‚QsEI9WV)W6#9IWAEwWoX8†a6IGV5 cIapjXQWaI¢XW‚Q‚I˜‡d‚QIW•¢wQpGE6I2 @ 5 F Y R yy H D Y 2 5B Y Y H d  — H H Y H F D q 5 d H F DB H t6Q8‡•c‘QGoE8saIXpII8‚WI‚›¢€#‚QG9XŽ‚Q9a#XvoX8†™W6W6WEI™I¢•Vf8„GVV„WQpaT d H b H @ 5 € ’ Y D 2B 5  ` 2B h 2 R 5 d d R Y q 5 Y 7 d H D 2B F Y H 7 T 2B D 2B 5  H D H d 4 YB h H 2 5 D T H bB D T bB d H h 5 D 2 5B D T 7B — 5 d   T 2 T H bB ` i H F D H 4 2B Y ž € ‡ x  € } œ ‡ }  „ } € } y ˆ x „y ‡ œ d 5q YB Y T ‰ H F D H d T H Y H F W–¢XGldEpg‚II¢d¢¢E896pGf6IX‚ˆGlÔ¢‚‡Uƒƒh‡G‡ ¢ˆU|lUj8•ˆXWVU™IWf‚¢W6Iut ç — ¦’ ¥ Sg„pzæ ç ¥ ¦’ ¥ oc„pzæ í W ß ß…î ç ß…îz排~ø›çf4€¥í˜Ý¬ø”íxÝ   6845ü‚형æ Ý ä V ¦ Ý í W ß V Ý ß…î   ¦ ç …zŽ~›f¥˜r75‚xšæ ß îæ ’ ø ç4 € í Ý 6 4 üí Ý ä Û Y H bB D T bB d H h h 2 5 4 H Y h 2 T D Y d n H F D d 5q Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB hr h H d H D 2 H 4 QQ¢EWVVEW6Ip8Q6WI¢f‚‚UIGŠ¢••I8EGV#X˜gWIp¢…6IQ‚QsEI£˜Q‚QGo6Q4 D 2B 5  r H H d F D H F D H d T Y Ty R 7 d 5q H 4 2 H d H gB hr H DB 2 n q 5 Y Hy  7 T — H 2 5 7 7 5 4 D Y 5 7 H F D Y  T F d H SE8†3‡6WIWaIWw‚¢‘¢ƒp…W8•6IQ‚QsEI£‡G„IU”Vf6XI9¢p‡‰89#86‘‚89apG™IVUW6mÜ } r e j | r p y w p t i p r p ng l j ig e h¡7s{zxvu‚sqo2mkshfd ² À à » ´ À ± C ˆ9”wˆr•” $   ± Á ¶ ± À ± ¿ CejÅ6¹ Ú Í × Ë É Í Ì Ê fu•™‘ˆˆu× ™— –— s˜– ½ ¼ ± » ¹ ¶ ¹ hf”‡egº¸ ­ ® ƒ­ Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Ð ”…ˆ‘€v”ԐŸˆmQfÔm«xÎ xÎ
  • 36. H d T F Y H 7 D 2B 5 r d R 5q T 2 5 Y 2 5B DB h 2 5 W¢†W6#uoE8s£fI¢•‘‰8up8XWEII¢Q4 i d T h 2 R 5 ‰ D Hy F 4B dB ã F DB @ H bB D T bB d H h h 2 5 4 H Y h 2 T D Y d n T d 5q Y 2 5B D T 7B — 5 d   T H 4 2 H d H gB ‚¢III8†u6EIƒX‚XGEC‘¢EGl¢„W6I)I86Q‚rI¢w‚‚U‰w8•p8XWVdE˜c‚II¢#QpQW6h„Ih ry T d D 2 H 4 D 2B 5  r H H d F D H F D ` 2B D 2 H Y H d  H d Y d 5 D T d H  5 B d D T 7 H F t ’ H 7 T Y H F D YB Y H 2By H F D q „¢WGoQ6oX8†3–QWpG…IW‰IEGoQ‚Q‚IQ‚W8WVG6s¢— WWVd–Iuw¢9¢W‘IG™EQpXX‘pGˆ¢5 H 2 5 2 t h 5 F D H 7 y T d D 4 H  Y T ` 2B D 2 H Y H d  H d d 5 D T d H  5 H 4 2 H d H gB h —B d D T 7 H F D q 5 H Y T 4 H 7 H d D — I¢IU‹xIG‡#§¢GW66s‚#eIEGoQ‚Q‚IQ‚‘¢GVWQ†8w6IQ‚QsEIŽ„WWV#wIWv¢aW¢Qw9QWWx‡H H F D 2 1 ’ h H nB h 5 7 H ‰ —B d D T 7 H F D q 5  5 D d pG3”‹QIEIx#†#„‚GV#uIG˜¢8WŠ85 ¢GWVsuIWŠ¢gIu¢uVu6IXEwpGŠVIGGlƒ6EIh 7 5 D D 5 ‰ H F D d T H 2 d 5 D T Y H 2By H F D D T F D H D T D 4B i T 7 Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ t Hy  7 T — H d 5 ¤ ’ H 7 T Y H F D iyB d T Y Y H 4 H 2 D 5 2 H d T H 2By 5 D H 2B 7 5 d gdjI¢XG„II86‘‚VUII8†o¢EI9¢p‡j8UjV#¢WCIG…„X‚¢G‚QQ6I€¢Iu‚¢CIXEuGŠIEXy ¢W•q h H Y R Y d 5 D T d H  5 D 2B 5  H F D D R ‰ t d 5 D T d H  5 H 4 2 H d H gB h D 2B 5  T 2 5 h H Y T ‰ YB d 5 D T d H  5 H 4 2 H d H Q‚I€W8WVG6s8voX8†™pG€pIxQ8WVG6s8fQI6W6h„I€SE8†ae8dQWVUvEˆ8GVWQ†86IQ‚Q•q rqB h B d D T 7 T q 5 H 2By F 4 T ’ d 5 D T d H  5 H 4 2 H d H gB h —B d D T 7 T Y H D T d D Y RyyB Hy  7 T — H YB F ƒEI‰— WGldŽv¢aIXEƒ¢ˆ½Q¢GVWQ†8‘QI6W6h„I†„WWV#Ž™6GVWG‚pXXE…Xp#¢p–XIut ¡ ’ ¥ ç ¢  pzæ y AŒ ¼‘D» e² Ý ¥ ( º² t ø ²Ý ä Y T 9 ¦’ ¥ ’ P H DB d @ H d 2 T 4 H ¢…q„p†ëj‡WE‚C6W¢Qav@ ç h ¦’ ¥ oa„pzæ ç c ¦’ ¥ oa„pzæ ¹ ¦   6 ¦ ¦ · ·· ¶ — !Ý ¹ ¡   6 ¦ ¦ ´µ ß…î ¦ ³´´ ¡ · ·· ” ¸¶ !Ý   6 ¦ ´µ ß…î ¦ ³´´   6 ä y ¦Œ t º² à · ä » h 2 I¢T … Ý ¹ „ ´µ Ý ´ Ý ³´ ä Ž² Ý ·· 4 ¸¶ £Ý ` 2B 4 R h 5 d D 2 1 ’ 7 d 5q y TB 4 H  Y i d H b T Y T F B d D T 7 ` 2B Dy R Y H IEQIp˜‚Go3”‰W8•‹¢XQ6s‚‚Q¢…fVUŽ— WWVd–IEG„IW6Wd H F D D T F D t d H F D d Rq h 2 T t 7 d 5q —B d D T 7 r d 5 D 4 H b T 2 pGwVUG§Q6IGfI•Ap¢§†‚8•e„‚GV#3Ô8G‡Q¢‰XB QpGw‚QWpp–r¢QdvuVUG¢QX6wEwEB 7 H F D Y Y H d  — H 2 T 4 H @ D T F D d T Hy 4 YB D ç 9 ¦’ ¥ 8q„pzæ ß î r …¢sç ß î r …¢sç ß î r …¢sç ß î r …¢sç … — Ý !ø Ý   6 Ý ø … „ Ý „ Ý   6 „ ø Ý æ Ý Ý   ±£Ý 6 4 ø Ý 4 £Ý   6 æ ä ä ä æ ” Ý !µæ ä … ç hÝ ¥ „ ç hÝ ¥ ç hÝ ¥ 4 hÝ ¥ ç (“æ (“æ (“æ ( “æ 7 d 5q H bB D Y H ` ` R Y H d 5 7 H F D 2B Y 2 5B D T R P H H Y H F D ` 2B DB d W8•u8„GfQ88pWW¢#uIWECI8XWVUSQu‚QIW…IXWEW™ …   „ Ý Ý 6 šæ ç— Ý 3!Æø ç “ ¦’ ¥ oc„pzæ … Ý „ ç ÝÆø Ý   6 šæ Ý   8£šæ 6 4 Ý „ ç Æø Ý ¬‹vÝ   Ý ø 4 ç 6 ” Ý k!šæ ß…î ¦ ß…î ¦ ß…î ¦ ß…î ¦ … ä „ ä ç ( sÝ ¥ “æ ç ( sÝ ¥ “æ ç ( sÝ ¥ “æ ä 4 sÝ ¥ “æ ç ( ä Û Y 2 5B D T R P H d R 5q H F D D T H bB d d 6I8XWVUSQup8•IGCVu¢EW‚¢T Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç “  
  • 37. ’y T 2 5 ` TB h y T d D 2 H z¢U8¢¢ƒI›VGGo6Q4 H F D 5 D Y d Hq H d ž   è   H 2 5 y T d D 2 H 4 H F D h 2 T d H ‰ 7 R 2 2B h h 5 Y i T @y T H d T —B d D T 7 h H h 2 T ‰ pGdW™W6•6W‘c¢€é¢ep8v¢WGoQ6…IWI¢™Q†…ISXI˜fxc•EV‘W¢„WWV#eQIIVUdT d¢••GoQ9I8‚¢uIuj–Q² º c²Œ ë² ‹ Ž¢6W‚QWpp–seVgCII¢IIGaI8XVfWo¢ƒfI8QŠp8IWEC@ 5q Y D 2 H 7 R ` d T H F t ’ ç à à æ Á Y T h H Y Y H d  — H H ‰ 2 T 4 Y h 2 T ‰ H F D ` 2 5y T Y D 2 T D Y 2 5 4 D R 5 F DB —B d D T 7 y T 2 5 ` TB hB d D i ’ i DByB ‰B Y Y 5  T YB Y h 2 T ‰ q 5 d H ‰ 7 R 2 i 2 T F ` R 5 F Dy T —B d D T 7    „ ‡ … y ˆy € „‚GV#¢VU88¢XIX‚GÅ›83„XEIX‚W8†f§X§IIVUI¢§Q†…ISuo¢a8I8pGEVu„‚GV#‡¢†lxcš¢š‡šx Hy  7B Y T d 5q 2 H bB ` YB 2 5B D T d D Y RyyB H F D h 2 T y T 2 5B D  5 YB D 2 H 7 R ` d T H F D 2 XI9X‚w•¢•ŽQ8„8•E–8XWVGW‚IEXXfIGŽp¢†¢U8EGp8vX•S6#p8W¢™IG#XB 8¢‚IW6IC@ ‘ q 5 HY R HdH F ’ ’’ ç ’ ¥ 8$   pzæ ‘ ¹ Œ º · ·· ‹ ’’ ’ ·· Œ ·· ¸¶ ¦ º ÄŒ ‹ º Œ ´´µ ´´ ´´ ‹ ³´ ä ç º à Œ à ‹ jQÃsÃëÂÛ ‘æ ¤eÁ 2 5B D T D 5 2 H F D H 4 R h 5 d D 2B h 2 T ‰y €x  { ˆ } ˆ „  À T B d D T 7 T F 4 R Y yy T 4 H ™ ’y T 2 5 ` TB 8EGVG¢IuIG6IIxWGoE‰p¢wŠ–š¢99Wx†¢ƒ˜e— WGld‘ƒpW‹E¢gumŸVU88¢XIh yVGGo6QpG«Ip8W¢ª6W6G‚pXQ†W¢ªƒEICdIp¢UAI8XVeW8pG#¢•ŽpQ6˜‡Ž8‚Q6‘E¢‚¢T T d D 2 H 4 H F D h 2 R 5 d T h H d H D Y Ry 4 H d T F 4B F @ Y h 2 T ‰ ` 2 5y T H Y 5 F D d 5q D  H 4 — H Y 5 d H Œ yy T H d D T F D Y D 2 H 7 Hy H F DB @ B d D T 7 H d T R P Y T YB Y d 5 D T d H  5 H 4 2 H d H gB h —B d D T 7 H Y H F D q 5 F 4 T lUGGo6#6XQkWEC— WWVd9WVUSWeuXuW¢GVWQ†8–QI6WQsEpe„‚GV#9WQpG€¢rƒ¢ˆ ç ’ ¥ S—   pzæ ¹ ¦ ¥ ¢r   6 ¦ · ·· ¸¶ ¥¢r     6 ¦ ¦   6 ¦ ´µ ß‘î ¦ ³´´   6 ä ¥ ( i ‰ 2 H bB o‰Q8„8` YB D F `B d H F D 2 5 2 5B DB h 2 5 4 2 2 T 7 R H ò T d 5q „ ‡yx  {y ‰ ‡ € œ œ  € } ˆ € ‡ ~ ˆ „ ‡  } ž  h 2 T Y D 2B 5 E–o8X‚‰pG¬8¬8XWEII¢QÆI¢#IQ‘A98•elŸš¢9|8FG†o‡‡x‚lW¢†lƒƒckóp¢9GoX8† d 5B d H D 2B D T H 7 H F 4 Y ` 2B 4 2 H d H gB hry T d D 2 H 4 D 2B 5 r H H d F D T d 5q d 5 D T d H  5 B d D T 7 H F D 2 H F 8X‚QGoEdV#6IƒWIX6IQ‚QsEI£„¢WGoQ6doX¢s£‡Q‚IGAd8•–8WVG6s8Æ— WWVd†IGº6Iut — Wß V Ý ç ’ ¥ o¥   pzæ ¿¡¾¦ Whß V Ý ä YB 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ H F D H d H F Xe¢XG„II86e‚VUII8†uIGuW6IC@   ’ ¥ ç 8  pzæ D 2B 5  ` 2B @ 5yy 5q H F SE8†ÅIXCcXE8•kIGD ç ’ ¥ s¦   pzæ ¹ ¦   6 ¦ ¦ · ·· ¶   6 ç ß ß „ r6 … •æ ‘î ¥ 6 — W ß V …î ¥ Ý Ý ¦   Ý ¦   ä … ç ( sÝ ¥ ˆæ Û‡ç p“ p†8XW6Qxw6˜ŸA¢XG„II86e‚VUII8†‰I¢#IQ‘9C¢•Š8GVWQ†85 ’ ’ ¥ 2 5B D 4 H ” H H ”æ 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ 2 2 T 7 R H ò T d 5q d 5 D T d H  i ‰ “ ¦’ ¥ ’ P 2B H 2By F D d R 5q H F D H 4 Ty  H d t Hy  7 T — H d H F D d Rq T Y o¬cE˜fëj`XeIEXðGfI8•kIGkQ¢XIQ‚™VXI9¢p‡‰QIW‚I•Å†™i ¦ ¦   6 ¦ ´µ ß…î ³´´ ¦   6 9   ¹ ä ¥ ¥à ( ¦ ¡ ¦w6 ¡ ¦w6 ¡ ¦ · ·· ¶ ¦ Ú Í × Ë É Í Ì Ê fu•™‘ˆˆu× ´µ ³´´ ¦w6 ¡ ß…î   ¦ ä ( Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Ð ”…ˆ‘€v”ԐŸˆmQfÔm«xÎ xÎ
  • 38. ° ¬ «ž § ­ ª « ÂFÕ¤¥sxdŸ Ÿ ­ ž § ­ ® © ª Ö ž ª › ® © › ¬ « « § ©   ¬ « ® © › ¢ ¢ « ª § ¬ › Ô › Ÿ › ¨ ª ­ › › ª ¬ ž © ¯ Ÿ ¬ « › Ô ž § Ñ « ¬ « ž § ª ¬ Ò Ñ ­ © ÎÐ § ­ ¨ § › § Í ¦d¤¥‘“Xv¸£svˆ1q¦Q¤'q‘F“s¤¤¦†ÉS£É£d£Ï˜FsX£‘dˆqÕ‘¦1kd“v¦Ó¦d“†‘qŠuk%ž Ï¥‘¤p“¦« sÌ ’ iDByB ‰ T D Y q 5 Y 2 5B D T d H hB Y 2 5 4 2B d H D Ty y Rq H Y R H ‰ yyB @ F 4B F @ Y 2 5B D 4 R d D Y 2 5 ¢3EEXI¢G‚m¢CI8EGVWQIEWI86eXu6GVX§p•6Wps‹EXCƒXICuI¢XG‡IWW‚I¢Q4 y¢G6IQ8wGEpxˆV‘WI…pGCGE9W6s™QX‚¢UIp8swIG9IXIpXQpXEQUwpGE™GoE8sfI8EW¢Vb T d H 2 H ` H DB R P q 5 H Y R H F D Y DB 7 d H  Y HB d T h 2 R 5 ‰ H F D ` 2B h Ry 4 2B hy H n H F D 2B Y D 2B 5  Y R 5B d T H F D D T 2 5B D T 7B — 5 d   T H F D q 5 H d R D T 2 D 4 T — H H F D d 5 D T d H  5 H bB D T bB d H h B d D T 7 H F D 2B iqB 4 H  pGjVw8XWVdE˜c‚II¢CpGU¢u‚IGVIˆ6¢p‡upGv8WVG6s¢Š8„GVVE‚QIa— WGlduIWwXw|E6Q†WY 5 D i DByB ‰ T H F t ’ Y HB d T h 2 R 5 ‰ H F D D T D  H 4 — H hy H n H F D 2B D 2B 5  i d H b H D T h HBy   T 2 H H ‰ Y T W#3„XXp¢wpuv6QX‚¢UIp8swIW‘lp6Q˜‡‰X6UIGXCoX¢s‰‚68‡fl†6XEII¢QQ†‘¢UF d 5 D T d H  5 D 2B 5  H 7 T Y H F D D T F D d T Hy 4 YB DB h 2 T h H nB 4 H  Y iy H R PB 2 R 2 H H ‰ H b T F Y 2 5B DB h 2 5 8GVWQ†8oE8sw9¢G…pG™lUGC¢gEQfXfEIVkQU„QQ†W‰„QISXpIeQ6s…¢gUfp8XWEII¢Q4 id T h 2 R 5 ‰ H F D t ’ ¥ h 2 T ‚¢III8†apGpph   p†I¢‘9   p†QSj˜3€xqE˜sëjDo‰Q8„8u8WVG6s8CoE8suIW‰VUGe8EGD ’ ¥ ’ Y P 2 1 ’ $ ¦’ ¥ ’ P i ‰ 2 H bB ` d 5 D T d H  5 D 2B 5  H F D 2 T F D 2 5B r T 7 d 5q 2B H d 5 7 i d d T 4 l#W8•˜X‘W89–‚‚¢gwh   ˜ŽI¢w9   pp6SˆËoŽ68E¢v‚8GVWQ†8‘— WWVdfIG€VUW‘6XW¢fò ’ ¥ h 2 T ’ ¥ ’ Y P i ‰ 2 H bB ` Y d 5 D T d H  5 B d D T 7 H F D D T F D H 4B D 5 Æ Êˆ— W ß V Ý È ß É ‘î ¥ à Y Y Y –aaxà ¡ à ¡ s•Ý à ” ß …î   ¦ ä Æ ûV¢r   6xà6YaYaxà   xà   xà   Šù ¥ Y 6 6 6 Æ V¢r   ‡aax8Q8¦ ù û ¥ à Y Y Y à ¦ à ²Œ ä ä y ¦Œ t º² ²‹ Hd H F W6IC@ y AŒ Çw² Ý sQl²Œ U² ‹ eÁ º² t ø ç ¦ à à æ ç ’ ¥ oh   pzæ ß…î ¦ ä ² Ý ¥ ( h 2 n H @   ’ IUuvpt 8  p¥ h 2 T IVŽ—   psQSjfE™¢†¢pXWfo8X‚apG†¢‘p8XWEII¢Q‰‚¢III8†IVdI6fwsEWQ‚Q‚Iwv”£1 ’ ¥ ’ Y P 2B Y T t H hB Y D F `B d H F D 2 5 Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ 2 2 T 7 R H ò H ‰B d 4 Y H d  H @ q ç ’ ¥ oc   pzæ Æû— Ý à Y Y Y à ” §Ÿ!Gà ¡ 6aaSà ¡ s!úÝù ß…î ¦ ä y AŒ t º² Û Y H hB Y D F `B d h 2 T Dq H 6QIEWCo8EWI¢‘|‡Xy H F D 2 5 Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ D Hy F 4B dB ã H F D ` 2B hy 5 F d 5 D 4 H b H F D d 5q Y h 2 T D pG)8wI8EGEpI8Q‚VUII8†a6XpƒXWEeIW‰IEIX¢I‘8G‡Q¢dIGw8•wIp¢ƒfY y AŒ ~W6IC@ º² t H d H F y AŒ ¼w² Ý sgà   x8ÔeÁ º² t ø ç ¦ 6 à ¦æ ç ’ ¥ 89   pzæ ß…î ¦ ä e² Ý ¥ ( i ‰ o² Ý ¢¢EGl¢„W6II¢QQ‚uIGWVdE˜c‚II¢‰¢Qav@ q 5 H bB D T bB d H h h 2 5 4 H Y H F D H D T 7B — 5 d   T 2 T 4 H Å ¹ •Ý ´µ ’ ´ ’’ ´ · „ Ý ´´ Ý ³´´ ç ’ ¥ o“   pzæ ä ² Ý ·· ·· 4 ·· ¶ £Ý Y T ` 2B 2 n H ã ’ Y Hy  7 T — H Y R 5B b H d  d R 5 H ŒBy T d H 2 H @ 5 2 2 T 4 H V² Ý IXpU6ˆ6QXp#¢p–‘p8Xx6‚ICI86XXVGQpQ8` sp†¢Qur™ c   Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç
  • 39. ç   ¥ pzæ ’ ¥ ·· Ý ¥Œ ¹ Ý Aº ·· † ‹ †Œ †º … … … Œ ‹ „ ‹ „Œ „º º ·· ·· Ý ¸¶ 3‹ 4 xº ´µ ´´ ´´ ‹ ´´ Þ¡‹ ³´ Œ 4 º SŒ 4 ä ç à à Û “æ Ü jQ² º s²Œ †² ‹ –zokÁ i ‰ F Y H 7 D 2B 5 r “ T d 5q 2 H bB ` YB Y HB d D 2 o†‚Q9uoX8†3s#C8•e68E¢uX‘QX‚GoQH W8•„IIS8IWEC@ 7 d 5qB 2 R 2 5 2 F DB d 5 D T d H  5 B d D T 7 y T 2 5 ` TB hB d D 4B h 5B d H  y T 4B  i D i ’ —B d D T 7 y ˆ ‡y € } œ T Y T 5 D h H d d Hq H d YB F Y H 8GVWQ†8— WWVdV¢U8¢¢ƒIEWWvXIxX‚Q†S¢gEIx3¬˜s„‚GV#hŸ¢QŸ‡‡UŠ§¢fGa6W‚Q•6‚˜XwWQ97 4B h 5B d H  T 2 5 Y 2 5B D T R P H d Ty T 4 Y d 5q Y H 7 H F 4 Y ` 2B 4 2 H d H gB h Y D 2 H Y H d  H d D T F D B d D T 7 H F XIxX‚Q†w#8ˆI8EGVIx6ˆ¢ƒ¢QWj8•€Q9QIƒ‚uIX6IQ‚QsEIŠWoQW6WI6WˆVIG…— WWVd‘Iut ‘ r xs   e‘€‹‚Q9Xp˜EWQ†Š¢QIXE‘8uWoX8†Co8Xj ä ß î ’ F Y H 7 4B h 5B d H  d T H 2By T 2 5 Y D 2B 5  D F `B Y Y aaY   ‘    6 Y c ¦ Y 6 9 Y 6 “ Y 6 $ 6 Y — 6 Y ¥ 6 ¦   6 ¡ ¡ c ¦ 6 9 6 ä ‘ê ä eß Y Y aaY ’‹8EGVQ˜EuIXW‚¢G‚jG„apXI6QQ‚Iv‚I‚ÚoX¢sCIW€lwsIIQH  Eˆ¢wI8E€V•W‚¢G‚uIX‚Q†…IS2 2 5B D T 4 5y ` 2B D d T D Y Y DB ` 2B h H 4 H d  D Y R Û D 2B 5  H F D D T Ž Y h 2 DB Y T ` 2 5y Y T Y D d T D Y ` 2B d H ‰ 7 R H F D H d H F @ d H D D T 7 iyy T H d 2 Y H 5 h DB t Hy 4 dB 4 T q 5 d H D H 7B d H  H F D 2 5 D R 5 hB Ty YB F Y H 7 H F pG‘W6ICf6GWld‰EE¢g‚uD ÚWQxI™E‹VXQ‚X6Ž•V™QW69X‚Q†‘IG8p8E¢ƒ™XeW6#‘pGD 2 H F ™ ’ ’ ¥ H d R `B ¤ 2B Y T F Y H 7 d Ty R 4 dB 4 T 2 5 iy H bB D Y H ` ` R Y H d 5 7 d 5 t Y HB d D 2 H h H D T H  H d F DB Qpªmp¥ pu‚I8Xm#Ej¢#WQ9”¢XIQ‚X6u98…EQ¢EW‚Q¢8IW•W89j8SQ6XWWoQ9QGlg†QW–WEC@ F Y H 7 d T H 2By T 2 5 h H D 2 H Y H d  H ‰ d H F DB H 2 T 4 YB F t ’ @ 5y H ‰ 2 @ 5 F Y F Y H 7 4B h 5B d H  D 2B 5 r D F `B ‚Q9v¢QIXE™–89QGo6WQ‚IŠ†”QpGE6‘¢gvXIumusEQ†–CspW–W6#€XIxX‚Q†voE8s£‚o8EQH H F D d H hB Y 2 5  ’ Y H ` 2 T F 4 d 5 D T d H  5 —B d D T 7 H F D q pGuQIEWI8•eQQ¢I¢Uƒu8WVG6s8„‚GV#–IGv¢5 W¢•9IW›‡Ÿ¢QŸ‡‡U…‚¢wI8XWEIp8Qef¢T 7 d 5q H F D t y ˆ ‡y € } œ H d T Y 2 5B DB h 2 5 4 i d r h 2 R 5 ‰ H F D q1 ’ h H — n H d T Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ H F D F 4B F @ 2B Y H Y T 4 h H D T d D Y RyyB H b 5 ‰ T H F xII8†CIGs£j‹Q˜puWVˆI8XWEIp8Q‘f¢UIp8s‘IW9ƒEIC‘X€QWVg‘QWVGW‚IEXEf¢s†¢fIut } p tg r j ‚v†!¡7| ƒ tg Ø eg r p Ù†QX†!sfd –— –— ˜˜– ’ í Ý q 5 D 2 HB 4 ¨ H 5 sxm¢‘oQX696xQ4 H F D YB Œ D T F D d T Hy 4 DB Y H ÷ T 7 F 4B F @ D 2 H 7 Hy H F Dq n H F D 2B 5 d H Œ T q 5 2 5B DB h h T H F D H D 5 pGwE9ÓlUGw¢gEQ…„…QV¢#ƃEICwo6#6XQÅW|IŽIWrXe‚QQ†™Vr8EGEpI¢eIWdGVfò 4 üí Ý4 º ø í ÝŒ ø 4 €í Ý4 ‹ 5Wxfx“jxƒ“h¥˜f¡~ø AxÝ ×ušhÝ “æ €í ‹ ä íç ( ç ¡ ¥ pzæ ’ ¥ à 4 º à Œ à 4 ‹ ‹ æ Á ä ²Ý ² Ý ç ¡ ƒa¥c¥‡¡¥à ˆefŽ5 ( ç ¦ ’ ¥ sp¥ pzæ Y XB ¡ ¥ p††j7¢CoQE¢VEISQd„‚GV#uIGCISujQ¢GVWQ†8Ž— WWVduIWeXC|EpWY ’ ¥ ’ P q 5 D 2 Hy T bB R P H —B d D T 7 H F D Y R F t ’ d 5 D T d H  5 B d D T 7 H F D 2B DqB F y¢U8¢¢ƒI‰WwII8†W6W‚8Qw8GlGQ†8aoX8†dIWAEw|„IW£¢ê e6I8XWVgxXwI8EW¢V9IGwVT T 2 5 ` TB h T 5 D Y h 2 5  Y H d d 5 4 d 5 D T d H  5 D 2B 5  H F D 2B DqB F Yr i ’ Y 2 5B D T 4 5y Y R 5B d T b H F D D 2 5B D 4 2 Rq H F D q 5 Y H Ry T b H F D 5 D Y D F `B H @ H F D ` 2B bB ` Y D 2 HB 4 ¨ H 5 4 H F D Y D 2 H 7 R ` d T Y DB d 5q Y T 8EG‡II•IWm¢u6IXV¢pG‘GuGo8EQvIG…pXxE8CWS6X6#‡˜6IGuWS6#p8W¢ŠGEu¢•Š¢UF d 5 D T d H  5 B d D T 7 ` 2B h 2 5  Y H d d 5 4 H F t ’ H bB D T bB d H h D Y d n T d 5q d 5 D T d H  5 D 2B 5  H F D H ‰ D F `B 8GVWQ†8‘— WWVdwIEII8†W6WW¢Q™puv¢¢EWVVEW6Iv‚WIu€8•”8WVG6s¢voE8s‘IWC†ˆo8X97 Hy  7 T — EI9¢p‡H d8Uj‹8EG6pI•™IW‹¢•6IXV¢uIEW8†S8X6I˜¢€#‚QG#X…vSE8†QI6WQ•‡WfIGvV™¢EWVVEW6Ih 5 ¤ ’ 2 5B D 4 2 Rq H F D q 5 Y H Ry T b ` 2B d 5 ‰ F `B H 2 q 5 Y 7 d H D 2B ê D 2B 5  H 4 2 H d Hq H d H F D D T H bB D T bB d H H 7 5 Y d 5q 2 H D DB d @ iyy T d H 2 H ` YB d 5 D T d H  5 D 2B 5 98‚u8•‰6G‚EWC#EE¢G6IQ8CEu8GVWQ†8‘oX8† v‰QIWQ6•3‡se¢XGlƒQ‚9‰‚XXp¢ƒfQ9GD i ’ 7 H F D 2 H H @D H ‰ 2 5B D Ty H d T F YBy ‰ T DY H 5 D 2 T D d 5  7B YB DB t Y d 5 D T d H  5 D 2B 5  h 2 T —B d D T 7 F D 5 ‰ q 5 H Y R Hy ‰ T d H hB Y 2 5 4 H ÷ T 7 H @ H 4 2B o¢ƒf8s9X§X§„¢Q‚8GlGQ†8§oX8†…IVw„‚GV#wW¢sp¢Š‚IvEI¢WQIEWI86vV¢#•vvQpX˜” h   Ú Í × Ë É Í Ì Ê fu•™‘ˆˆu× Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Ð ”…ˆ‘€v”ԐŸˆmQfÔm«xÎ xÎ
  • 40. h 2 T D Y d n T d 5q Y 2 5B D T 7B — 5 d   T ` 2B 4 2 H d H gB h ry T d D 2 H 4 D 2B 5  r H H d F D h d T h 2 T D Y H F D 2 H F IVu‚‚U•8•”p8XWVdE˜c‚II¢aIEQI6WQsEp3„VGGo6Q€oX8†3–QWpG#‚¢UIVƒ‚fIG#QIª™ ’ ’’ ç — ’ ¥ S¢¥ pzæ ‘ ¹ Œ º · Œ ‹ ‹ ’’ ’ ·· ·· º ·· ¸¶ ‹ ¦ º Œ º Œ ´´µ ´´ ´´ ‹ ³´ ä ç º à Œ à ‹ ˆ6¥c¥UÂÛ ‘æ Ü “xkÁ i ‰ 2 H bB o‰Q8„8` YB —B d D T 7 D 2 Ty R 4 dB 4 y T 2 5 ` TB hB d D T q 5 H Y T 4 y TB 4 H  Y H F t ’ DB H b 5 ‰ T H 2 5 H F D q 5 D F `B d H F Ek„‚GV#…o¢XIQ‚X6”¢U8¢¢ƒIEWW†‘¢Ž‚¢g€¢ƒ6Q†WeIu‰g„Ž8c†¢eI¢dIWu¢wo8EWŽpGD 5 D D 2 H 7 Hy H H 2 5 ç ’ ¥ H d R `B ¤ H H Yæ h H DqB F Y YB B d D T 7 D 2 Ty R 4 dB 4 T q WfoQ9QEQwI8uo¥ pwWI8Ev…6W•ÅQW|EI‚fEe— WGld‘o¢ƒpQWEQ9ˆ¢5 cWƒ¢gfVUWw6XGVfò @ 5 d F 4 T H D T F D H 4B D 5 ä AŒ „ Œ æSŒ Œ 4 ¹ 4 Œ ä x±¥Œ „ Œ Œ ´´µ Œ 4 Œ ä „ Œ ³´ · åS±¥Œ ·· ¸¶ „ Œ åSÄ¥Œ Œ 4 Œ ä ç ¥ ’ ¥ o8¥ pzæ YB — d H h d 5 q 5 —B d D T 7 D 2 Ty R 4 dB 4 y T d H 2 H ` D Y 5 7 H F t ’ d H D T E–‘6IW¢v¢d„‚GV#Co¢ƒpQWEQ›¢WQI68C‚¢#uIuj6QGlƒy 7 H F D D R 5 ‰ T i T Y 5 D H d 5 7 F 4 R 7 H b T F yyB @ H ™ ’ YB Y iy T 2 T d R 5 2B Hy 5 d y T DB b T i Ty  Y H 4B d D T QIW€˜8sVdgWwGu‚8#dƒI…™¢gUUXEC‘vQEWxEVU¢vI89XCX8‚U¢ƒ„xw9gƒIˆ6QX‚GV#7 DSVƒI6WX•Žgo¢G‚I86‘W¢aIIVUI8EW¢V‘IGeI¢X¢wGo6#6XQ–IW6ICeQ9W8•‹s„‚GV#7 2 Ty R 4 dB  ’ D 2 T D Y 2 5 4 H d T Y h 2 T ‰ Y R 5B d T b H F D ` 2 5y T Y D 2 H 7 Hy H H F D 2 H F @ h H 7 d 5q t —B d D T DSVƒI6WX6vpG›X™„‚GV#jXIxX‚Q†‘p¢v6WpIWo¢XQ6s‚‘S6Q8‡•c‘'go¢G‚I¢Q§¢IˆWVu„‚GV#7 2 Ty R 4 dB 4 H F D YB —B d D T 7 4B h 5B d H  T q 5 D H Y ‰ R Y y TB 4 H  Y T t d H b H @ 5 € ’ D 2 T D Y 2 5 4 D 5 2 H d T —B d D T 4B h 5B d H  T q 5 Yy T 2 5 ` TB h H F D ` 2 5y T Y D 2 H 7 Hy H H F D t Hy  7 T — H H F D 2B 2 @ 5 F Y Y T ty T d H 2 H ` 2 XIxX‚Q†Žv¢fE¢U8¢¢ƒI‘pG#p8X¢uWoQ9QX6…IWh¢EI#VI–…IWXACcIWV›Ÿ¢WQI68e31 } p tg r j sv£!¡7| ’ F Y H 7 d Ty R 4 dB 4 T 2 5 Y D 2B 5  D F `B ‹W6#•¢ƒI6WEQ‘¢uGoX8†Co8Xj ƒ j i |ã â t rg mɁ†s†áà ß— –— ˆ˜– Û ’ ¥ H d R `B p¥ pu‚I8Xm¤ 5 6 4 3 7 2 8 1 Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç ¡ ¥
  • 41. ’ h H D T Ry T b ‹QWVUE¢V6H H ‰ 5 D YB H bB D T bB d H h H F D F 4B F @ D T D 2B 5  H F D D R 5 ‰ †«WeXA8EWVVE‚QIAIGðƒXIC‰V†oX8†AIGp8†¢T 6WQWoQQÿ8XW6Ip•AIWw¢‰QpX¢Vb h H d H D 2 H 4 2 5B D 4 2 Rq H F D q 5 Y H Ry T H H d F D ` 2B Y R H bB D T bB d H 6WIWIEWI†8EWVVE‚QIh I¢QQ‚ru¢Æ8EGV#X˜gWIp¢T ¢#8•XI¢G#8ExcmrWS6W6WI6Wd h 2 5 4 H Y T q 5 2 5B D T 7B — 5 d   2 T d 5q Hy ‰ T D d 5y i T t T Y D 2 H Y H d  H F 4B F @ ¦’ ¥ Hy ‰ T t d H hB Y 2 5 4 t Hy  7 T — H 2 T Y i ’ c’ ¥ ’ P i ‰ 2 H bB ` 2 5B Y 2 T  — H H F D q 5 H Y ƒXpC†„pEI¢md6IX‚I8Q•¢Xp#¢p–º¢Žfªpd˜Šëjzoº68„8º8EWI¢Ip–IW¢‚IR H bB Y 2 H D — H Y H ÷ T 7 F 4 B F @ Žt H y ‰ T D d 5 y i T 8„WI6Gx‡€QV¢#ŽƒXICu¸¢Xp¢ƒˆ8Xxgmt  Š6I‚GfI8QwGˆX€p¢vEIG‘fW¢QaW9g•#‚¢Šf8•q T D 4 R d D Y 2 5 4 5 D YB D R 5 YB F D i d d T 4 5 D i T @ h d T @ d 5 D F `B T d D Y h 2 T Hy  7B S¢X¢WG‚ªIVXp#EWY QQpW85 o¢a¢#W8WVG6s¢3‚oE8sQI6WQsEp3‡WEII¬pXG‡IWW‚I¢Q4 i ’ d H hd i 2 T q 5 Y d 5 D T d H  5r D 2B 5  H 4 2 H d H gB hr H DB 2 n ` 2B D 4 R d D Y 2 5 d 5q Y 2 T H 7 T Y H hB b 5 d  D 2B 5  h H — n T D R 5 ‰ T Y 2 5B D 4 2 Rq q 5 2 5B Y 2 T  — H Y HB d H Y d 5y i T t H F ¢•wI¢Q#–6IXxcWI…SE8†Æ6˜p–p8†¢–I¢XG‡II•C¢¬8EWI¢Ip–‘QEWQ‚…8E˜gmeIut } pã ø | ö r eã ÷ | s†ËgU£õvËö ™— ß— sõˆ– À ± · ¼ vÀ ” ó ¶ G ñ à ² ô¾òÓ𐱠R ± ³ Á •B ï ¶ ¹ Á ¶ ± À ± ¿¹ ½ ï ¶ ¹ » Á î À » ² ¶ ðg‘ejÅ6¾¡ðgjuejme9à í ì® £­ ’ Y H by H Y 7 H F D Y H 4B d D T 7 H F D 5 D d 5B d H D 2B yy T YB 2 5B D T 7 d 5q 2B YB F D H 4 2B Y Y d 5 D 4 H b 2 5B DB h 2 5 QQ¢E6W9QIWŠQQEWWVduIW‘GŠ8EWQWoXhE¢CXd8XWVd‚8•pEuXIWu6IX‚f‚8G‡Q¢Ž8XWEII¢Q4 i d T h 2 R 5 ‰ 5 2 H d T H d H F D D T F D H 4B D 5 ò ’ iD d H  5 d  y TB 4 H  Y YB F D q 5 H ` T D 2 T b h T H ÷ T D H @ 2 ‚¢III8†kIŽWVWQpG…VIGd6XGVf83‚6s¢WIv¢ƒ6Q†W…EIGC¢Ž¢¢ƒo¢Vp¢V¢ƒev)85 d H D T ô ’ Y d 5 D T d H  5 D 2 Ty R 4 dB 4 5 Yy T H d T Y d 5 D T d H  5 4B h 5B d H  q 5 Y H Y T 4 y TB 4 H  Y H Y H F D t iy d T Hy 6GV˜aQ‚8GVWQ†8o¢XIQ‚XQe‚X¢…W¢u‚8GVWQ†8wEIxXW6s€¢u6W¢Qv¢XQQ†W–‚QIWh8„W¢QX• ç $ ’ ¥ 83¥ pzæ ß…î çsQà   6Sà8¦fæxÜkÁ ¦ ¦ ä ¹ ¦   6 ¦ ¦ · ·· ¸¶ ¦   6 ¦ ¦ ¦   6 ¦ ´µ ß…î ¦ ³´´   6 ä Ü ç ¥ “æ ( h 2 I¢T ç ¦ à ¦ 6æ Ü sQà ¡ 8w£xkÁ ß…î   ¦ ¹ ä ¦ ¡ ¦w6 ¡ ¦ · ·· ¦ ¸¶ a6 ¦ ¦ ¦w6 ¡ ´µ ³´´ ¦w6 ¡ ß…î   ¦ ä Ü ç “æ ( 7d 5q H F W¢•upGD H ÷ T D i H F D t Y 2 5B DB h 2 5 4 i d T h 2 R 5 ‰ 4B h 5B d H  F DB @ h H Y R H d T t ’ ¥ ’ P H H Y t H bB D T bB d H h h 2 5 4 H V¢ƒa6IW¢QI¢XG„II86…f¢UII¢svXIxX‚Q†‘GEC‘6WIu‚¢o8¦   poëjXQ‚8¢¢EGl¢„W6I#p8Q6WY Í Ì Ö Í ˆfu× ¦ p¥ ê Ó É Ñ × Ú Ì Ù Ì È Ç ë™¬uv†vf”‹Ú qÔvwˆfˆ””ÔÖ {Ô§‘•Ïm˜™uuóx%xÎ é ÓÒ Ç Ó Ì Í Ì Ñ ÑÒ é Ó Ò Ë Ç è Í Ë Ú Ó × Ç Ð çÐ
  • 42. ’ YB Y T 6X‚¢U‰ ‚QGeo‰ ‚QW‘†8CQEW6WY 7d H D i 7 d H D T 2 5 Y HB d H d 5y i T t q 5 Y 2 5B D T 2B ‰ 7 5 4 d T H 2By ` 2B 7 d 5q q 5 i T @ D 2 HB 2 H b 2 5 4 T iy  7B Y YB Hy ‰ T D d 5y i T ¢Xxgv€¢fI8XWVUEI…86™¢QIXEdIE#‚8•ˆ¢egŠuoQEIQ¢o8QŽ†Ep#EWE…XIVƒ™8Excmt i í W … ß ço“8¥ ’p¥zæ«YaYaY`ø ß V Y … …î Ý … í W ß V ‚Y …î ß Ý ¦ í W „ ß —   “ Y … çs¦fæoYɺ“ø ß ç ¦æ Y º V Y „ …î Y „ sfxkø ¦ Ý ¦ „ í Wpß   ¦ V Y ß ‚˜…î hsÔxk“vx‡º Y ç ¦æ Y º ø í Ý Ý ¦ Y cfxk~ø ç ¦æ Y º ä 4 üí Ý 5‚˜–º Ûƒ5Wx–£V9¢XWp¢U˜‡j6XW6Wj8ExcmuIWGˆII8†W6WW¢QŠEI¢ƒŠpG…X©cWjf¢ƒupG8¢EI9¢p‡H 4 ü í Ý º q 5 2 5B Y 2 T  — H Y HB d H Y d 5y i T t H F D 5 D Y h 2 5  Y H d d 5 4 Hy ‰ T D H F D 2B @ 5 d D Y Ty H F D t Hy  7 T — d8Uauc‚eIXIp8s‚Q‚W86…IGjV|6E…IWŽGD WQWwIW€Ve8X‚I¢U˜‡™QX‚Q‚8Xxgm…IG†XB 5 ¤ ’ @ 5 d ` 2B h 2 5  Y H d d 5 4 H F D q 5 Dq Hy H F D 5 7 d H D H F D q 5 2 5B Y 2 T  — H Y HB d H Y d 5y i T t H F D 2 2 7 Ry 5 4 ` 2B h 2 5  Y H d d 5 4 H F D q 5  5 D H F D D 9IE8QIEII8†W6W‚8QuIW뢑8GŠpG”VT W6GŠIW†VˆS6X6#‡˜6uIGmX‘fGoQ–ƒ¢ˆ'VXIVƒD 7 d H D H F D q 5 D 2 HB 4 ¨ H 5 4 H F D YB id D 2 H F 4 T ’ Hy ‰ T d 5y i T t H F D  R H ÷ T 7 t Y ` 2B h T H F H F D d H h 2 R t H 2 5 D Y 5 7 Dq Hy H F D q 5 D F `B d H F D 5 D Y 2 7 Ry 5 4 H F ¢XxgvuIW9p‘V¢#oQ8IEI¢QICIGjQpIIS¢I¢j‚89G|‡XCIWs¢”S¢XWCIWG”I9IX¢QCIut Y Y Y à ¦ aaxà   8gà ¡ #õ ä í W ý ß V ‡Y …î ß ý ý Ý t YB D T F D t ê D 2B 5  H F D D R 5 ‰ 6XCVUWpU€oX8†uIGup¢s¢T WQW†ƒ¢QvV†8EWIVU˜‡H 7 d H D F 4 T H q 5 2 5B Y 2 T  — H F D 2B Y d R 4 4 5 D T F D d 5 D 4 Tq 2 5 7 7 5 4 H F D Y d T H   T H d H F D 2 7 Ry 5 4 F 4 T H q 5 h T H F H F D D T D T F pGŽXC‚IQ6˜ulUGŠ8W6¢š#8#986IGŠ‚¢g†I¢u‚QIWŽ#IE8Q‰ƒ¢QmV‰VgIIWuVCVIGD H 4B D 5 2 2 H F t ’ ’ Hy ‰ T D H F D 5 D 2B D R  H ‰ 5 D Y 7 d H D H F D Y HqBy  7B Y F 4B F 6XW¢Iº6Iu«–ç VXI¢G‰pGkGoX#pI‰sAG–9WQW‰pG…Q•„XI9X‚«ƒEIC@ W6G«ƒ¢QWoXB 7d H D F 4 T H 5D 2 h HBy B Dy R 7 2 H H ‰ Y T QEXIEGEp…Q6sf¢UF …h¢WVg‘XIW†XUh8I8IWE¢šŽEI¢GaIW”¢‘|6EwIWfV†9IX86#XB ß î t H Y T 4 YB F D 2B t F ` R 5 F Dy Tæ Hy ‰ T D H F D q 5 Dq Hy H F D D T 2 7 Ry 5 4 T 2 dVg†I¢#8XWVUSQfIG–Xˆ9WQWfIWh¢UE¢vVUW‘6XGVfe!8EGV#X˜gWIp¢€XIWh¢fWI‘IG–o‰ T H   T 2 5B D T R P H H F D 2B Y 7 d H D H F D q 5 yy T D T F D H 4B D 5 ò ù 2 5B D T 7B — 5 d   T YB F D q 5 H Y R H F D i h H Y R T 4 d 5 d d H y T 4 5y H F D YB D T F @ t iy H 7 T 2 ’ d H @ Y 2 T 2 T 4 Hy ‰ T D YB F D q 5 i h R D Y T D T F D Y 2 5B D Y H R Q‚I¢Qj8W‚QpVgxXuIW”XˆVUCV8E6#VUp6Qv‚I¢9¢QŠXp¢ƒ”EIG뢖ppG‚€lUGjI8EGfQISP HpG€¢–I8wWoQW6WI6WEIu‘ëW¢#¢XGfQISeAG„CA8EW‚QWpp–V#6W9•aXI¢G‘IG€¢5 F D q 5 H 2 5 Y D 2 H Y H d  H d YB F t ’ ÷ d T 7 2 5B D Y H R P T F DB @ 2 5B Y Y H d  — H 2 T H H Y H @ Hy ‰ T D H F D q  5 D H F D D i ’ h H nBy  7B Y YB T d ‰ H `y T H F D q 5 H 7 5 Y D T F D 5 Y h H D 4 R d D Y 2 5 4 YB Hy ‰ T D H F 8WeIG–Š)‹6UEEI9XW–EGI68X¢†IWf¢e98‚#lUGkWº6G‡IWW‚I86‘XeEI¢ƒIut ’ H bB D T bB d H ¢8„GVV„WQph h 2 5 4 H Y T 5 D 2 5B D T 7B — 5 d   T 2 TB ` 2 T d ` T ô D 2B 5  r ¥ h H d H D 2 H 4 d 5q Hy ‰ T D d 5y i T t ’ ¦’ ¥ Hy ‰ T I8Q6WeGr8EGV#X˜gWpI¢¬¢X8I¢W8¢˜–oX8†3sºQ‚QWS6Q‘8•ŽEI¢G…8Xxgv¬8„pEI¢mt … 4 … Y … sfSɺ ç ¦æ Y Y … sW|x‡‹ ç ¦ræ Y 4 4 4 Ý Y „ sfokº ç ¦æ Y Ý Y „ sW|x½‹ ç ¦ræ Y í y ü ˜Aut wüu Y … …î ß 4 4 4 hsfxhº Y ç ¦æ Y Y sfxkº ç ¦æ Y 4 º Œ 4 hsG|S{‹ Y ç ¦ ræ Y Y sƒƒx‡‹ ç ¦ ræ Y ‹ 4 ¦ í y û ¤Auvt w û u Y „ …î ß í y ú ¤¦uvt w ú u Y …î ß í y xuvt w u Y ß …î ß…î ¦ ù ä ç4 üí ݺ ø í ÝŒ ø 4 €í Ý ‹ ׈f5Wx–“jxƒ“h¥xSˆæ ø 4 üí Ý Y 5‚xckº í Ý Y xckŒ 4 €í Ý Y ¥˜Q{‹ í y ú ¤¦uu t Y ‘î w ú ß í xÝ í W ß V Ý Ú Ó × Ò Ë É ÙÒ Ø × Í Ê Ê É Ì Ç Ó Ì Í Ì Ñ ÑÒ ÖÕ Ì Ë Ò ÓÒ Ñ Ð Î Í Ì Ë Ê É È u‡§™†fjˆˆ«”w€‘ˆ””Ԑz€mQ‘Ôv«Sψm™‘”Ç   ¥
  • 43. D Y d n T 5 D 2 5B D T 7B — 5 d   T 2 TB ` 2 T d ` T ô D 2B 5 r ‚‚UÅ©W«8EGV#X˜gWIp¢ª¢ƒ¢I¢G¢¢˜oX8†3l¥ … …4 4 Y … sW|x7¡‹ ç ¦ræ Y 4 Y … ç   |xY ‹ ræ Ý Y „ sGƒx'¡‹ ç ¦ ræ Y 4 Y „ ç   ƒxY ‹ ræ 4Ý 4 í y ü u wü ˜Au t Y … …î ß 4 4 í y û u w û ˜Au t Y „ …î ß Y cƒ|x8¡‹ ç ¦ ræ Y 4 Y ç   |xY ‹ ræ h d T @ ÷ 4 T ‰ d 5q Hy ‰ T D d 5y i T W¢•oƒ¢Ue8•EI¢GŽ8Xxgvt 4 UsƒƒS'¡‹ Y ç ¦ ræ Y 4 44 Uç   ƒSY ‹ Y ræ 4 Œ 4‹ ‹ ¦ í y ú u w ú ¤¦u t Y …î ß í y xuu t w Y ß ‘î ’¢8„GVV„WQph H bB D T bB d H ’   pkEI¢mt ’ ¥ Hy ‰ T í Ý Y xckŒ 4 €í Ý Y 4 ¥xc7¡‹ ¥xcY ‹ €í Ý í y xuu t f…î w Y ß í xÝ í W ß ß …î ù ä çí ÝŒ ø 4 €í Ý4 ‹ fˆ6˜ƒ~hAxf¡“ø AxÝ –æ €í ‹ ø V Ý ¦ ’   ˜uXI¢mX†CspWuX¢EWVVEW6Ih ’ ¥ Hy ‰ T t 2B 2 @ 5 F Y YB H bB D T bB d H D Y d n T ` 2B D 2 H Y H d  H d d 5 D T d H  5 ` 2B 4 2 H d H gB h r h d T @ ÷ 4 T ‰ D 2B 5 r ¥ T d 5q Hy ‰ T D d 5y i T t H F fWUa9IEGoQ‚Q‚IQ‚Š8GlGQ†8‘IEQI6W6h„I3˜‚¢•SƒVUŠoX¢s£l…u8•‘XIVƒ•8ExcmIut í W ß …î ß V ço¥ pzæ c ’ ¥ ç …zd׈f5‚˜¬”xÝ   ‚¥˜•æ ß îæ ’ ä ç4 üí Ý ø í 6 4 €í Ý 6 Ý ! ¦ H bB D T bB d H ¢EWVVEW6Ih h 2 5 4 H Y T d 5q d 5 D T d H  5 D 2B 5  ` 2B 4 2 H d H gB h y T d D 2 H 4 D 2B 5 r ¥ d TByB 7 Tq H F D h H bB d H h D Y R Û H b T I86Q‚wŠ8•ˆ8WVG6s8•oX8†wIEQI6W6h„Ih¢WGoQ6•oE8s£lj¢XXE#¢š‘IGŽ68„WQpu‚I‚8gUF H ™ ’ D 2 H D YB Y 2 5 4 7 d H D d 5 d d H H F D H ÷ T 7 5 D F ` R 5 d F D h H hB bB h 2 H H ‰ Y T ugoQW‚EWI86µW6Gu8W‚QaIG¢Vd#G†¢I8WpGQIE˜„I6Q†™¢IF ……IWCVUGuGVfò ß î H FD D T F D H D 5 í W … ß   ¦ V ß Ý … ‘î ç 9 ’ ¥ 83¥ pzæ ä ¢ £— í W … ß V ß 5… …î Ý …   ø º —    ¡ ß…î ¦ ä xþ ÿ ‹ Y h 2 n H 2 5 h 2 T ç i d D H 7 7 i Y i ‰ F YB 2 T b yyB @ Y 2 7 Ry 5 IIIup8I¢up‚G‡#9x‚oWEI¢VsEXCŠI9IX¢Q4 2 H b H yy T Hy  7 T — H YB F D d 5qæ Hy ‰ T D H F D 2B 2 7 Ry 5 4 F Dq n H F D D T Y d R 4 4 Q¢6uXV†EI9¢p‡–XIW9¢••XIVƒIG¬XÆ#pX86«G|p†IW9lŽWpQQx5 xðWVg9XIW©31 ÿ þ H Y T 4 YB F D 2 ’ d 5 d d H Y HB d H Y d 5y i T t H F D Y T D Q8‚W6‘6X‚QWC8ExcmuIGŠV‘EB 7 R Y ` 2B F YB 2 T b 2 5 2 D Y d n H F D H D T 2 `B Y H h H IW9IXpWXp¢VS¢I™fWUuIWuWVU8EW6Ia™ 5D d Hq Hd h 2 T ÿ þ H ‰ 5 W‘6•6W‰I¢†t x½†dWD ’ d 5 d d H H F D H D R DB D Y 2 5 4 5 d H Œ 5 D 7 R Y D 5 2 5 h D T F D Y 2 7 Ry 5 4 H F Q8‚WQuIWGpWEW‚I86#‚Q6#W§IWCVI#pCVUGŠp#IE8QwIut ¹   6 ³´µ ’û ¦ ŸQQà   S8¦ wˆsƒ¥c¥UýS68E¢uXe8EGpE8WwIut 6 à ù 6 ä û º à Œ à ‹ù i ‰ 2 H b B ` Y B 2 5 B D R y 5 Y H F ¡ ¦ ¹ º ³´µ ¹ ¦ ¡ w6 ³´µ ä Œ ¦ ¦ ·¶ ‹ ·¶ ¦ ¦ ¦ ¡ ·¶ ¡ 2 5B D T R P H H F D iq YB D T Y H @ qB 5 d H Œ H d T Y 2 7 Ry 5 8EGVIx6uIGŽ|fXWVGuvm„#‚QQ‚¢CI9IX¢Q4 H H d F D D Y d n H F D q 5 Y 7 R Y H F D D T F D @ 5 F Y iyB Y T H 2 T 4 H 2 “ ’ 5 d H Œ H ‰ 5 D Y 7 R Y H Y H F D t 4 h 2 6WIWwfWU‘IW•¢u9IW–IWVUWÏcIWEX‚¢gA¢Q#I#I‚QQ–†Gu#I‚#‚QIW›¢AI¢T t‹ëpj¢wQE8Iƒ‘Q†8WpaIWSëVQW¢•†I¢fo8EW9GC|6Eµ8W•‰QQ6˜‚IwvU‹xIG‡#wIGm¢5 ‰ t T q 5 H 4B 5 F 4 d H  5 d  H F D i ‰ t H 4 d 5q h 2 T D F `B d 5 D Dq Hy 7 5 dq h H H 4 5 d  H @ t h 5 F D H 7 H F D q i 4 T d R 4 4 T q 5 d H h d 5 H F D H ŒB 7B — T 7 5 t ’ Y 2 7 Ry 5 4 H Y H F D q 5 F 4 T H q 6¢WIQ6¢u¢6IW¢#IWa6X9X˜l#†§‘QI9IE8Q9W6IGv¢ƒVgŠV5 IW–IWw6IX‚I8• 7 R Y H F D d H hB Y 2 5 ê Ó É Ñ × Ú Ì Ù Ì È Ç ë™¬uv†vf”‹Ú qÔvwˆfˆ””ÔÖ {Ô§‘•Ïm˜™uuóx%xÎ é ÓÒ Ç Ó Ì Í Ì Ñ ÑÒ é Ó Ò Ë Ç è Í Ë Ú Ó × Ç Ð çÐ Í Ì Ö Í ˆfu× ¥ 8¥