SlideShare une entreprise Scribd logo
1  sur  71
Télécharger pour lire hors ligne
CHAPTER FOUR
4.1   a.   Continuous, Transient

      b.   Input – Output = Accumulation
           No reactions ⇒ Generation = 0, Consumption = 0

                  kg        kg dn     dn        kg
           6.00      − 3.00    =    ⇒    = 3.00
                   s         s   dt   dt         s

      c.         100 m3 1000 kg 1 s
                  .
           t=                         = 333 s
                         1 m3 3.00 kg

4.2   a.   Continuous, Steady State

      b.   k = 0 ⇒ C A = C A0           k = ∞ ⇒ CA = 0

      c.   Input – Output – Consumption = 0
           Steady state ⇒ Accumulation = 0
           A is a reactant ⇒ Generation = 0
               FG m IJ C FG mol IJ = V FG m IJ C FG mol IJ + kVC FG mol IJ ⇒ C
                  3                       3
                                                                                          CA0
           V
                H sK Hm K H sK Hm K
                       A0     3                A          3
                                                                  HsK
                                                                    A            A   =
                                                                                         1+
                                                                                            kV
                                                                                            V

4.3   a.                                 b
                                       mv kg / h   g
           100 kg / h                  0.850 kg B / kg
           0.550 kg B / kg                                    Input – Output = 0
                                       0.150 kg T / kg
                                                              Steady state ⇒ Accumulation = 0
           0.450 kg T / kg
                                         b
                                       ml kg / h   g          No reaction ⇒ Generation = 0, Consumption = 0
                                       0.106 kg B / kg
                                       0.894 kg T / kg
           (1) Total Mass Balance: 100.0 kg / h = mv + ml
           (2) Benzene Balance: 0.550 × 100.0 kg B / h = 0.850mv + 0106ml
                                                                    .
           Solve (1) & (2) simultaneously ⇒ mv = 59.7 kg h, ml = 40.3 kg h

      b.   The flow chart is identical to that of (a), except that mass flow rates (kg/h) are replaced by
           masses (kg). The balance equations are also identical (initial input = final output).

      c.   Possible explanations ⇒ a chemical reaction is taking place, the process is not at steady state,
           the feed composition is incorrect, the flow rates are not what they are supposed to be, other
           species are in the feed stream, measurement errors.




                                                       4- 1
4.4   b.   n (mol)                                                                  b
                                                                   0.500 n mol N 2 28 g N 2 1 kg    g
                                                                                                  = 0.014 n kg N 2                                              b          g
           0.500 mol N 2 mol                                                       mol N 2 1000 g
           0.500 mol CH 4 mol
      c.   100.0 g / s
                                                                   nE =
                                                                                        b                 g
                                                                                 100 x E g C 2 H 6 1 lb m lb - mole C2 H 6 3600 s
                b       g
           x E g C2 H 6 g                                                                s         453593 g 30 lb m C2 H 6
                                                                                                      .                      h
           xP   bg C H gg
                     3   8                                                                  b
                                                                               = 26.45x E lb - mole C 2 H 6 / h               g
           xB   bg C H gg
                     4   10

      d.      b                g
            n1 lb - mole H 2 O s                                  nO2 = 0.21n2 ( lb-mole O 2 / s )
           Rn blb - mole DA sg
           | 0.21 lb - moleO lb - mole DA U
              2
                                          |                                           n1 ⎛ lb-mole H 2 O ⎞
           S
           | 0.79 lb - mole N lb - mole DAV
                                 2
                                          |
                                                                   xH2O =
                                                                                   n1 + n2 ⎜ lb-mole ⎟
                                                                                           ⎝             ⎠
           T                     2        W                                       0.21n2 ⎛ lb-mole O 2 ⎞
                                                                   xO2 =
                                                                                  n1 + n2 ⎜ lb-mole ⎟
                                                                                          ⎝            ⎠
      e.   n ( mol )
                                                                  nN2O4 = n ⎡0.600 − yNO2 ⎤ ( mol N 2 O4 )
                                                                            ⎣             ⎦
           0.400 mol NO mol
           yNO2 ( mol NO 2 mol )
           0.600 − yNO2 ( mol N 2 O 4 mol )

4.5   a.    Basis: 1000 lbm C3H8 / h fresh feed
            (Could also take 1 h operation as basis -
            flow chart would be as below except
            that all / h would be deleted.)                                                                                           b
                                                                                                                                  n6 lb m / h      g
                                                                                                                                  0.02 lb m C3H8 / lb m
           1000 lb m C3H 8 / h                   b
                                              n7 lb m / h    g                                                                    0.98 lb m C3H 6 / lb m
                                              0.97 lb m C3H8 / lb m
                                                                                                                      Still
                                              0.03 lb m C3H 6 / lb m



                                                                                                                                                                    Compressor

                                                       b
                                                     n1 lb m C3H 8 / h   g                                                                                      b
                                                                                                                                                            n1 lb m C3H 8 / h   g
                                       Reactor       n blb
                                                      2      m   C H / hg
                                                                  3        6                                                                                    b
                                                                                                                                                            n2 lb m C3H 6 / h   g
                                                     n blb       CH / h g
                                                      3

                                                     n blb
                                                             m

                                                                 H / hg
                                                                       4
                                                                                                b
                                                                                         n3 lb m CH 4 / h         g
                                                      4      m     2
                                                                                                b
                                                                                         n4 lb m H 2 / h      g                                   Stripper
                                                                                                                              b
                                                                                                                          n5 lb m / h         g
             Note: the compressor and the off gas from                                                  Absorber
             the absorber are not mentioned explicitly
             in the process description, but their presence
             should be inferred.                                                                                                b
                                                                                                                              n1 lb m C3H 8 / h             g
                                                                                                                                b
                                                                                                                              n2 lb m C3H 6 / h             g
                                                                                                                              n blb
                                                                                                                                  5       m   oil / h   g




                                                                 4- 2
4.5 (cont’d)
       b. Overall objective: To produce C3H6 from C3H8.
             Preheater function: Raise temperature of the reactants to raise the reaction rate.
             Reactor function: Convert C3H8 to C3H6.
             Absorption tower function: Separate the C3H8 and C3H6 in the reactor effluent from the other
                 components.
             Stripping tower function: Recover the C3H8 and C3H6 from the solvent.
             Distillation column function: Separate the C3H5 from the C3H8.

4.6    a.   3 independent balances (one for each species)

       b.     7 unknowns ( m1 , m3 , m5 , x2 , y2 , y4 , z4 )
            – 3 balances
            – 2 mole fraction summations
              2 unknowns must be specified

       c.    y2 = 1 − x2
                              FG kg A IJ = m + b1200gb0.70g FG kg A IJ
            A Balance: 5300 x2
                               H hK                 3
                                                             H hK
                                          F kg I
            Overall Balance: m + 5300 G J = m + 1200 + m G J
                                                                  F kg I
                                      1
                                          H hK                  3
                                                                  H hK              5



            B Balance: 0.03m + 5300 x G
                                           F kg BIJ = 1200 y + 0.60m FG kg BIJ
                                  1
                                           H hK 2
                                                                       H hK     4       5


            z4 = 1 − 0.70 − y4

4.7    a.   3 independent balances (one for each species)

       b.                                                       bg
                                400 g 0.885 g H 2O mR g 0.995 g H 2O
                                                  =                  ⇒ mR = 356 g min
            Water Balance:
                                 min       g        min       gb g
            Acetic Acid Balance:           b400gb0115g FGH g CH OOH IJK = 0.005m
                                                  .
                                                              min
                                                                        3
                                                                                            R   + 0.096mE
                                                                                                            FG g CH OOH IJ
                                                                                                             H min K
                                                                                                                  3



                                          ⇒ mE = 461g min
                                      FG g IJ = m + m FG g IJ ⇒ m = 417 g min
            Overall Balance: mC + 400
                                       H min K               H min KR       E               C



       c.
             b0115gb400g − b0.005gb356g FGH min IJK = b0.096gb461g FGH min IJK ⇒ 44 g min = 44 g min
               .
                                             g                          g




                                                        4- 3
4.7 (cont’d)
       d.
                                        H 2O                                   CH 3COOH
                                        some CH3COOH

               CH3COOH
               H 2O          Extractor         C4 H9OH                Distillation
               C 4 H9OH                        CH3COOH                 Column



                                                                               C4 H 9OH


4.8    a.
                                                 X-large: 25 broken eggs/min
                                                          35
                                                          45 unbroken eggs/min
               120 eggs/min
               0.30 broken egg/egg
                                                 Large: n 1 broken eggs/min
               0.70 unbroken egg/egg
                                                        n 2 unbroken eggs/min

       b.      120 = 25 + 45 + n1 + n2 ( eggs min ) ⇒ n1 + n2 = 50 ⎫   n1 = 11
                                                                   ⎪
                                                                   ⎬ ⇒
               ( 0.30 )(120 ) = 25 + n1                            ⎪ n2 = 39
                                                                   ⎭
       c.      n1 + n2 = 50 large eggs min

                                                          b
               n1 large eggs broken/50 large eggs = 11 50 = 0.22       g
       d.                                                     b            g
               22% of the large eggs (right hand) and 25 70 ⇒ 36% of the extra-large eggs (left hand)
               are broken. Since it does not require much strength to break an egg, the left hand is probably
               poorly controlled (rather than strong) relative to the right. Therefore, Fred is right-handed.

4.9    a.         b
               m1 lb m strawberries     g                         b
                                                               m3 lb m W evaporated       g
               015 lb m S / lb m
                .
               0.85 lb m W / lb m
                                                              1.00 lb m jam
                  c
               m2 lb m S sugar      h                         0.667 lb m S / lb m
                                                              0.333 lb m W / lb m
       b.        3 unknowns ( m1 , m2 , m3 )
               – 2 balances
               – 1 feed ratio
                 0 DF
       c.      Feed ratio: m1 / m 2 = 45 / 55   (1)
               S balance: 0.15 m1 + m 2 = 0.667 (2)
               Solve simultaneously ⇒ m1 = 0.49 lb m strawberries, m 2 = 0.59 lb m sugar




                                                       4- 4
4.10   a.
            300 gal
                  b g
            m1 lb m
                                                                                                    4 unknowns ( m1 , m2 ,V40 , m3 )
            0.750 lb m C 2 H 5OH / lb m
            0.250 lb m H 2O / lb m
                                                                    b g
                                                              m3 lb m
                                                                                                  – 2 balances
                                                              0.600 lb m C 2 H 5OH / lb m         – 2 specific gravities
                                                              0.400 lb m H 2O / lb m                0 DF
              b g
            V40 gal
            m b lb g
              2       m

            0.400 lb m C 2 H 5OH / lb m
            0.600 lb m H 2 O / lb m

       b.             300 gal      1ft 3   0.877 × 62.4 lb m
            m1 =                                             = 2195 lb m
                                7.4805 gal             ft 3
            Overall balance: m1 + m2 = m3                                                                           (1)
            C2H5OH balance: 0.750m1 + 0.400m2 = 0.600m3                                                             (2)
            Solve (1) & (2) simultaneously ⇒ m2 = 1646 lb m, , m3 = 3841 lb m
                      1646 lb m                 ft 3 7.4805 gal
            V40 =                                               = 207 gal
                                    0.952 × 62.4lb m    1ft 3

4.11   a.                                                                                             3 unknowns ( n1 , n2 , n3 )
                  b
             n1 mol / s    g                                                                        – 2 balances
             0.0403 mol C3H 8 / mol                                                                   1 DF
             0.9597 mol air / mol                               b
                                                              n3 mol / s      g
                                                              0.0205 mol C3H 8 / mol
                  b
              n2 mol air / s    g                             0.9795 mol air / mol
             0.21 mol O 2 / mol
             0.79 mol N 2 / mol

       b.   Propane feed rate: 0.0403n1 = 150 ⇒ n1 = 3722 mol / s         b           g
            Propane balance: 0.0403n1 = 0.0205n3 ⇒ n3 = 7317 mol / s              b           g
            Overall balance: 3722 + n2 = 7317 ⇒ n2 = 3600 mol / s             b           g
       c.   > . The dilution rate should be greater than the value calculated to ensure that ignition is not
            possible even if the fuel feed rate increases slightly.




                                                       4- 5
4.12   a.
                                                         b
                                                       m kg / h   g
            1000 kg / h                                0.960 kg CH3OH / kg
                                                                                               2 unknowns ( m, x )
            0.500 kg CH 3OH / kg                       0.040 kg H 2O / kg                    – 2 balances
            0.500 kg H 2O / kg                                                                  0 DF
                                                       673 kg / h
                                                         b
                                                       x kg CH 3OH / kg   g
                                                       1 − x b kg H O / kgg
                                                                      2


       b.   Overall balance: 1000 = m + 673 ⇒ m = 327 kg / h
                                           b g                b g b g
            Methanol balance: 0.500 1000 = 0.960 327 + x 673 ⇒ x = 0.276 kg CH 3OH / kg
            Molar flow rates of methanol and water:
            673 kg 0.276 kg CH3OH 1000 g mol CH3OH
                                                      = 5.80 × 103 mol CH3OH / h
              h           kg          kg 32.0 g CH3OH
            673 kg 0.724 kg H 2O 1000 g mol H 2O
                                                   = 2.71 × 104 mol H 2O / h
               h          kg         kg 18 g H 2O
            Mole fraction of Methanol:
                  5.80 × 103
                                    = 0176 mol CH 3OH / mol
                                       .
            5.80 × 103 + 2.71 × 104

       c.   Analyzer is wrong, flow rates are wrong, impurities in the feed, a reaction is taking place, the
            system is not at steady state.

4.13   a.                                                                                 Product

                                               Reactor effluent                           1239 kg
             Feed                Reactor                                      Purifier    R = 583
             2253 kg                           2253 kg                                    W aste
                                               R = 388
                                                                                             b g
                                                                                          m w kg
                                                                                          R = 140




                                 Analyzer Calibration Data

                       1


                                                                   1.364546
                                                 x p = 0.000145R
               xp    0.1




                    0.01
                           100                     R                               1000




                                                       4- 6
4.13 (cont’d)
                                   b g
       b. Effluent: x = 0.000145 388 1.3645 = 0.494 kg P / kg
                     p


            Product: x = 0.000145b583g
                                               1.3645
                            p              = 0.861 kg P / kg

            Waste: x = 0.000145b140g
                                             1.3645
                        p                 = 0123 kg P / kg
                                             .

                         0.861b1239g
            Efficiency =             × 100% = 95.8%
                         0.494b2253g

       c.   Mass balance on purifier: 2253 = 1239 + mw ⇒ mw = 1014 kg
            P balance on purifier:
                            b            gb       g
                Input: 0.494 kg P / kg 2253 kg = 1113 kg P
                  Output: b0.861 kg P / kggb1239 kgg + b0123 kg P / kggb1014 kgg = 1192 kg P
                                                         .
            The P balance does not close . Analyzer readings are wrong; impure feed; extrapolation
            beyond analyzer calibration data is risky -- recalibrate; get data for R > 583; not at steady
            state; additional reaction occurs in purifier; normal data scatter.

4.14   a.
               b
             n1 lb- mole/ h      g
              .
             00100 lb- mole H2O/ lb- mole
              .
             09900 lb- mole DA/ lb- mole
                                                                          b          g
                                                                        n3 lb- mole/ h
                                                                         .
                                                                        0100 lb- mole H2O/ lb- mole

               b
             n2 lb- mole HO/ h
                          2           g                                  .
                                                                        0900 lb- mole DA/ lb- mole

             v dft / hi
              2
                    3




             4 unknowns ( n1 , n2 , n3 , v ) – 2 balances – 1 density – 1 meter reading = 0 DF

            Assume linear relationship: v = aR + b
                                v2 − v1 96.9 − 40.0
            Slope: a =                  =           = 1.626
                                R2 − R1   50 − 15
            Intercept: b = v a − aR1 = 40.0 − 1.626 15 = 15.61    b g
                            b g
            v2 = 1.626 95 + 15.61 = 170 ft / h   c      3
                                                              h
            n2 =
                   170 ft 3 62 .4 lb m lb - mol
                     h         ft 3    18.0 lb m
                                                                   b
                                                 = 589 lb - moles H 2 O / h          g
            DA balance: 0.9900n1 = 0.900n3                                           (1)
            Overall balance: n1 + n2 = n3                                            (2)
            Solve (1) & (2) simultaneously ⇒ n1 = 5890 lb - moles / h, n3 = 6480 lb - moles / h

       b.   Bad calibration data, not at steady state, leaks, 7% value is wrong, v − R relationship is not
            linear, extrapolation of analyzer correlation leads to error.




                                                            4- 7
4.15   a.
                                                                         b
                                                                     m kg / s    g
               100 kg / s                                            0.900 kg E / kg
               0.600 kg E / kg                                       0100 kg H 2 O / kg
                                                                      .
               0.050 kg S / kg                                                                  3 unknowns ( m, xE , xS )
               0.350 kg H 2 O / kg                                                            – 3 balances
                                                                      b
                                                                  m kg / s       g              0 DF

                                                                     b
                                                                  x E kg E / kg  g
                                                                  x b kg S / kg g
                                                                     S

                                                                  1 − x − x b kg H O / kg g
                                                                             E       S   2


       b.   Overall balance: 100 = 2m ⇒ m = 50.0 kg / s          b     g
                                 b g b g
            S balance: 0.050 100 = xS 50 ⇒ xS                    = 0100 b kgS / kgg
                                                                    .
                                 b g    b g b g
            E balance: 0.600 100 = 0.900 50 + x E 50 ⇒ x E = 0.300 kg E / kg
            kg E in bottom stream 0.300b50g          kg E in bottom stream
                                 =            = 0.25
                 kg E in feed      0.600b100g             kg E in feed

       c.                  bg bg bg
            x = aRb ⇒ ln x = ln a + b ln R
                lnb x / x g lnb0.400 / 0100g .
            b=      2    1
                             =                   = 1491
                lnb R / R g         lnb38 / 15g
                                                     .
                    2        1

            lnbag = lnb x g − b lnb R g = lnb0100g − 1491lnb15g = −6.340 ⇒ a = 1764 × 10
                         1           1         .       .                        .                −3


            x = 1764 × 10−3 R1.491
                 .

              F x I F 0.900 IJ
                     1                          1

            R=G J =G
                     b                        1.491

              H a K H 1764 × 10 K
                       .                 −3
                                                      = 655
                                                          .


       d.   Device not calibrated – recalibrate. Calibration curve deviates from linearity at high mass
            fractions – measure against known standard. Impurities in the stream – analyze a sample.
            Mixture is not all liquid – check sample. Calibration data are temperature dependent – check
            calibration at various temperatures. System is not at steady state – take more measurements.
            Scatter in data – take more measurements.




                                                          4- 8
4.16   a.   4.00 mol H 2SO 4 0.098 kg H 2SO 4 L of solution
              L of solution    mol H 2SO 4 1213 kg solution
                                              .
                                                                              b
                                                            = 0.323 kg H 2SO 4 / kg solution            g
       b.
              v1 L bg                                                               5 unknowns ( v1 , v2 , v3 , m2 , m3 )
                                                                                  – 2 balances
             100 kg
                                                        bg
                                                      v3 L                        – 3 specific gravities
                                                      m b kg g
              0.200 kg H 2SO 4 / kg                                                 0 DF
                                                          3
              0.800 kg H 2 O / kg
                                                      0.323 kg H 2SO 4 / kg
              SG = 1139
                    .
                                                      0.677 kg H 2 O / kg
               bg
             v2 L                                     SG = 1.213
             m b kg g
               2

             0.600 kg H 2SO 4 / kg
             0.400 kg H 2 O / kg
             SG = 1.498
            Overall mass balance: 100 + m2 = m3         U ⇒ m = 44.4 kg
                                                        V m = 144 kg    2
            Water balance: 0.800b100g + 0.400m = 0.677m W
                                                  2              3      3

                   100 kg      L
            v1 =                    = 87.80 L20%solution
                            1139 kg
                             .
                   44.4 kg      L
            v2 =                     = 29.64 L 60% solution
                             1498 kg
                              .
            v1 87.80        L 20%solution
              =      = 2.96
            v2 29.64        L 60% solution

       c.   1250 kg P 44.4 kg 60%solution        L
                                                          = 257 L / h
               h            144 kg P      1498 kgsolution
                                           .

4.17               b g
             m1 kg @$18 / kg
             0.25 kg P / kg
             0.75 kg H2O / kg                             100 kg
                                                           .
                   b g
             m2 kg @$10 / kg                              017 kg P/ kg
                                                            .
             012 kg P / kg
              .                                           0.83 kg H2O / kg
             0.88 kg H 2O / kg

            Overall balance: m1 + m2 = 100
                                        .                                                               (1)
            Pigment balance: 0.25m1 + 012m2 = 017 100
                                       .       .   . b g                                 (2)
            Solve (1) and (2) simultaneously ⇒ m = 0.385 kg 25% paint, m = 0.615 kg12% paint
            Cost of blend: 0.385b$18.00g + 0.615b$10.00g = $13.08 per kg
                                                      1                           2



            Selling price: 110b$13.08g = $14.39 per kg
                            .



                                                  4- 9
4.18   a.                                                                       b       gb
                                                                        m1 kg H 2O 85% of entering water   g
             100 kg
             0.800 kgS / kg
             0.200 kg H 2O / kg
                                                                          b g
                                                                        m2 kgS
                                                                        m b kg H Og
                                                                            3       2



                                       gb g        b
            85% drying: m1 = 0.850 0.200 100 = 17.0 kg H 2O
            Sugar balance: m = 0.800b100g = 80.0 kgS
                                           2

            Overall balance: 100 = 17 + 80 + m3 ⇒ m3 = 3 kg H 2O
                 3 kg H 2O
            xw =             = 0.0361 kg H 2O / kg
                   b
                  3 + 80 kg            g
              m1      17 kg H 2O
                    =            = 0.205 kg H 2O / kg wet sugar
            m2 + m3    80 + 3 kg   b       g
       b.   1000 tons wet sugar    3 tons H 2 O
                                                   = 30 tons H 2 O / day
                   day          100 tons wet sugar
            1000 tons WS 0.800 tons DS 2000 lb m $0.15 365 days
                                                                = $8.8 × 107 per year
                day         ton WS       ton      lb m   year

       c.
            xw =
                  1
                 10
                           b                               g
                      x w1 + x w 2 +...+ x w10 = 0.0504 kg H 2 O / kg

            SD =
                    1
                    9
                               b    2
                                               g
                        x w1 − x w +...+ x w10 − x w   b
                                                       2
                                                                        g
                                                          = 0.00181 kg H 2 O / kg

            Endpoints = 0.0504 ± 3 0.00181         b           g
            Lower limit = 0.0450, Upper limit = 0.0558

       d.   The evaporator is probably not working according to design specifications since
            x w = 0.0361 < 0.0450 .

4.19   a.     c h
            v1 m 3
            m b kg H O g                                                                          5 unknowns ( v1 , v2 , v3 , m1 , m3 )
                                                                     d i
              1                2

            SG = 1.00                                              v3 m 3
                                                                                                – 1 mass balance
                                                                   m b kg suspension g
                                                                    3                           – 1 volume balance
             v2 m d i  3                                           SG = 1.48                    – 3 specific gravities
                                                                                                  0 DF
             400 kg galena
             SG = 7.44


            Total mass balance: m1 + 400 = m3                                                                        (1)



                                                                    4- 10
4.19 (cont’d)

            Assume volume additivity:
                                                     b g
                                                   m1 kg      m3
                                                                    +
                                                                      400 kg m 3     m kg
                                                                                    = 3
                                                                                            m3
                                                                                                  (2)
                                                                                                           b g
                                                            1000 kg         7440 kg       1480 kg
            Solve (1) and (2) simultaneously ⇒ m1 = 668 kg H 2O, m3 = 1068 kg suspension
                        668 kg     m3
            v1 =                         = 0.668 m 3 water fed to tank
                                 1000 kg

       b.   Specific gravity of coal < 1.48 < Specific gravity of slate

       c.   The suspension begins to settle. Stir the suspension. 1.00 < Specific gravity of coal < 1.48

4.20   a.
                b
            n1 mol / h       g                                                 b
                                                                       n2 mol / h          g
            0.040 mol H 2O / mol                                           b
                                                                       x mol H 2O / mol            g
            0.960 mol DA / mol                                                     b
                                                                      1 − x mol DA / mol               g
                                                            b
                                                        n3 mol H 2O adsorbed / h               g
                                                        97% of H 2O in feed



            Adsorption rate: n3 =
                                           b354 − 3.40g kg
                                             .                     mol H 2O
                                                                               = 1556 mol H 2O / h
                                                                                  .
                                                   5h           0.0180 kg H 2O
                                               b        g
            97% adsorbed: 156 = 0.97 0.04n1 ⇒ n1 = 401 mol / h
                           .                         .
            Total mole balance: n1 = n2 + n3 ⇒ n2 = 401 − 1556 = 38.54 mol / h
                                                      . .
            Water balance: 0.040 ( 40.1) = 1.556 + x ( 38.54 ) ⇒ x = 1.2 × 10−3 ( mol H 2 O/mol )


       b.   The calcium chloride pellets have reached their saturation limit. Eventually the mole fraction
            will reach that of the inlet stream, i.e. 4%.

4.21   a.   300 lb m / h
            0.55 lb m H 2SO 4 / lb m
            0.45 lb m H 2O / lb m
                                                                       b
                                                                    mC lb m / h        g
                    b
            mB lb m / h      g                                      0.75 lb m H 2SO 4 / lb m
            0.90 lb m H 2SO 4 / lb m                                0.25 lb m H 2O / lb m
            010 lb m H 2O / lb m
             .

            Overall balance: 300 + mB = mC                                                                       (1)
                                         b g
            H2SO4 balance: 0.55 300 + 0.90mB = 0.75mC                                                            (2)
            Solve (1) and (2) simultaneously ⇒ mB = 400 lb m / h, mC = 700 lb m / h



                                                            4- 11
4.21 (cont’d)

                         500 − 150
       b.
            mA − 150 =
                           70 − 25
                                      b              g
                                      RA − 25 ⇒ mA = 7.78 RA − 44.4

                         800 − 200
            mB − 200 =
                           60 − 20
                                       b              g
                                       RB − 20 ⇒ mB = 15.0 RB − 100
                            ln 100 − ln 20
            ln x − ln 20 =
                                10 − 4
                                                b                g
                                            Rx − 4 ⇒ ln x = 0.2682 Rx + 1923 ⇒ x = 6.841e 0.2682 Rx
                                                                         .
                                  300 + 44.4                          400 + 100
            mA = 300 ⇒ RA =                   = 44.3, mB = 400 ⇒ RB =           = 333,
                                                                                    .
                                     7.78                                  15.0
                                   1       FG
                                            55            IJ
            x = 55% ⇒ Rx =
                                 0.268
                                       ln
                                            H
                                           6.841
                                                  = 7.78
                                                           K
       c.   Overall balance: mA + mB = mC

            H2SO4 balance: 0.01xmA + 0.90mB = 0.75mC = 0.75 mA + mB ⇒ mB =                        b             g              b0.75 − 0.01xgm   A

                                                                                                                                         015
                                                                                                                                          .

            ⇒ 15.0 RB − 100 =
                                                    d
                                    0.75 − 0.01 6.841e                0.2682 Rx
                                                                                  i b7.78 R   A   − 44.4    g
                                                                       015
                                                                        .
                     d
            ⇒ RB = 2.59 − 0.236e       0.2682 Rx
                                                    iR   A   + 135e0.2682 Rx − 813
                                                                .               .
                                                                                                      b g                        b g − 813 = 333
            Check: RA = 44.3, Rx = 7.78 ⇒ RB = 2.59 − 0.236e          e                     0.2682 7.78
                                                                                                            j44.3 + 135e
                                                                                                                     .
                                                                                                                           0.2682 7.78
                                                                                                                                        .      .



4.22   a.
                b
            n A kmol / h   g
            010 kmol H 2 / kmol
             .                                                        100 kg / h
            0.90 kmol N 2 / kmol                                             b
                                                                       nP kmol / h      g
                                                                      0.20 kmol H 2 / kmol
                b
            nB kmol / h    g                                          0.80 kmol N 2 / kmol
            0.50 kmol H 2 / kmol
            0.50 kmol N 2 / kmol


                         b      g          b
            MW = 0.20 2.016 + 0.80 28.012 = 22.813 kg / kmol g
                     100 kg kmol
            ⇒ nP =                 = 4.38 kmol / h
                       h 22.813 kg
            Overall balance: n A + nB = 4.38                                                                                             (1)
            H2 balance: 010n A + 0.50 nB = 0.20 4.38
                         .                                       b g                                                                     (2)
            Solve (1) and (2) simultaneously ⇒ n A = 3.29 kmol / h, n B = 110 kmol / h
                                                                           .




                                                                     4- 12
4.22 (cont’d)
       b.            mP
            nP =
                    22.813
                                            mP
            Overall balance: n A + nB =
                                          22.813
                                           x m
            H2 balance: x A n A + x B nB = P P
                                          22.813

            ⇒       nA =
                                  b
                            mP x B − x P       g                     nB =
                                                                                   b
                                                                             mP x P − x A       g
                                  b
                           22.813 x B − x A    g                                   b
                                                                            22.813 x B − x A    g
       c.   Trial      XA             XB                 XP             mP             nA           nB
               1         0.10           0.50               0.10           100            4.38         0.00
               2         0.10           0.50               0.20           100            3.29         1.10
               3         0.10           0.50               0.30           100            2.19         2.19
               4         0.10           0.50               0.40           100            1.10         3.29
               5         0.10           0.50               0.50           100            0.00         4.38
               6         0.10           0.50               0.60           100           -1.10         5.48
               7         0.10           0.50               0.10           250           10.96         0.00
               8         0.10           0.50               0.20           250            8.22         2.74
               9         0.10           0.50               0.30           250            5.48         5.48
              10         0.10           0.50               0.40           250            2.74         8.22
              11         0.10           0.50               0.50           250            0.00        10.96
              12         0.10           0.50               0.60           250           -2.74        13.70

            The results of trials 6 and 12 are impossible since the flow rates are negative. You cannot
            blend a 10% H2 mixture with a 50% H2 mixture and obtain a 60% H2 mixture.
       d.   Results are the same as in part c.

4.23                                                       Venous blood
            Arterial blood
                                                           195.0 ml / min
            200.0 ml / min
                                                           1.75 mg urea / ml
            1.90 mg urea / ml
                                                               Dialysate
            Dialyzing fluid
                                                                 b
                                                               v ml / min g
                                                               c b mg urea / mlg
            1500 ml / min

       a.   Water removal rate: 200.0 − 195.0 = 5.0 ml / min
                                .      b    .      g       b        g
            Urea removal rate: 190 200.0 − 175 195.0 = 38.8 mg urea / min
       b.   v = 1500 + 5.0 = 1505ml / min
                38.8 mg urea/min
            c=                   = 0.0258 mg urea/ml
                  1505 ml/min
       c.   b2.7 − 11g mg removed
                    .                                  1 min            10 3 ml 5.0 L
                                                                                          = 206 min (3.4 h)
                       ml                  38.8 mg removed                 1L


                                                          4- 13
4.24   a.     b
            n1 kmol / min      g
            20.0 kg CO 2 / min
                                                                     b
                                                                   n3 kmol / min   g
              b
            n2 kmol / min      g                                   0.023 kmol CO 2 / kmol

            0.015 kmol CO 2 / kmol


                 20.0 kg CO 2       kmol
            n1 =                            = 0.455 kmol CO 2 / min
                      min      44.0 kg CO 2
            Overall balance: 0.455 + n2 = n3                                                (1)
            CO2 balance: 0.455 + 0.015n2 = 0.023n3                                          (2)
            Solve (1) and (2) simultaneously ⇒ n2 = 55.6 kmol / min, n3 = 561 kmol / min
                                                                            .

       b.          150 m
            u=           = 8.33 m / s
                    18 s
               1       561 kmol
                         .        m3  1 min    s
            A = πD 2 =                             ⇒ D = 108 m
                                                          .
               4         min 0123 kmol 60 s 8.33 m
                                .

4.25                                                                     b
            Spectrophotometer calibration: C = kA ====> C μg / L = 3.333 A
                                                               A = 0.9
                                                                                 g
                                                               C =3

                                    .         .    .   b        gb g
            Dye concentration: A = 018 ⇒ C = 3333 018 = 0.600 μg / L

                                   0.60 cm 3     1L     5.0 mg 103 μ g
            Dye injected =                                             = 3.0 μ g
                                               103 cm 3   1L    1 mg

               b             g bg
            ⇒ 3.0 μ g V L = 0.600 μ g / L ⇒ V = 5.0 L

4.26   a.    1000 L B / min                                   b
                                                              n3 kmol / ming
                b
             m2 kg B / min g                               y b kmol SO / kmolg
                                                               3             2

                                                           1 − y b kmol A / kmolg
             V d m / min i
                         3                                          3

                                                           m b kg / min g
              1

             n b kmol / min g                                  4

                                                           x b kg SO / kgg
              1

             y b kmol SO / kmolg                               4         2

                                                           1 − x b kg B / kgg
               1               2

             1 − y b kmol A / kmolg
                     1
                                                                    4




                                                      4- 14
4.26 (cont’d)

              8 unknowns ( n1 , n3 , v1 , m2 , m4 , x4 , y1 , y3 )
            – 3 material balances
            – 2 analyzer readings
            – 1 meter reading
            – 1 gas density formula
            – 1 specific gravity
              0 DF


       b.   Orifice meter calibration:
                                                                           d                    i
            A log plot of V vs. h is a line through the points h1 = 100, V1 = 142 and h2 = 400, V2 = 290 .  d          i
            ln V = b ln h + ln a ⇒ V = ah          b



            b=
                   d h = lnb290 142g = 0.515
                 ln V2 V1
                 lnbh h g lnb400 100g
                         2       1

            ln a = ln V − b ln h = lnb142g − 0.515 ln 100 = 2.58 ⇒ a = e
                             1           1
                                                                                2 .58
                                                                                        = 13.2 ⇒ V = 13.2h 0.515

            Analyzer calibration:
            ln y = bR + ln a ⇒ y = aebR

            b=
                    b
                 ln y 2 y1           g = lnb01107 0.00166g = 0.0600
                                             .                             U
                                                                           |
                   R2 − R1                    90 − 20                      |
                                                                           |
            ln a = ln y1 − bR1           = lnb0.00166g − 0.0600b20g = −7.60V ⇒ y = 5.00 × 10         −4
                                                                                                          e 0.0600 R
                    E                                                      |
                                                                           |
            a = 5.00 × 10 −4                                               |
                                                                           W
       c.   h1 = 210 mm ⇒ V1 = 13.2 210    b g = 207.3 m min
                                                       0.515           3



            ρ feed gas   =
                           b12.2g b150 + 14.7g 14.7 batmg = 0.460 mol / L = 0.460 kmol / m                   3

                                 b75 + 460g 18 bKg
                                              .
                              E
                   207.3 m 3 0.460 kmol
            n1 =                        = 95.34 kmol min
                        min       m3
                                                      b             g
            R1 = 82.4 ⇒ y1 = 500 × 10−4 exp 0.0600 × 82.4 = 0.0702 kmol SO2 kmol
                              .
            R3 = 116 ⇒ y3 = 500 × 10−4
                   .         .                     expb0.0600 × 116g = 0.00100 kmol SO
                                                                  .                         2       kmol
                    1000 L B 130 kg
                              .
            m2 =                    = 1300 kg / min
                         min    LB




                                                               4- 15
4.26 (cont’d)
                               b    gb g b                g
            A balance: 1 − 0.0702 95.34 = 1 − 0.00100 n3 ⇒ n3 = 88.7 kmol min
            SO2    balance: b0.0702gb9534g( 64.0 kg / kmol) = b0.00100gb88.7g( 64) + m x
                                       .                                                            4 4   (1)
            B balance: 1300 = m4 (1 − x4 )                                              (2)
            Solve (1) and (2) simultaneously ⇒ m4 = 1723 kg / min, x4 = 0.245 kg SO2 absorbed / kg
            SO2 removed = m4 x4 = 422 kg SO 2 / min

       d.   Decreasing the bubble size increases the bubble surface-to-volume ratio, which results in a
            higher rate of transfer of SO2 from the gas to the liquid phase.


4.27   a.      d
            V2 m 3 / min i                                                   b
                                                                          n3 kmol / min  g
             m b kg B / min g                                             y b kmolSO / kmol g
                                                                           3             2

                                                                          1 − y b kmol A / kmol g
               2

                                                                                3

               d
            V1 m / min 3
                         i                                                R3
            n b kmol / min g
              1                                                               b
                                                                          m4 kg / min   g
            y b kmolSO / kmol g
              1                2                                          x b kgSO kg g
                                                                           4         2

            1 − y b kmol A / kmol g
                   1                                                      1 − x b kg B / kg g
                                                                                4
            P , T1 , R1 , h1
             1


       b.    14 unknowns ( n1 ,V1 , y1 , P , T1 , R1 , h1 ,V2 , m2 , n3 , y3 , R3 , m4 , x4 )
                                          1
            – 3 material balances
            – 3 analyzer and orifice meter readings
            – 1 gas density formula (relates n1 and V1 )
            – 1 specific gravity (relates m2 and V2 )
              6 DF

                               b       g b
            A balance: 1 − y1 n1 = 1 − y3 n3          g                                                     (1)
                                                       x4 m4
            SO2 balance: y1n1 = y3n3 +                                                                      (2)
                                                  64 kgSO 2 / kmol
                                   b
            B balance: m2 = 1 − x4 m4      g                                                                (3)
            Calibration formulas:              y1 = 5.00 × 10−4 e0.060 R1                                   (4)
                                                                  −4 0.060 R3
                                               y3 = 5.00 × 10 e                                             (5)
                                               V1 = 13.2h10.515                                             (6)

            Gas density formula: n1 =
                                                      b
                                                 12.2 P + 14.7 / 14.7
                                                       1              g
                                                     bT + 460g / 18
                                                          1       .
                                                                                V1                          (7)


            Liquid specific gravity: SG = 130 ⇒ V2 =
                                           .
                                                                          m2 kgb gm3
                                                                                                            (8)
                                                                            h   1300 kg



                                                              4- 16
4.27 (cont’d)
       c.   T1                                     75 °F                            y1                    0.07 kmol SO2/kmol
            P1                                    150 psig                          V1                    207 m3/h
            h1                                    210 torr                          n1               95.26 kmol/h
            R1                                   82.4

                 Trial                 x4 (kg SO2/kg)    y3 (kmol SO2/kmol) V2 (m3/h) n3 (kmol/h)                 m4 (kg/h)     m2 (kg/h)
                               1                 0.10                       0.050        0.89        93.25            1283.45    1155.11
                               2                 0.10                       0.025        1.95        90.86            2813.72    2532.35
                               3                 0.10                       0.010        2.56        89.48            3694.78    3325.31
                               4                 0.10                       0.005        2.76        89.03            3982.57    3584.31
                               5                 0.10                       0.001        2.92        88.68            4210.72    3789.65
                               6                 0.20                       0.050        0.39        93.25             641.73     513.38
                               7                 0.20                       0.025        0.87        90.86            1406.86    1125.49
                               8                 0.20                       0.010        1.14        89.48            1847.39    1477.91
                               9                 0.20                       0.005        1.23        89.03            1991.28    1593.03
                              10                 0.20                       0.001        1.30        88.68            2105.36    1684.29

                                                         V2 vs. y3


                              3 .5 0
                              3 .0 0
                              2 .5 0
                 V 2 (m /h)




                              2 .0 0
                 3




                              1 .5 0
                              1 .0 0
                              0 .5 0
                              0 .0 0
                                   0 .0 0 0             0.0 2 0               0 .0 4 0          0 .06 0
                                                        y 3 ( k m o l S O 2 /k m o l)

                                                        x4 = 0 .1 0           x4 = 0 .20



            For a given SO2 feed rate removing more SO2 (lower y3) requires a higher solvent feed
               rate ( V2 ).
            For a given SO2 removal rate (y3), a higher solvent feed rate ( V2 ) tends to a more dilute
               SO2 solution at the outlet (lower x4).

       d.   Answers are the same as in part c.

4.28        Maximum balances: Overall - 3, Unit 1 - 2; Unit 2 - 3; Mixing point - 3
            Overall mass balance ⇒ m3
            Mass balance - Unit 1 ⇒ m1
            A balance - Unit 1 ⇒ x1
            Mass balance - mixing point ⇒ m2
            A balance - mixing point ⇒ x2
            C balance - mixing point ⇒ y2


                                                                    4- 17
4.29   a.   100 mol / h                                      b
                                                           n2 mol / h   g                                      b
                                                                                                             n4 mol / h   g
            0.300 mol B / mol                          b       g
                                                           x B 2 mol B / mol                                 0.940 mol B / mol
            0.250 mol T / mol        Column 1 x b mol T / molg                              Column 2         0.060 mol T / mol
                                                            T2
            0.450 mol X / mol                    1 − x − x b mol X / molg
                                                                 B2   T2


                                         n b mol / h g
                                              3                                                     b
                                                                                                  n5 mol / h   g
                                             0.020 mol T / mol                                       b          g
                                                                                                  x B5 mol B / mol
                                             0.980 mol X / mol                                   x b mol T / molg
                                                                                                   T5

                                                                                                 1 − x − x b mol X / molg
                                                                                                        B5     T5




            Column 1                                                        Column 2:
              4 unknowns ( n2 , n3 , x B 2 , xT 2 )                            4 unknowns ( n3 , n4 , n5 , y x )
             –3 balances                                                     – 3 balances
            – 1 recovery of X in bot. (96%)                                 – 1 recovery of B in top (97%)
              0 DF                                                             0 DF

            Column 1
                                         b        gb g
              96% X recovery: 0.96 0.450 100 = 0.98n3                                                    (1)
               Total mole balance: 100 = n2 + n3                                                         (2)
                               b g
               B balance: 0.300 100 = x B 2 n2                                                           (3)
               T balance: 0.250b100g = x      T 2 n2   + 0.020n3                                         (4)

            Column 2
              97% B recovery: 0.97 x B 2 n2 = 0.940n4                                                    (5)
               Total mole balance: n2 = n4 + n5                                                          (6)
               B balance: x B 2 n2 = 0.940 n4 + x B5 n5                                                  (7)
               T balance: xT 2 n2 = 0.060n4 + xT 5 n5                                                    (8)

       b.   (1) ⇒ n3 = 44.1 mol / h                          (2) ⇒ n2 = 55.9 mol / h
            (3) ⇒ x B 2 = 0.536 mol B / mol                  (4) ⇒ x T 2 = 0.431 mol T / mol
            (5) ⇒ n4 = 30.95 mol / h                         ( 6) ⇒ n5 = 24.96 mol / h
            (7) ⇒ x B5 = 0.036 mol B / mol                   (8) ⇒ x T 5 = 0.892 mol T / mol
                                                       b
                                              0.940 30.95        g
                                                          × 100% = 97%
            Overall benzene recovery:
                                             b g
                                               0.300 100
                                      0.892b24.96g
                                                   × 100 = 89%
                                       0.250b100g
            Overall toluene recovery:




                                                            4- 18
4.30   a.
             100 kg / h                            b
                                             m3 kg / h     g                                           b g
                                                                                                   m4 kg / h                          b
                                                                                                                                m10 kg / h   g
             0.035 kg S / kg                      b
                                             x3 kg S / kg       g                         4        x b kg S / kgg
                                                                                                                          10    0.050 kg S / kg
             0.965 kg H 2O / kg
                                    1                  b
                                             1 − x3 kg H 2O / kg         g
                                                                                                    4

                                                                                                   1 − x b kg H O / kgg
                                                                                                            4   2
                                                                                                                                0.950 kg H 2O / kg



                                                  b
                                      0100mw kg H 2O / h
                                       .                            g                                   b
                                                                                              0100mw kg H 2O / h
                                                                                               .                    g             b
                                                                                                                           0100mw kg H 2O / h
                                                                                                                            .                    g
                 b
              mw kg H 2O / h   g
       b.   Overall process

            100 kg/h                                           m10 ( kg / h)
              0.035 kg S/kg                                      0.050 kg S/kg
              0.965 kg H2O/kg                                    0.950 kg H2O/kg

                                                       mw ( kg H 2 O / h)


                                     b g
            Salt balance: 0.035 100 = 0.050m10

            Overall balance: 100 = mw + m10

            H2O yield: Yw =
                                         b
                                    mw kg H 2O recovered                          g
                                        b
                                   96.5 kg H 2O in fresh feed                         g
            First 4 evaporators


             100 kg/ h                                                        b
                                                                        m4 kg / h         g
             0.035 kg S/ kg                                                  b
                                                                        x 4 kg S/ kg           g
             0.965 kg H2 O / kg                                      b             g
                                                                        1 − x4 kg H2 O / kg

                                                           4 × 0100m b kg H O / hg
                                                                .                 w            2




                                              b
            Overall balance: 100 = 4 0100 mw + m4
                                      .                     g
                                     b g
            Salt balance: 0.035 100 = x4 m4
       c.   Yw = 0.31
            x 4 = 0.0398




                                                                    4- 19
4.31   a.
                                               2n1 mol b g
                                               0.97 mol B / mol            Condenser
                                               0.03 mol T / mol


                                                             b g
                                                           n1 mol                      b g
                                                                                    n1 mol (89.2% of Bin feed )
                                                           0.97 mol B / mol         0.97 mol B / mol
             100 mol
                                                           0.03 mol T / mol         0.03 mol T / mol
             0.50 mol B / mol
                                     Still
             0.50 mol T / mol
                                                      b gb
                                                   n4 mol 45% of feed to reboiler         g
                                                   y b mol B / molg
                                                       B

                                                   1 − y b mol T / molg
                                                            B


                                                                                              b g
                                                                                           n3 mol
                                                b g
                                             n2 mol
                                                                              Reboiler     x b mol B / molg
                                             z b mol B / molg
                                                                                              B
                                              B
                                                                                           1 − x b mol T / molg
                                             1 − z b mol T / molg
                                                                                                  B
                                                   B



            Overall process:     3 unknowns ( n1 , n3 , x B )    Still: 5 unknowns ( n1 , n2 , n4 , y B , z B )
                               – 2 balances                            – 2 balances
                               – 1 relationship (89.2% recovery)         3 DF
                                 0 DF

            Condenser:     1 unknown ( n1 )                Reboiler:     6 unknowns ( n2 , n3 , n4 , x B , y B , z B )
                         – 0 balances                                  – 2 balances
                           1 DF                                        – 2 relationships (2.25 ratio & 45% vapor)
                                                                         3 DF
            Begin with overall process.

       b.   Overall process
                                         b gb g
               89.2% recovery: 0.892 0.50 100 = 0.97 n1
               Overall balance: 100 = n1 + n3

                                 b g
               B balance: 0.50 100 = 0.97 n1 + x B n3
            Reboiler
                                                         e j = 2.25
                                                  yB / 1 − yB
                                                       / b1 − x g
               Composition relationship:
                                                  xB            B

               Percent vaporized: n4 = 0.45n2                                                         (1)
               Mole balance: n2 = n3 + n4                                                             (2)
               (Solve (1) and (2) simultaneously.)

               B balance: z B n2 = x B n3 + y B n4


                                                       4- 20
4.31 (cont’d)
       c. B fraction in bottoms: x B = 0100 mol B / mol
                                        .
            Moles of overhead: n1 = 46.0 mol                   Moles of bottoms: n3 = 54.0 mol
                                       b1 − x gn × 100% = b1 − 010gb54.02g × 100% = 97%
                                             B   3              .
                                       0.50b100g              0.50b100g
            Recovery of toluene:


4.32   a.
                                                                          b
                                                                       m3 kg H 2O   g
                                  Bypass                                                       Mixing point
             Basis: 100 kg
             100 kg                           b g
                                            m1 kg              Evaporator         b g
                                                                              m4 kg                           b g
                                                                                                           m5 kg
             0.12 kg S / kg                 012 kg S / kg
                                             .                                0.58 kg S / kg               0.42 kg S / kg
             0.88 kg H2O / kg               0.88 kg H2O / kg                  0.42 kg H 2O / kg            0.58 kg H2O / kg



                                                                 b g
                                                               m2 kg
                                                               012 kg S / kg
                                                                .
                                                               0.88 kg H2O / kg


            Overall process:         2 unknowns ( m3 , m5 )                   Bypass:       2 unknowns ( m1 , m2 )
                                   – 2 balances                                           – 1 independent balance
                                     0 DF                                                   1 DF

            Evaporator:         3 unknowns ( m1 , m3 , m4 )        Mixing point:          3 unknowns ( m2 , m4 , m5 )
                              – 2 balances                                              – 2 balances
                                1 DF                                                      1 DF

                                           b g
            Overall S balance: 012 100 = 0.42m5
                                .
            Overall mass balance: 100 = m3 + m5
            Mixing point mass balance: m4 + m2 = m5                                                             (1)
            Mixing point S balance: 0.58m4 + 012m2 = 0.42m5
                                              .                                                                 (2)
            Solve (1) and (2) simultaneously
            Bypass mass balance: 100 = m1 + m2

       b.   m1 = 90.05 kg, m2 = 9.95 kg, m3 = 714 kg, m4 = 18.65 kg, m5 = 28.6 kg product
                                                .
                                   m2
            Bypass fraction:          = 0.095
                                  100

       c.   Over-evaporating could degrade the juice; additional evaporation could be uneconomical; a
            stream consisting of 90% solids could be hard to transport.




                                                       4- 21
4.33   a.
                                                                       b
                                                                   m4 kg Cr / h    g
               b
             m1 kg / h   g           b
                                  m2 kg / h   g                               b g
                                                                            m5 kg / h                      b g
                                                                                                       m6 kg / h
             0.0515 kg Cr / kg    0.0515 kg Cr / kg        Treatment       x b kg Cr / kgg
                                                                               5                       x b kg Cr / kgg
                                                                                                        6
             0.9485 kg W / kg     0.9485 kg W / kg            Unit         1 − x b kg W / kgg
                                                                                       5               1 − x b kg W / kgg
                                                                                                            6




                                                               b
                                                           m3 kg / h   g
                                                           0.0515 kg Cr / kg
                                                           0.9485 kg W / kg



       b.                                              b
            m1 = 6000 kg / h ⇒ m2 = 4500 kg / h maximum allowed value                      g
            Bypass point mass balance: m3 = 6000 − 4500 = 1500 kg / h
                                         b        gb       g
            95% Cr removal: m4 = 0.95 0.0515 4500 = 220.2 kg Cr / h
            Mass balance on treatment unit: m5 = 4500 − 220.2 = 4279.8 kg / h

            Cr balance on treatment unit: x5 =
                                                           b
                                               0.0515 4500 − 220.2 g
                                                                   = 0.002707 kg Cr / kg
                                                      4779.8
            Mixing point mass balance: m6 = 1500 + 4279.8 = 5779.8 kg / h

            Mixing point Cr balance: x6 =
                                                       b g
                                             0.0515 1500 + 0.0002707 4279.8    b
                                                                            = 0.0154 kg Cr / kg
                                                                                               g
                                                         5779.8


       c.    m 1 (kg/h) m 2 (kg/h) m 3 (kg/h) m 4 (kg/h) m 5 (kg/h)                          x5    m 6 (kg/h)        x6
                   1000       1000          0       48.9        951                        0.00271        951      0.00271
                   2000       2000          0       97.9       1902                        0.00271       1902      0.00271
                   3000       3000          0        147       2853                        0.00271       2853      0.00271
                   4000       4000          0        196       3804                        0.00271       3804      0.00271
                   5000       4500        500        220       4280                        0.00271       4780      0.00781
                   6000       4500       1500        220       4280                        0.00271       5780       0.0154
                   7000       4500       2500        220       4280                        0.00271       6780       0.0207
                   8000       4500       3500        220       4280                        0.00271       7780       0.0247
                   9000       4500       4500        220       4280                        0.00271       8780       0.0277
                 10000        4500       5500        220       4280                        0.00271       9780       0.0301




                                                  4- 22
4.33 (cont’d)


                                                              m 1 vs. x 6

                                       0.03500
                                       0.03000
                      x 6 (kg Cr/kg)
                                       0.02500
                                       0.02000
                                       0.01500
                                       0.01000
                                       0.00500
                                       0.00000
                                                 0   2000       4000            6000         8000 10000 12000

                                                                              m 1 (kg/h)



       d.   Cost of additional capacity – installation and maintenance, revenue from additional
            recovered Cr, anticipated wastewater production in coming years, capacity of waste lagoon,
            regulatory limits on Cr emissions.

4.34   a.
                                                                                                                   b
                                                                                             175 kg H 2O / s 45% of water fed to evaporator         g

                  b
                m1 kg / s              g               b
                                                     m4 kg K 2SO 4 / s    g                                        b
                                                                                                              m6 kg K 2SO 4 / s    g                      Filter cake
                0196 kg K 2SO 4 / kg
                 .                                     b
                                                     m5 kg H 2O / s   g            Evaporator                      b
                                                                                                              m7 kg H 2O / s   g           Crystallizer
                                                                                                                                             Filter            b
                                                                                                                                                          10 m2 kg K 2SO 4 / s   g
                0.804 kg H 2O / kg                                                                                                                           b        g
                                                                                                                                                          m2 kgsoln / s
                                                                                                                                                          R0.400 kg K SO / kg U
                                                                                                                                                          S0.600 kg H O / kg V
                                                                                                                                                                        2   4
                                                                                  Filtrate                                                                T             2     W
                                                                                     b
                                                                                  m3 kg / s   g
                                                                                  0.400 kg K 2SO 4 / kg
                                                                                  0.600 kg H 2 O / kg


            Let K = K2SO4, W = H2 Basis: 175 kg W evaporated/s

            Overall process: 2 unknowns ( m1 , m2 )                                                   Mixing point:                      4 unknowns ( m1 , m3 , m4 , m5 )
                            - 2 balances                                                                                               - 2 balances
                              0 DF                                                                                                       2 DF

            Evaporator:                       4 unknowns ( m4 , m5 , m6 , m7 )                        Crystallizer:                  4 unknowns ( m2 , m3 , m6 , m7 )
                                            – 2 balances                                                                           – 2 balances
                                            – 1 percent evaporation                                                                  2 DF
                                              1 DF

            Strategy: Overall balances ⇒ m1 , m2                                U verify that each
                                                                                | chosen subsystem involves
                      % evaporation ⇒ m5                                        |
                                                                                V
                                           Balances around mixing point ⇒ m , m | no more than two
                                           Balances around evaporator ⇒ m , m | unknown variables
                                                                                                      3        4

                                                                                W                 6       7




                                                                                4- 23
4.34 (cont’d)

            Overall mass balance: m1 = 175 + 10m2 + m2              U
                                                                    |
                                  0196m1 = 10m2 + 0.400m2
                                                                    V
                                                                    |
            Overall K balance:     .
                                                                    W
            Production rate of crystals = 10m2
            45% evaporation: 175 kg evaporated min = 0.450m5
            W balance around mixing point: 0.804m1 + 0.600m3 = m5
            Mass balance around mixing point: m1 + m3 = m4 + m5
            K balance around evaporator: m6 = m4
            W balance around evaporator: m5 = 175 + m7
                                                                      m4
            Mole fraction of K in stream entering evaporator =
                                                                    m4 + m5

       b.   Fresh feed rate: m1 = 221 kg / s
            Production rate of crystals = 10m2 = 416 kg K s s
                                                   .           bg
                                   b
                              m3 kg recycle s  g=
                                                  352.3
                                                        = 160
                                                               kg recycle
            Recycle ratio:
                               b
                             m1 kg fresh feed s    g
                                                  220.8
                                                           .
                                                              kg fresh feed

       c.   Scale to 75% of capacity.
            Flow rate of stream entering evaporator = 0.75(398 kg / s) = 299 kg / s
                                                                              46.3% K, 53.7% W

       d.   Drying . Principal costs are likely to be the heating cost for the evaporator and the dryer and
            the cooling cost for the crystallizer.




                                                       4- 24
4.35   a.   Overall objective: Separate components of a CH4-CO2 mixture, recover CH4, and discharge
            CO2 to the atmosphere.
            Absorber function: Separates CO2 from CH4.
            Stripper function: Removes dissolved CO2 from CH3OH so that the latter can be reused.

       b.   The top streams are liquids while the bottom streams are gases. The liquids are heavier than
            the gases so the liquids fall through the columns and the gases rise.

       c.

                                                  b
                                                n1 mol / h    g                                        b          g
                                                                                                     n5 mol N 2 / h
                                               0.010 mol CO 2 / mol
                                                                                                     n b mol CO / h g
                                                                                                      6          2
                                               0.990 mol CH 4 / mol




             100 mol / h                 Absorber                 b
                                                           n2 mol / h         g                 Stripper
             0.300 mol CO 2 / mol                          0.005 mol CO 2 / mol                                  b
                                                                                                               n5 mol N 2 / h   g
              0.700 mol CH 4 / mol                         0.995 mol CH 3OH / mol


                                                            b          g
                                                          n3 mol CO 2 / h
                                                          n b mol CH OH / h g
                                                              4               3



            Overall:      3 unknowns ( n1 , n5 , n6 )                             Absorber:     4 unknowns ( n1 , n2 , n3 , n4 )
                        – 2 balances                                                          – 3 balances
                          1 DF                                                                  1 DF
            Stripper:      4 unknowns ( n2 , n3 , n4 , n5 )
                         – 2 balances
                         – 1 percent removal (90%)
                           1 DF

            Overall CH4 balance:  b0.700gb100g bmol CH / hg = 0.990n      4            1

            Overall mole balance: 100b mol / h g = n + n   1          6

            Percent CO2 stripped: 0.90 n3 = n6
            Stripper CO2 balance: n3 = n6 + 0.005n2
            Stripper CH3OH balance: n4 = 0.995n2

       d.   n1 = 70.71 mol / h , n2 = 6510 mol / h, n3 = 32.55 mol CO 2 / h, n4 = 647.7 mol CH3OH / h,
                                         .
            n6 = 29.29 mol CO 2 / h
                                                  30.0 − 0.010n1
            Fractional CO2 absorption: f CO 2 =                   = 0.976 mol CO 2 absorbed / mol fed
                                                        30.0




                                                        4- 25
4.35 (cont’d)

            Total molar flow rate of liquid feed to stripper and mole fraction of CO2:
                                           n3
            n3 + n4 = 680 mol / h, x3 =         = 0.0478 mol CO 2 / mol
                                        n3 + n4

       e.   Scale up to 1000 kg/h (=106 g/h) of product gas:

                               b                      g    b
            MW1 = 0.01 44 g CO 2 / mol + 0.99 16 g CH 4 / mol = 16.28 g / mol           g
            bn g = d10 × 10 g / hib16.28 g / molg = 6142 × 10 mol / h
                1 new.                6
                                                     .                                  4


            bn g = b100 mol / hg (6142 × 10 mol / h) / (70.71 mol / h) = 8.69 × 10
                feed new             .                     4                                                                  4
                                                                                                                                  mol / h

       f.   Ta < Ts The higher temperature in the stripper will help drive off the gas.
            Pa > Ps The higher pressure in the absorber will help dissolve the gas in the liquid.

       g.   The methanol must have a high solubility for CO2, a low solubility for CH4, and a low
            volatility at the stripper temperature.

4.36   a.   Basis: 100 kg beans fed
                                                                         e
                                                                       m kg C H
                                                                        5    6 14   j                  Condenser




                e
            m kg C H       j       300 kg C 6 H14              b g
                                                           m2 kg                                         b g
                                                                                                      m4 kg                                     b
                                                                                                                                              m6 kg oil   g
             1    6 14
                                                      Ex      b
                                                           x2 kg S / kg  g                      F        b          g
                                                                                                       y4 kg oil / kg                    Ev
                                                           y b kg oil / kgg
                                                               2
                                                                                                      1 − y b kg C H
                                                                                                             4       6   14   / kg   g
                                                           1 − x − y b kg C H
                                                                   2     2    6   14 / kg   g
                                            13.0 kg oil
                                            87.0 kg S
                                                                                                       b g
                                                                                                    m3 kg
                                                                                                    0.75 kg S / kg
                                                                                                      b
                                                                                                    y3 kg oil / kg   g
                                                                                                                 b
                                                                                                    0.25 − y3 kg C 6 H14 / kg        g
            Overall:         4 unknowns ( m1 , m3 , m6 , y3 )                           Extractor:       3 unknowns ( m2 , x2 , y2 )
                           – 3 balances                                                                – 3 balances
                             1 DF                                                                        0 DF

            Mixing Pt:     2 unknowns ( m1 , m5 )                   Evaporator: 4 unknowns ( m4 , m5 , m6 , y4 )
                        – 1 balance                                            – 2 balances
                           1 DF                                                  2 DF
            Filter: 7 unknowns ( m2 , m3 , m4 , x2 , y2 , y3 , y4 )
                   – 3 balances
                   – 1 oil/hexane ratio
                     3 DF

            Start with extractor (0 degrees of freedom)
            Extractor mass balance: 300 + 87.0 + 13.0 kg = m2



                                                               4- 26
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04
Ch04

Contenu connexe

Tendances

Conexiones de capacitores en serie y paralelo - Tippens fisica 7e
Conexiones de capacitores en serie y paralelo - Tippens fisica 7eConexiones de capacitores en serie y paralelo - Tippens fisica 7e
Conexiones de capacitores en serie y paralelo - Tippens fisica 7eRamón Cornejo
 
64191351 diagramas-de-entalpia-composicion
64191351 diagramas-de-entalpia-composicion64191351 diagramas-de-entalpia-composicion
64191351 diagramas-de-entalpia-composicionluvittar
 
Termodinamica problemas resueltos
Termodinamica problemas resueltosTermodinamica problemas resueltos
Termodinamica problemas resueltosCristobal Rodriguez
 
Laboratorio 10
Laboratorio 10Laboratorio 10
Laboratorio 10cfcInforma
 
Phasor dan Kirchhoff (21 maret 2021)
Phasor dan Kirchhoff (21 maret 2021)Phasor dan Kirchhoff (21 maret 2021)
Phasor dan Kirchhoff (21 maret 2021)Pamor Gunoto
 
Ejercicios de cinetica 1
Ejercicios de cinetica 1Ejercicios de cinetica 1
Ejercicios de cinetica 1John Jairo
 
Problemas de Fisicoquímica gases 2022 del 1 al 6.pptx
Problemas de Fisicoquímica gases 2022 del 1 al 6.pptxProblemas de Fisicoquímica gases 2022 del 1 al 6.pptx
Problemas de Fisicoquímica gases 2022 del 1 al 6.pptxRanjitP5
 
Appendix1Udated_metric (1).pdf
Appendix1Udated_metric (1).pdfAppendix1Udated_metric (1).pdf
Appendix1Udated_metric (1).pdfRajeshPhoto
 
Tarea01 - Física General
Tarea01 - Física GeneralTarea01 - Física General
Tarea01 - Física GeneralRodolfo Bernal
 
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)LK Education
 
Electroquímica
ElectroquímicaElectroquímica
Electroquímicajolopezpla
 
2 equilibrios de_solubilidad_y_equilibrio_de_complejos
2 equilibrios de_solubilidad_y_equilibrio_de_complejos2 equilibrios de_solubilidad_y_equilibrio_de_complejos
2 equilibrios de_solubilidad_y_equilibrio_de_complejosGeovanna Puchaicela
 
Bab 7 penggunaan turunan
Bab 7 penggunaan turunanBab 7 penggunaan turunan
Bab 7 penggunaan turunanDaud Sulaeman
 

Tendances (20)

Separata 4
Separata 4Separata 4
Separata 4
 
Conexiones de capacitores en serie y paralelo - Tippens fisica 7e
Conexiones de capacitores en serie y paralelo - Tippens fisica 7eConexiones de capacitores en serie y paralelo - Tippens fisica 7e
Conexiones de capacitores en serie y paralelo - Tippens fisica 7e
 
64191351 diagramas-de-entalpia-composicion
64191351 diagramas-de-entalpia-composicion64191351 diagramas-de-entalpia-composicion
64191351 diagramas-de-entalpia-composicion
 
Calorimetria.pptx
Calorimetria.pptxCalorimetria.pptx
Calorimetria.pptx
 
Electroquímica
ElectroquímicaElectroquímica
Electroquímica
 
Termodinamica problemas resueltos
Termodinamica problemas resueltosTermodinamica problemas resueltos
Termodinamica problemas resueltos
 
Laboratorio 10
Laboratorio 10Laboratorio 10
Laboratorio 10
 
Sesion 2 sustancia pura 2016
Sesion  2 sustancia pura 2016Sesion  2 sustancia pura 2016
Sesion 2 sustancia pura 2016
 
Phasor dan Kirchhoff (21 maret 2021)
Phasor dan Kirchhoff (21 maret 2021)Phasor dan Kirchhoff (21 maret 2021)
Phasor dan Kirchhoff (21 maret 2021)
 
Ejercicios de cinetica 1
Ejercicios de cinetica 1Ejercicios de cinetica 1
Ejercicios de cinetica 1
 
Problemas de Fisicoquímica gases 2022 del 1 al 6.pptx
Problemas de Fisicoquímica gases 2022 del 1 al 6.pptxProblemas de Fisicoquímica gases 2022 del 1 al 6.pptx
Problemas de Fisicoquímica gases 2022 del 1 al 6.pptx
 
Appendix1Udated_metric (1).pdf
Appendix1Udated_metric (1).pdfAppendix1Udated_metric (1).pdf
Appendix1Udated_metric (1).pdf
 
Guía1: Ecuaciones Diferenciales
Guía1: Ecuaciones DiferencialesGuía1: Ecuaciones Diferenciales
Guía1: Ecuaciones Diferenciales
 
Tarea01 - Física General
Tarea01 - Física GeneralTarea01 - Física General
Tarea01 - Física General
 
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
 
Electroquímica
ElectroquímicaElectroquímica
Electroquímica
 
R 2
R 2R 2
R 2
 
2 equilibrios de_solubilidad_y_equilibrio_de_complejos
2 equilibrios de_solubilidad_y_equilibrio_de_complejos2 equilibrios de_solubilidad_y_equilibrio_de_complejos
2 equilibrios de_solubilidad_y_equilibrio_de_complejos
 
Antoine ctes
Antoine ctesAntoine ctes
Antoine ctes
 
Bab 7 penggunaan turunan
Bab 7 penggunaan turunanBab 7 penggunaan turunan
Bab 7 penggunaan turunan
 

Similaire à Ch04

Similaire à Ch04 (20)

L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptxL7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
 
Fox solution
Fox   solutionFox   solution
Fox solution
 
Capítulo 1 - Mecânica dos Fluidos
Capítulo 1 - Mecânica dos Fluidos Capítulo 1 - Mecânica dos Fluidos
Capítulo 1 - Mecânica dos Fluidos
 
Topic 10 kft 131
Topic 10 kft 131Topic 10 kft 131
Topic 10 kft 131
 
Ch.4
Ch.4Ch.4
Ch.4
 
Nucleic Acid Engineering Math
Nucleic Acid Engineering MathNucleic Acid Engineering Math
Nucleic Acid Engineering Math
 
Ch.10
Ch.10Ch.10
Ch.10
 
GC Chemical Kinetics
GC Chemical KineticsGC Chemical Kinetics
GC Chemical Kinetics
 
The Material Balance for Chemical Reactors
The Material Balance for Chemical ReactorsThe Material Balance for Chemical Reactors
The Material Balance for Chemical Reactors
 
Topic 2 kft 131
Topic 2 kft 131Topic 2 kft 131
Topic 2 kft 131
 
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
 
Kaplan turbines
Kaplan turbinesKaplan turbines
Kaplan turbines
 
Physics equation tables_2008_09
Physics equation tables_2008_09Physics equation tables_2008_09
Physics equation tables_2008_09
 
Lec9 MECH ENG STRucture
Lec9   MECH ENG  STRuctureLec9   MECH ENG  STRucture
Lec9 MECH ENG STRucture
 
Ch.17
Ch.17Ch.17
Ch.17
 
Aperiodic crystal workshop 2013: TEM
Aperiodic crystal workshop 2013: TEMAperiodic crystal workshop 2013: TEM
Aperiodic crystal workshop 2013: TEM
 
Ch 6- fugacidad mezcla
Ch 6- fugacidad mezclaCh 6- fugacidad mezcla
Ch 6- fugacidad mezcla
 
June2006 P1
June2006 P1June2006 P1
June2006 P1
 
Ch.16
Ch.16Ch.16
Ch.16
 
Chap1
Chap1Chap1
Chap1
 

Ch04

  • 1. CHAPTER FOUR 4.1 a. Continuous, Transient b. Input – Output = Accumulation No reactions ⇒ Generation = 0, Consumption = 0 kg kg dn dn kg 6.00 − 3.00 = ⇒ = 3.00 s s dt dt s c. 100 m3 1000 kg 1 s . t= = 333 s 1 m3 3.00 kg 4.2 a. Continuous, Steady State b. k = 0 ⇒ C A = C A0 k = ∞ ⇒ CA = 0 c. Input – Output – Consumption = 0 Steady state ⇒ Accumulation = 0 A is a reactant ⇒ Generation = 0 FG m IJ C FG mol IJ = V FG m IJ C FG mol IJ + kVC FG mol IJ ⇒ C 3 3 CA0 V H sK Hm K H sK Hm K A0 3 A 3 HsK A A = 1+ kV V 4.3 a. b mv kg / h g 100 kg / h 0.850 kg B / kg 0.550 kg B / kg Input – Output = 0 0.150 kg T / kg Steady state ⇒ Accumulation = 0 0.450 kg T / kg b ml kg / h g No reaction ⇒ Generation = 0, Consumption = 0 0.106 kg B / kg 0.894 kg T / kg (1) Total Mass Balance: 100.0 kg / h = mv + ml (2) Benzene Balance: 0.550 × 100.0 kg B / h = 0.850mv + 0106ml . Solve (1) & (2) simultaneously ⇒ mv = 59.7 kg h, ml = 40.3 kg h b. The flow chart is identical to that of (a), except that mass flow rates (kg/h) are replaced by masses (kg). The balance equations are also identical (initial input = final output). c. Possible explanations ⇒ a chemical reaction is taking place, the process is not at steady state, the feed composition is incorrect, the flow rates are not what they are supposed to be, other species are in the feed stream, measurement errors. 4- 1
  • 2. 4.4 b. n (mol) b 0.500 n mol N 2 28 g N 2 1 kg g = 0.014 n kg N 2 b g 0.500 mol N 2 mol mol N 2 1000 g 0.500 mol CH 4 mol c. 100.0 g / s nE = b g 100 x E g C 2 H 6 1 lb m lb - mole C2 H 6 3600 s b g x E g C2 H 6 g s 453593 g 30 lb m C2 H 6 . h xP bg C H gg 3 8 b = 26.45x E lb - mole C 2 H 6 / h g xB bg C H gg 4 10 d. b g n1 lb - mole H 2 O s nO2 = 0.21n2 ( lb-mole O 2 / s ) Rn blb - mole DA sg | 0.21 lb - moleO lb - mole DA U 2 | n1 ⎛ lb-mole H 2 O ⎞ S | 0.79 lb - mole N lb - mole DAV 2 | xH2O = n1 + n2 ⎜ lb-mole ⎟ ⎝ ⎠ T 2 W 0.21n2 ⎛ lb-mole O 2 ⎞ xO2 = n1 + n2 ⎜ lb-mole ⎟ ⎝ ⎠ e. n ( mol ) nN2O4 = n ⎡0.600 − yNO2 ⎤ ( mol N 2 O4 ) ⎣ ⎦ 0.400 mol NO mol yNO2 ( mol NO 2 mol ) 0.600 − yNO2 ( mol N 2 O 4 mol ) 4.5 a. Basis: 1000 lbm C3H8 / h fresh feed (Could also take 1 h operation as basis - flow chart would be as below except that all / h would be deleted.) b n6 lb m / h g 0.02 lb m C3H8 / lb m 1000 lb m C3H 8 / h b n7 lb m / h g 0.98 lb m C3H 6 / lb m 0.97 lb m C3H8 / lb m Still 0.03 lb m C3H 6 / lb m Compressor b n1 lb m C3H 8 / h g b n1 lb m C3H 8 / h g Reactor n blb 2 m C H / hg 3 6 b n2 lb m C3H 6 / h g n blb CH / h g 3 n blb m H / hg 4 b n3 lb m CH 4 / h g 4 m 2 b n4 lb m H 2 / h g Stripper b n5 lb m / h g Note: the compressor and the off gas from Absorber the absorber are not mentioned explicitly in the process description, but their presence should be inferred. b n1 lb m C3H 8 / h g b n2 lb m C3H 6 / h g n blb 5 m oil / h g 4- 2
  • 3. 4.5 (cont’d) b. Overall objective: To produce C3H6 from C3H8. Preheater function: Raise temperature of the reactants to raise the reaction rate. Reactor function: Convert C3H8 to C3H6. Absorption tower function: Separate the C3H8 and C3H6 in the reactor effluent from the other components. Stripping tower function: Recover the C3H8 and C3H6 from the solvent. Distillation column function: Separate the C3H5 from the C3H8. 4.6 a. 3 independent balances (one for each species) b. 7 unknowns ( m1 , m3 , m5 , x2 , y2 , y4 , z4 ) – 3 balances – 2 mole fraction summations 2 unknowns must be specified c. y2 = 1 − x2 FG kg A IJ = m + b1200gb0.70g FG kg A IJ A Balance: 5300 x2 H hK 3 H hK F kg I Overall Balance: m + 5300 G J = m + 1200 + m G J F kg I 1 H hK 3 H hK 5 B Balance: 0.03m + 5300 x G F kg BIJ = 1200 y + 0.60m FG kg BIJ 1 H hK 2 H hK 4 5 z4 = 1 − 0.70 − y4 4.7 a. 3 independent balances (one for each species) b. bg 400 g 0.885 g H 2O mR g 0.995 g H 2O = ⇒ mR = 356 g min Water Balance: min g min gb g Acetic Acid Balance: b400gb0115g FGH g CH OOH IJK = 0.005m . min 3 R + 0.096mE FG g CH OOH IJ H min K 3 ⇒ mE = 461g min FG g IJ = m + m FG g IJ ⇒ m = 417 g min Overall Balance: mC + 400 H min K H min KR E C c. b0115gb400g − b0.005gb356g FGH min IJK = b0.096gb461g FGH min IJK ⇒ 44 g min = 44 g min . g g 4- 3
  • 4. 4.7 (cont’d) d. H 2O CH 3COOH some CH3COOH CH3COOH H 2O Extractor C4 H9OH Distillation C 4 H9OH CH3COOH Column C4 H 9OH 4.8 a. X-large: 25 broken eggs/min 35 45 unbroken eggs/min 120 eggs/min 0.30 broken egg/egg Large: n 1 broken eggs/min 0.70 unbroken egg/egg n 2 unbroken eggs/min b. 120 = 25 + 45 + n1 + n2 ( eggs min ) ⇒ n1 + n2 = 50 ⎫ n1 = 11 ⎪ ⎬ ⇒ ( 0.30 )(120 ) = 25 + n1 ⎪ n2 = 39 ⎭ c. n1 + n2 = 50 large eggs min b n1 large eggs broken/50 large eggs = 11 50 = 0.22 g d. b g 22% of the large eggs (right hand) and 25 70 ⇒ 36% of the extra-large eggs (left hand) are broken. Since it does not require much strength to break an egg, the left hand is probably poorly controlled (rather than strong) relative to the right. Therefore, Fred is right-handed. 4.9 a. b m1 lb m strawberries g b m3 lb m W evaporated g 015 lb m S / lb m . 0.85 lb m W / lb m 1.00 lb m jam c m2 lb m S sugar h 0.667 lb m S / lb m 0.333 lb m W / lb m b. 3 unknowns ( m1 , m2 , m3 ) – 2 balances – 1 feed ratio 0 DF c. Feed ratio: m1 / m 2 = 45 / 55 (1) S balance: 0.15 m1 + m 2 = 0.667 (2) Solve simultaneously ⇒ m1 = 0.49 lb m strawberries, m 2 = 0.59 lb m sugar 4- 4
  • 5. 4.10 a. 300 gal b g m1 lb m 4 unknowns ( m1 , m2 ,V40 , m3 ) 0.750 lb m C 2 H 5OH / lb m 0.250 lb m H 2O / lb m b g m3 lb m – 2 balances 0.600 lb m C 2 H 5OH / lb m – 2 specific gravities 0.400 lb m H 2O / lb m 0 DF b g V40 gal m b lb g 2 m 0.400 lb m C 2 H 5OH / lb m 0.600 lb m H 2 O / lb m b. 300 gal 1ft 3 0.877 × 62.4 lb m m1 = = 2195 lb m 7.4805 gal ft 3 Overall balance: m1 + m2 = m3 (1) C2H5OH balance: 0.750m1 + 0.400m2 = 0.600m3 (2) Solve (1) & (2) simultaneously ⇒ m2 = 1646 lb m, , m3 = 3841 lb m 1646 lb m ft 3 7.4805 gal V40 = = 207 gal 0.952 × 62.4lb m 1ft 3 4.11 a. 3 unknowns ( n1 , n2 , n3 ) b n1 mol / s g – 2 balances 0.0403 mol C3H 8 / mol 1 DF 0.9597 mol air / mol b n3 mol / s g 0.0205 mol C3H 8 / mol b n2 mol air / s g 0.9795 mol air / mol 0.21 mol O 2 / mol 0.79 mol N 2 / mol b. Propane feed rate: 0.0403n1 = 150 ⇒ n1 = 3722 mol / s b g Propane balance: 0.0403n1 = 0.0205n3 ⇒ n3 = 7317 mol / s b g Overall balance: 3722 + n2 = 7317 ⇒ n2 = 3600 mol / s b g c. > . The dilution rate should be greater than the value calculated to ensure that ignition is not possible even if the fuel feed rate increases slightly. 4- 5
  • 6. 4.12 a. b m kg / h g 1000 kg / h 0.960 kg CH3OH / kg 2 unknowns ( m, x ) 0.500 kg CH 3OH / kg 0.040 kg H 2O / kg – 2 balances 0.500 kg H 2O / kg 0 DF 673 kg / h b x kg CH 3OH / kg g 1 − x b kg H O / kgg 2 b. Overall balance: 1000 = m + 673 ⇒ m = 327 kg / h b g b g b g Methanol balance: 0.500 1000 = 0.960 327 + x 673 ⇒ x = 0.276 kg CH 3OH / kg Molar flow rates of methanol and water: 673 kg 0.276 kg CH3OH 1000 g mol CH3OH = 5.80 × 103 mol CH3OH / h h kg kg 32.0 g CH3OH 673 kg 0.724 kg H 2O 1000 g mol H 2O = 2.71 × 104 mol H 2O / h h kg kg 18 g H 2O Mole fraction of Methanol: 5.80 × 103 = 0176 mol CH 3OH / mol . 5.80 × 103 + 2.71 × 104 c. Analyzer is wrong, flow rates are wrong, impurities in the feed, a reaction is taking place, the system is not at steady state. 4.13 a. Product Reactor effluent 1239 kg Feed Reactor Purifier R = 583 2253 kg 2253 kg W aste R = 388 b g m w kg R = 140 Analyzer Calibration Data 1 1.364546 x p = 0.000145R xp 0.1 0.01 100 R 1000 4- 6
  • 7. 4.13 (cont’d) b g b. Effluent: x = 0.000145 388 1.3645 = 0.494 kg P / kg p Product: x = 0.000145b583g 1.3645 p = 0.861 kg P / kg Waste: x = 0.000145b140g 1.3645 p = 0123 kg P / kg . 0.861b1239g Efficiency = × 100% = 95.8% 0.494b2253g c. Mass balance on purifier: 2253 = 1239 + mw ⇒ mw = 1014 kg P balance on purifier: b gb g Input: 0.494 kg P / kg 2253 kg = 1113 kg P Output: b0.861 kg P / kggb1239 kgg + b0123 kg P / kggb1014 kgg = 1192 kg P . The P balance does not close . Analyzer readings are wrong; impure feed; extrapolation beyond analyzer calibration data is risky -- recalibrate; get data for R > 583; not at steady state; additional reaction occurs in purifier; normal data scatter. 4.14 a. b n1 lb- mole/ h g . 00100 lb- mole H2O/ lb- mole . 09900 lb- mole DA/ lb- mole b g n3 lb- mole/ h . 0100 lb- mole H2O/ lb- mole b n2 lb- mole HO/ h 2 g . 0900 lb- mole DA/ lb- mole v dft / hi 2 3 4 unknowns ( n1 , n2 , n3 , v ) – 2 balances – 1 density – 1 meter reading = 0 DF Assume linear relationship: v = aR + b v2 − v1 96.9 − 40.0 Slope: a = = = 1.626 R2 − R1 50 − 15 Intercept: b = v a − aR1 = 40.0 − 1.626 15 = 15.61 b g b g v2 = 1.626 95 + 15.61 = 170 ft / h c 3 h n2 = 170 ft 3 62 .4 lb m lb - mol h ft 3 18.0 lb m b = 589 lb - moles H 2 O / h g DA balance: 0.9900n1 = 0.900n3 (1) Overall balance: n1 + n2 = n3 (2) Solve (1) & (2) simultaneously ⇒ n1 = 5890 lb - moles / h, n3 = 6480 lb - moles / h b. Bad calibration data, not at steady state, leaks, 7% value is wrong, v − R relationship is not linear, extrapolation of analyzer correlation leads to error. 4- 7
  • 8. 4.15 a. b m kg / s g 100 kg / s 0.900 kg E / kg 0.600 kg E / kg 0100 kg H 2 O / kg . 0.050 kg S / kg 3 unknowns ( m, xE , xS ) 0.350 kg H 2 O / kg – 3 balances b m kg / s g 0 DF b x E kg E / kg g x b kg S / kg g S 1 − x − x b kg H O / kg g E S 2 b. Overall balance: 100 = 2m ⇒ m = 50.0 kg / s b g b g b g S balance: 0.050 100 = xS 50 ⇒ xS = 0100 b kgS / kgg . b g b g b g E balance: 0.600 100 = 0.900 50 + x E 50 ⇒ x E = 0.300 kg E / kg kg E in bottom stream 0.300b50g kg E in bottom stream = = 0.25 kg E in feed 0.600b100g kg E in feed c. bg bg bg x = aRb ⇒ ln x = ln a + b ln R lnb x / x g lnb0.400 / 0100g . b= 2 1 = = 1491 lnb R / R g lnb38 / 15g . 2 1 lnbag = lnb x g − b lnb R g = lnb0100g − 1491lnb15g = −6.340 ⇒ a = 1764 × 10 1 1 . . . −3 x = 1764 × 10−3 R1.491 . F x I F 0.900 IJ 1 1 R=G J =G b 1.491 H a K H 1764 × 10 K . −3 = 655 . d. Device not calibrated – recalibrate. Calibration curve deviates from linearity at high mass fractions – measure against known standard. Impurities in the stream – analyze a sample. Mixture is not all liquid – check sample. Calibration data are temperature dependent – check calibration at various temperatures. System is not at steady state – take more measurements. Scatter in data – take more measurements. 4- 8
  • 9. 4.16 a. 4.00 mol H 2SO 4 0.098 kg H 2SO 4 L of solution L of solution mol H 2SO 4 1213 kg solution . b = 0.323 kg H 2SO 4 / kg solution g b. v1 L bg 5 unknowns ( v1 , v2 , v3 , m2 , m3 ) – 2 balances 100 kg bg v3 L – 3 specific gravities m b kg g 0.200 kg H 2SO 4 / kg 0 DF 3 0.800 kg H 2 O / kg 0.323 kg H 2SO 4 / kg SG = 1139 . 0.677 kg H 2 O / kg bg v2 L SG = 1.213 m b kg g 2 0.600 kg H 2SO 4 / kg 0.400 kg H 2 O / kg SG = 1.498 Overall mass balance: 100 + m2 = m3 U ⇒ m = 44.4 kg V m = 144 kg 2 Water balance: 0.800b100g + 0.400m = 0.677m W 2 3 3 100 kg L v1 = = 87.80 L20%solution 1139 kg . 44.4 kg L v2 = = 29.64 L 60% solution 1498 kg . v1 87.80 L 20%solution = = 2.96 v2 29.64 L 60% solution c. 1250 kg P 44.4 kg 60%solution L = 257 L / h h 144 kg P 1498 kgsolution . 4.17 b g m1 kg @$18 / kg 0.25 kg P / kg 0.75 kg H2O / kg 100 kg . b g m2 kg @$10 / kg 017 kg P/ kg . 012 kg P / kg . 0.83 kg H2O / kg 0.88 kg H 2O / kg Overall balance: m1 + m2 = 100 . (1) Pigment balance: 0.25m1 + 012m2 = 017 100 . . . b g (2) Solve (1) and (2) simultaneously ⇒ m = 0.385 kg 25% paint, m = 0.615 kg12% paint Cost of blend: 0.385b$18.00g + 0.615b$10.00g = $13.08 per kg 1 2 Selling price: 110b$13.08g = $14.39 per kg . 4- 9
  • 10. 4.18 a. b gb m1 kg H 2O 85% of entering water g 100 kg 0.800 kgS / kg 0.200 kg H 2O / kg b g m2 kgS m b kg H Og 3 2 gb g b 85% drying: m1 = 0.850 0.200 100 = 17.0 kg H 2O Sugar balance: m = 0.800b100g = 80.0 kgS 2 Overall balance: 100 = 17 + 80 + m3 ⇒ m3 = 3 kg H 2O 3 kg H 2O xw = = 0.0361 kg H 2O / kg b 3 + 80 kg g m1 17 kg H 2O = = 0.205 kg H 2O / kg wet sugar m2 + m3 80 + 3 kg b g b. 1000 tons wet sugar 3 tons H 2 O = 30 tons H 2 O / day day 100 tons wet sugar 1000 tons WS 0.800 tons DS 2000 lb m $0.15 365 days = $8.8 × 107 per year day ton WS ton lb m year c. xw = 1 10 b g x w1 + x w 2 +...+ x w10 = 0.0504 kg H 2 O / kg SD = 1 9 b 2 g x w1 − x w +...+ x w10 − x w b 2 g = 0.00181 kg H 2 O / kg Endpoints = 0.0504 ± 3 0.00181 b g Lower limit = 0.0450, Upper limit = 0.0558 d. The evaporator is probably not working according to design specifications since x w = 0.0361 < 0.0450 . 4.19 a. c h v1 m 3 m b kg H O g 5 unknowns ( v1 , v2 , v3 , m1 , m3 ) d i 1 2 SG = 1.00 v3 m 3 – 1 mass balance m b kg suspension g 3 – 1 volume balance v2 m d i 3 SG = 1.48 – 3 specific gravities 0 DF 400 kg galena SG = 7.44 Total mass balance: m1 + 400 = m3 (1) 4- 10
  • 11. 4.19 (cont’d) Assume volume additivity: b g m1 kg m3 + 400 kg m 3 m kg = 3 m3 (2) b g 1000 kg 7440 kg 1480 kg Solve (1) and (2) simultaneously ⇒ m1 = 668 kg H 2O, m3 = 1068 kg suspension 668 kg m3 v1 = = 0.668 m 3 water fed to tank 1000 kg b. Specific gravity of coal < 1.48 < Specific gravity of slate c. The suspension begins to settle. Stir the suspension. 1.00 < Specific gravity of coal < 1.48 4.20 a. b n1 mol / h g b n2 mol / h g 0.040 mol H 2O / mol b x mol H 2O / mol g 0.960 mol DA / mol b 1 − x mol DA / mol g b n3 mol H 2O adsorbed / h g 97% of H 2O in feed Adsorption rate: n3 = b354 − 3.40g kg . mol H 2O = 1556 mol H 2O / h . 5h 0.0180 kg H 2O b g 97% adsorbed: 156 = 0.97 0.04n1 ⇒ n1 = 401 mol / h . . Total mole balance: n1 = n2 + n3 ⇒ n2 = 401 − 1556 = 38.54 mol / h . . Water balance: 0.040 ( 40.1) = 1.556 + x ( 38.54 ) ⇒ x = 1.2 × 10−3 ( mol H 2 O/mol ) b. The calcium chloride pellets have reached their saturation limit. Eventually the mole fraction will reach that of the inlet stream, i.e. 4%. 4.21 a. 300 lb m / h 0.55 lb m H 2SO 4 / lb m 0.45 lb m H 2O / lb m b mC lb m / h g b mB lb m / h g 0.75 lb m H 2SO 4 / lb m 0.90 lb m H 2SO 4 / lb m 0.25 lb m H 2O / lb m 010 lb m H 2O / lb m . Overall balance: 300 + mB = mC (1) b g H2SO4 balance: 0.55 300 + 0.90mB = 0.75mC (2) Solve (1) and (2) simultaneously ⇒ mB = 400 lb m / h, mC = 700 lb m / h 4- 11
  • 12. 4.21 (cont’d) 500 − 150 b. mA − 150 = 70 − 25 b g RA − 25 ⇒ mA = 7.78 RA − 44.4 800 − 200 mB − 200 = 60 − 20 b g RB − 20 ⇒ mB = 15.0 RB − 100 ln 100 − ln 20 ln x − ln 20 = 10 − 4 b g Rx − 4 ⇒ ln x = 0.2682 Rx + 1923 ⇒ x = 6.841e 0.2682 Rx . 300 + 44.4 400 + 100 mA = 300 ⇒ RA = = 44.3, mB = 400 ⇒ RB = = 333, . 7.78 15.0 1 FG 55 IJ x = 55% ⇒ Rx = 0.268 ln H 6.841 = 7.78 K c. Overall balance: mA + mB = mC H2SO4 balance: 0.01xmA + 0.90mB = 0.75mC = 0.75 mA + mB ⇒ mB = b g b0.75 − 0.01xgm A 015 . ⇒ 15.0 RB − 100 = d 0.75 − 0.01 6.841e 0.2682 Rx i b7.78 R A − 44.4 g 015 . d ⇒ RB = 2.59 − 0.236e 0.2682 Rx iR A + 135e0.2682 Rx − 813 . . b g b g − 813 = 333 Check: RA = 44.3, Rx = 7.78 ⇒ RB = 2.59 − 0.236e e 0.2682 7.78 j44.3 + 135e . 0.2682 7.78 . . 4.22 a. b n A kmol / h g 010 kmol H 2 / kmol . 100 kg / h 0.90 kmol N 2 / kmol b nP kmol / h g 0.20 kmol H 2 / kmol b nB kmol / h g 0.80 kmol N 2 / kmol 0.50 kmol H 2 / kmol 0.50 kmol N 2 / kmol b g b MW = 0.20 2.016 + 0.80 28.012 = 22.813 kg / kmol g 100 kg kmol ⇒ nP = = 4.38 kmol / h h 22.813 kg Overall balance: n A + nB = 4.38 (1) H2 balance: 010n A + 0.50 nB = 0.20 4.38 . b g (2) Solve (1) and (2) simultaneously ⇒ n A = 3.29 kmol / h, n B = 110 kmol / h . 4- 12
  • 13. 4.22 (cont’d) b. mP nP = 22.813 mP Overall balance: n A + nB = 22.813 x m H2 balance: x A n A + x B nB = P P 22.813 ⇒ nA = b mP x B − x P g nB = b mP x P − x A g b 22.813 x B − x A g b 22.813 x B − x A g c. Trial XA XB XP mP nA nB 1 0.10 0.50 0.10 100 4.38 0.00 2 0.10 0.50 0.20 100 3.29 1.10 3 0.10 0.50 0.30 100 2.19 2.19 4 0.10 0.50 0.40 100 1.10 3.29 5 0.10 0.50 0.50 100 0.00 4.38 6 0.10 0.50 0.60 100 -1.10 5.48 7 0.10 0.50 0.10 250 10.96 0.00 8 0.10 0.50 0.20 250 8.22 2.74 9 0.10 0.50 0.30 250 5.48 5.48 10 0.10 0.50 0.40 250 2.74 8.22 11 0.10 0.50 0.50 250 0.00 10.96 12 0.10 0.50 0.60 250 -2.74 13.70 The results of trials 6 and 12 are impossible since the flow rates are negative. You cannot blend a 10% H2 mixture with a 50% H2 mixture and obtain a 60% H2 mixture. d. Results are the same as in part c. 4.23 Venous blood Arterial blood 195.0 ml / min 200.0 ml / min 1.75 mg urea / ml 1.90 mg urea / ml Dialysate Dialyzing fluid b v ml / min g c b mg urea / mlg 1500 ml / min a. Water removal rate: 200.0 − 195.0 = 5.0 ml / min . b . g b g Urea removal rate: 190 200.0 − 175 195.0 = 38.8 mg urea / min b. v = 1500 + 5.0 = 1505ml / min 38.8 mg urea/min c= = 0.0258 mg urea/ml 1505 ml/min c. b2.7 − 11g mg removed . 1 min 10 3 ml 5.0 L = 206 min (3.4 h) ml 38.8 mg removed 1L 4- 13
  • 14. 4.24 a. b n1 kmol / min g 20.0 kg CO 2 / min b n3 kmol / min g b n2 kmol / min g 0.023 kmol CO 2 / kmol 0.015 kmol CO 2 / kmol 20.0 kg CO 2 kmol n1 = = 0.455 kmol CO 2 / min min 44.0 kg CO 2 Overall balance: 0.455 + n2 = n3 (1) CO2 balance: 0.455 + 0.015n2 = 0.023n3 (2) Solve (1) and (2) simultaneously ⇒ n2 = 55.6 kmol / min, n3 = 561 kmol / min . b. 150 m u= = 8.33 m / s 18 s 1 561 kmol . m3 1 min s A = πD 2 = ⇒ D = 108 m . 4 min 0123 kmol 60 s 8.33 m . 4.25 b Spectrophotometer calibration: C = kA ====> C μg / L = 3.333 A A = 0.9 g C =3 . . . b gb g Dye concentration: A = 018 ⇒ C = 3333 018 = 0.600 μg / L 0.60 cm 3 1L 5.0 mg 103 μ g Dye injected = = 3.0 μ g 103 cm 3 1L 1 mg b g bg ⇒ 3.0 μ g V L = 0.600 μ g / L ⇒ V = 5.0 L 4.26 a. 1000 L B / min b n3 kmol / ming b m2 kg B / min g y b kmol SO / kmolg 3 2 1 − y b kmol A / kmolg V d m / min i 3 3 m b kg / min g 1 n b kmol / min g 4 x b kg SO / kgg 1 y b kmol SO / kmolg 4 2 1 − x b kg B / kgg 1 2 1 − y b kmol A / kmolg 1 4 4- 14
  • 15. 4.26 (cont’d) 8 unknowns ( n1 , n3 , v1 , m2 , m4 , x4 , y1 , y3 ) – 3 material balances – 2 analyzer readings – 1 meter reading – 1 gas density formula – 1 specific gravity 0 DF b. Orifice meter calibration: d i A log plot of V vs. h is a line through the points h1 = 100, V1 = 142 and h2 = 400, V2 = 290 . d i ln V = b ln h + ln a ⇒ V = ah b b= d h = lnb290 142g = 0.515 ln V2 V1 lnbh h g lnb400 100g 2 1 ln a = ln V − b ln h = lnb142g − 0.515 ln 100 = 2.58 ⇒ a = e 1 1 2 .58 = 13.2 ⇒ V = 13.2h 0.515 Analyzer calibration: ln y = bR + ln a ⇒ y = aebR b= b ln y 2 y1 g = lnb01107 0.00166g = 0.0600 . U | R2 − R1 90 − 20 | | ln a = ln y1 − bR1 = lnb0.00166g − 0.0600b20g = −7.60V ⇒ y = 5.00 × 10 −4 e 0.0600 R E | | a = 5.00 × 10 −4 | W c. h1 = 210 mm ⇒ V1 = 13.2 210 b g = 207.3 m min 0.515 3 ρ feed gas = b12.2g b150 + 14.7g 14.7 batmg = 0.460 mol / L = 0.460 kmol / m 3 b75 + 460g 18 bKg . E 207.3 m 3 0.460 kmol n1 = = 95.34 kmol min min m3 b g R1 = 82.4 ⇒ y1 = 500 × 10−4 exp 0.0600 × 82.4 = 0.0702 kmol SO2 kmol . R3 = 116 ⇒ y3 = 500 × 10−4 . . expb0.0600 × 116g = 0.00100 kmol SO . 2 kmol 1000 L B 130 kg . m2 = = 1300 kg / min min LB 4- 15
  • 16. 4.26 (cont’d) b gb g b g A balance: 1 − 0.0702 95.34 = 1 − 0.00100 n3 ⇒ n3 = 88.7 kmol min SO2 balance: b0.0702gb9534g( 64.0 kg / kmol) = b0.00100gb88.7g( 64) + m x . 4 4 (1) B balance: 1300 = m4 (1 − x4 ) (2) Solve (1) and (2) simultaneously ⇒ m4 = 1723 kg / min, x4 = 0.245 kg SO2 absorbed / kg SO2 removed = m4 x4 = 422 kg SO 2 / min d. Decreasing the bubble size increases the bubble surface-to-volume ratio, which results in a higher rate of transfer of SO2 from the gas to the liquid phase. 4.27 a. d V2 m 3 / min i b n3 kmol / min g m b kg B / min g y b kmolSO / kmol g 3 2 1 − y b kmol A / kmol g 2 3 d V1 m / min 3 i R3 n b kmol / min g 1 b m4 kg / min g y b kmolSO / kmol g 1 2 x b kgSO kg g 4 2 1 − y b kmol A / kmol g 1 1 − x b kg B / kg g 4 P , T1 , R1 , h1 1 b. 14 unknowns ( n1 ,V1 , y1 , P , T1 , R1 , h1 ,V2 , m2 , n3 , y3 , R3 , m4 , x4 ) 1 – 3 material balances – 3 analyzer and orifice meter readings – 1 gas density formula (relates n1 and V1 ) – 1 specific gravity (relates m2 and V2 ) 6 DF b g b A balance: 1 − y1 n1 = 1 − y3 n3 g (1) x4 m4 SO2 balance: y1n1 = y3n3 + (2) 64 kgSO 2 / kmol b B balance: m2 = 1 − x4 m4 g (3) Calibration formulas: y1 = 5.00 × 10−4 e0.060 R1 (4) −4 0.060 R3 y3 = 5.00 × 10 e (5) V1 = 13.2h10.515 (6) Gas density formula: n1 = b 12.2 P + 14.7 / 14.7 1 g bT + 460g / 18 1 . V1 (7) Liquid specific gravity: SG = 130 ⇒ V2 = . m2 kgb gm3 (8) h 1300 kg 4- 16
  • 17. 4.27 (cont’d) c. T1 75 °F y1 0.07 kmol SO2/kmol P1 150 psig V1 207 m3/h h1 210 torr n1 95.26 kmol/h R1 82.4 Trial x4 (kg SO2/kg) y3 (kmol SO2/kmol) V2 (m3/h) n3 (kmol/h) m4 (kg/h) m2 (kg/h) 1 0.10 0.050 0.89 93.25 1283.45 1155.11 2 0.10 0.025 1.95 90.86 2813.72 2532.35 3 0.10 0.010 2.56 89.48 3694.78 3325.31 4 0.10 0.005 2.76 89.03 3982.57 3584.31 5 0.10 0.001 2.92 88.68 4210.72 3789.65 6 0.20 0.050 0.39 93.25 641.73 513.38 7 0.20 0.025 0.87 90.86 1406.86 1125.49 8 0.20 0.010 1.14 89.48 1847.39 1477.91 9 0.20 0.005 1.23 89.03 1991.28 1593.03 10 0.20 0.001 1.30 88.68 2105.36 1684.29 V2 vs. y3 3 .5 0 3 .0 0 2 .5 0 V 2 (m /h) 2 .0 0 3 1 .5 0 1 .0 0 0 .5 0 0 .0 0 0 .0 0 0 0.0 2 0 0 .0 4 0 0 .06 0 y 3 ( k m o l S O 2 /k m o l) x4 = 0 .1 0 x4 = 0 .20 For a given SO2 feed rate removing more SO2 (lower y3) requires a higher solvent feed rate ( V2 ). For a given SO2 removal rate (y3), a higher solvent feed rate ( V2 ) tends to a more dilute SO2 solution at the outlet (lower x4). d. Answers are the same as in part c. 4.28 Maximum balances: Overall - 3, Unit 1 - 2; Unit 2 - 3; Mixing point - 3 Overall mass balance ⇒ m3 Mass balance - Unit 1 ⇒ m1 A balance - Unit 1 ⇒ x1 Mass balance - mixing point ⇒ m2 A balance - mixing point ⇒ x2 C balance - mixing point ⇒ y2 4- 17
  • 18. 4.29 a. 100 mol / h b n2 mol / h g b n4 mol / h g 0.300 mol B / mol b g x B 2 mol B / mol 0.940 mol B / mol 0.250 mol T / mol Column 1 x b mol T / molg Column 2 0.060 mol T / mol T2 0.450 mol X / mol 1 − x − x b mol X / molg B2 T2 n b mol / h g 3 b n5 mol / h g 0.020 mol T / mol b g x B5 mol B / mol 0.980 mol X / mol x b mol T / molg T5 1 − x − x b mol X / molg B5 T5 Column 1 Column 2: 4 unknowns ( n2 , n3 , x B 2 , xT 2 ) 4 unknowns ( n3 , n4 , n5 , y x ) –3 balances – 3 balances – 1 recovery of X in bot. (96%) – 1 recovery of B in top (97%) 0 DF 0 DF Column 1 b gb g 96% X recovery: 0.96 0.450 100 = 0.98n3 (1) Total mole balance: 100 = n2 + n3 (2) b g B balance: 0.300 100 = x B 2 n2 (3) T balance: 0.250b100g = x T 2 n2 + 0.020n3 (4) Column 2 97% B recovery: 0.97 x B 2 n2 = 0.940n4 (5) Total mole balance: n2 = n4 + n5 (6) B balance: x B 2 n2 = 0.940 n4 + x B5 n5 (7) T balance: xT 2 n2 = 0.060n4 + xT 5 n5 (8) b. (1) ⇒ n3 = 44.1 mol / h (2) ⇒ n2 = 55.9 mol / h (3) ⇒ x B 2 = 0.536 mol B / mol (4) ⇒ x T 2 = 0.431 mol T / mol (5) ⇒ n4 = 30.95 mol / h ( 6) ⇒ n5 = 24.96 mol / h (7) ⇒ x B5 = 0.036 mol B / mol (8) ⇒ x T 5 = 0.892 mol T / mol b 0.940 30.95 g × 100% = 97% Overall benzene recovery: b g 0.300 100 0.892b24.96g × 100 = 89% 0.250b100g Overall toluene recovery: 4- 18
  • 19. 4.30 a. 100 kg / h b m3 kg / h g b g m4 kg / h b m10 kg / h g 0.035 kg S / kg b x3 kg S / kg g 4 x b kg S / kgg 10 0.050 kg S / kg 0.965 kg H 2O / kg 1 b 1 − x3 kg H 2O / kg g 4 1 − x b kg H O / kgg 4 2 0.950 kg H 2O / kg b 0100mw kg H 2O / h . g b 0100mw kg H 2O / h . g b 0100mw kg H 2O / h . g b mw kg H 2O / h g b. Overall process 100 kg/h m10 ( kg / h) 0.035 kg S/kg 0.050 kg S/kg 0.965 kg H2O/kg 0.950 kg H2O/kg mw ( kg H 2 O / h) b g Salt balance: 0.035 100 = 0.050m10 Overall balance: 100 = mw + m10 H2O yield: Yw = b mw kg H 2O recovered g b 96.5 kg H 2O in fresh feed g First 4 evaporators 100 kg/ h b m4 kg / h g 0.035 kg S/ kg b x 4 kg S/ kg g 0.965 kg H2 O / kg b g 1 − x4 kg H2 O / kg 4 × 0100m b kg H O / hg . w 2 b Overall balance: 100 = 4 0100 mw + m4 . g b g Salt balance: 0.035 100 = x4 m4 c. Yw = 0.31 x 4 = 0.0398 4- 19
  • 20. 4.31 a. 2n1 mol b g 0.97 mol B / mol Condenser 0.03 mol T / mol b g n1 mol b g n1 mol (89.2% of Bin feed ) 0.97 mol B / mol 0.97 mol B / mol 100 mol 0.03 mol T / mol 0.03 mol T / mol 0.50 mol B / mol Still 0.50 mol T / mol b gb n4 mol 45% of feed to reboiler g y b mol B / molg B 1 − y b mol T / molg B b g n3 mol b g n2 mol Reboiler x b mol B / molg z b mol B / molg B B 1 − x b mol T / molg 1 − z b mol T / molg B B Overall process: 3 unknowns ( n1 , n3 , x B ) Still: 5 unknowns ( n1 , n2 , n4 , y B , z B ) – 2 balances – 2 balances – 1 relationship (89.2% recovery) 3 DF 0 DF Condenser: 1 unknown ( n1 ) Reboiler: 6 unknowns ( n2 , n3 , n4 , x B , y B , z B ) – 0 balances – 2 balances 1 DF – 2 relationships (2.25 ratio & 45% vapor) 3 DF Begin with overall process. b. Overall process b gb g 89.2% recovery: 0.892 0.50 100 = 0.97 n1 Overall balance: 100 = n1 + n3 b g B balance: 0.50 100 = 0.97 n1 + x B n3 Reboiler e j = 2.25 yB / 1 − yB / b1 − x g Composition relationship: xB B Percent vaporized: n4 = 0.45n2 (1) Mole balance: n2 = n3 + n4 (2) (Solve (1) and (2) simultaneously.) B balance: z B n2 = x B n3 + y B n4 4- 20
  • 21. 4.31 (cont’d) c. B fraction in bottoms: x B = 0100 mol B / mol . Moles of overhead: n1 = 46.0 mol Moles of bottoms: n3 = 54.0 mol b1 − x gn × 100% = b1 − 010gb54.02g × 100% = 97% B 3 . 0.50b100g 0.50b100g Recovery of toluene: 4.32 a. b m3 kg H 2O g Bypass Mixing point Basis: 100 kg 100 kg b g m1 kg Evaporator b g m4 kg b g m5 kg 0.12 kg S / kg 012 kg S / kg . 0.58 kg S / kg 0.42 kg S / kg 0.88 kg H2O / kg 0.88 kg H2O / kg 0.42 kg H 2O / kg 0.58 kg H2O / kg b g m2 kg 012 kg S / kg . 0.88 kg H2O / kg Overall process: 2 unknowns ( m3 , m5 ) Bypass: 2 unknowns ( m1 , m2 ) – 2 balances – 1 independent balance 0 DF 1 DF Evaporator: 3 unknowns ( m1 , m3 , m4 ) Mixing point: 3 unknowns ( m2 , m4 , m5 ) – 2 balances – 2 balances 1 DF 1 DF b g Overall S balance: 012 100 = 0.42m5 . Overall mass balance: 100 = m3 + m5 Mixing point mass balance: m4 + m2 = m5 (1) Mixing point S balance: 0.58m4 + 012m2 = 0.42m5 . (2) Solve (1) and (2) simultaneously Bypass mass balance: 100 = m1 + m2 b. m1 = 90.05 kg, m2 = 9.95 kg, m3 = 714 kg, m4 = 18.65 kg, m5 = 28.6 kg product . m2 Bypass fraction: = 0.095 100 c. Over-evaporating could degrade the juice; additional evaporation could be uneconomical; a stream consisting of 90% solids could be hard to transport. 4- 21
  • 22. 4.33 a. b m4 kg Cr / h g b m1 kg / h g b m2 kg / h g b g m5 kg / h b g m6 kg / h 0.0515 kg Cr / kg 0.0515 kg Cr / kg Treatment x b kg Cr / kgg 5 x b kg Cr / kgg 6 0.9485 kg W / kg 0.9485 kg W / kg Unit 1 − x b kg W / kgg 5 1 − x b kg W / kgg 6 b m3 kg / h g 0.0515 kg Cr / kg 0.9485 kg W / kg b. b m1 = 6000 kg / h ⇒ m2 = 4500 kg / h maximum allowed value g Bypass point mass balance: m3 = 6000 − 4500 = 1500 kg / h b gb g 95% Cr removal: m4 = 0.95 0.0515 4500 = 220.2 kg Cr / h Mass balance on treatment unit: m5 = 4500 − 220.2 = 4279.8 kg / h Cr balance on treatment unit: x5 = b 0.0515 4500 − 220.2 g = 0.002707 kg Cr / kg 4779.8 Mixing point mass balance: m6 = 1500 + 4279.8 = 5779.8 kg / h Mixing point Cr balance: x6 = b g 0.0515 1500 + 0.0002707 4279.8 b = 0.0154 kg Cr / kg g 5779.8 c. m 1 (kg/h) m 2 (kg/h) m 3 (kg/h) m 4 (kg/h) m 5 (kg/h) x5 m 6 (kg/h) x6 1000 1000 0 48.9 951 0.00271 951 0.00271 2000 2000 0 97.9 1902 0.00271 1902 0.00271 3000 3000 0 147 2853 0.00271 2853 0.00271 4000 4000 0 196 3804 0.00271 3804 0.00271 5000 4500 500 220 4280 0.00271 4780 0.00781 6000 4500 1500 220 4280 0.00271 5780 0.0154 7000 4500 2500 220 4280 0.00271 6780 0.0207 8000 4500 3500 220 4280 0.00271 7780 0.0247 9000 4500 4500 220 4280 0.00271 8780 0.0277 10000 4500 5500 220 4280 0.00271 9780 0.0301 4- 22
  • 23. 4.33 (cont’d) m 1 vs. x 6 0.03500 0.03000 x 6 (kg Cr/kg) 0.02500 0.02000 0.01500 0.01000 0.00500 0.00000 0 2000 4000 6000 8000 10000 12000 m 1 (kg/h) d. Cost of additional capacity – installation and maintenance, revenue from additional recovered Cr, anticipated wastewater production in coming years, capacity of waste lagoon, regulatory limits on Cr emissions. 4.34 a. b 175 kg H 2O / s 45% of water fed to evaporator g b m1 kg / s g b m4 kg K 2SO 4 / s g b m6 kg K 2SO 4 / s g Filter cake 0196 kg K 2SO 4 / kg . b m5 kg H 2O / s g Evaporator b m7 kg H 2O / s g Crystallizer Filter b 10 m2 kg K 2SO 4 / s g 0.804 kg H 2O / kg b g m2 kgsoln / s R0.400 kg K SO / kg U S0.600 kg H O / kg V 2 4 Filtrate T 2 W b m3 kg / s g 0.400 kg K 2SO 4 / kg 0.600 kg H 2 O / kg Let K = K2SO4, W = H2 Basis: 175 kg W evaporated/s Overall process: 2 unknowns ( m1 , m2 ) Mixing point: 4 unknowns ( m1 , m3 , m4 , m5 ) - 2 balances - 2 balances 0 DF 2 DF Evaporator: 4 unknowns ( m4 , m5 , m6 , m7 ) Crystallizer: 4 unknowns ( m2 , m3 , m6 , m7 ) – 2 balances – 2 balances – 1 percent evaporation 2 DF 1 DF Strategy: Overall balances ⇒ m1 , m2 U verify that each | chosen subsystem involves % evaporation ⇒ m5 | V Balances around mixing point ⇒ m , m | no more than two Balances around evaporator ⇒ m , m | unknown variables 3 4 W 6 7 4- 23
  • 24. 4.34 (cont’d) Overall mass balance: m1 = 175 + 10m2 + m2 U | 0196m1 = 10m2 + 0.400m2 V | Overall K balance: . W Production rate of crystals = 10m2 45% evaporation: 175 kg evaporated min = 0.450m5 W balance around mixing point: 0.804m1 + 0.600m3 = m5 Mass balance around mixing point: m1 + m3 = m4 + m5 K balance around evaporator: m6 = m4 W balance around evaporator: m5 = 175 + m7 m4 Mole fraction of K in stream entering evaporator = m4 + m5 b. Fresh feed rate: m1 = 221 kg / s Production rate of crystals = 10m2 = 416 kg K s s . bg b m3 kg recycle s g= 352.3 = 160 kg recycle Recycle ratio: b m1 kg fresh feed s g 220.8 . kg fresh feed c. Scale to 75% of capacity. Flow rate of stream entering evaporator = 0.75(398 kg / s) = 299 kg / s 46.3% K, 53.7% W d. Drying . Principal costs are likely to be the heating cost for the evaporator and the dryer and the cooling cost for the crystallizer. 4- 24
  • 25. 4.35 a. Overall objective: Separate components of a CH4-CO2 mixture, recover CH4, and discharge CO2 to the atmosphere. Absorber function: Separates CO2 from CH4. Stripper function: Removes dissolved CO2 from CH3OH so that the latter can be reused. b. The top streams are liquids while the bottom streams are gases. The liquids are heavier than the gases so the liquids fall through the columns and the gases rise. c. b n1 mol / h g b g n5 mol N 2 / h 0.010 mol CO 2 / mol n b mol CO / h g 6 2 0.990 mol CH 4 / mol 100 mol / h Absorber b n2 mol / h g Stripper 0.300 mol CO 2 / mol 0.005 mol CO 2 / mol b n5 mol N 2 / h g 0.700 mol CH 4 / mol 0.995 mol CH 3OH / mol b g n3 mol CO 2 / h n b mol CH OH / h g 4 3 Overall: 3 unknowns ( n1 , n5 , n6 ) Absorber: 4 unknowns ( n1 , n2 , n3 , n4 ) – 2 balances – 3 balances 1 DF 1 DF Stripper: 4 unknowns ( n2 , n3 , n4 , n5 ) – 2 balances – 1 percent removal (90%) 1 DF Overall CH4 balance: b0.700gb100g bmol CH / hg = 0.990n 4 1 Overall mole balance: 100b mol / h g = n + n 1 6 Percent CO2 stripped: 0.90 n3 = n6 Stripper CO2 balance: n3 = n6 + 0.005n2 Stripper CH3OH balance: n4 = 0.995n2 d. n1 = 70.71 mol / h , n2 = 6510 mol / h, n3 = 32.55 mol CO 2 / h, n4 = 647.7 mol CH3OH / h, . n6 = 29.29 mol CO 2 / h 30.0 − 0.010n1 Fractional CO2 absorption: f CO 2 = = 0.976 mol CO 2 absorbed / mol fed 30.0 4- 25
  • 26. 4.35 (cont’d) Total molar flow rate of liquid feed to stripper and mole fraction of CO2: n3 n3 + n4 = 680 mol / h, x3 = = 0.0478 mol CO 2 / mol n3 + n4 e. Scale up to 1000 kg/h (=106 g/h) of product gas: b g b MW1 = 0.01 44 g CO 2 / mol + 0.99 16 g CH 4 / mol = 16.28 g / mol g bn g = d10 × 10 g / hib16.28 g / molg = 6142 × 10 mol / h 1 new. 6 . 4 bn g = b100 mol / hg (6142 × 10 mol / h) / (70.71 mol / h) = 8.69 × 10 feed new . 4 4 mol / h f. Ta < Ts The higher temperature in the stripper will help drive off the gas. Pa > Ps The higher pressure in the absorber will help dissolve the gas in the liquid. g. The methanol must have a high solubility for CO2, a low solubility for CH4, and a low volatility at the stripper temperature. 4.36 a. Basis: 100 kg beans fed e m kg C H 5 6 14 j Condenser e m kg C H j 300 kg C 6 H14 b g m2 kg b g m4 kg b m6 kg oil g 1 6 14 Ex b x2 kg S / kg g F b g y4 kg oil / kg Ev y b kg oil / kgg 2 1 − y b kg C H 4 6 14 / kg g 1 − x − y b kg C H 2 2 6 14 / kg g 13.0 kg oil 87.0 kg S b g m3 kg 0.75 kg S / kg b y3 kg oil / kg g b 0.25 − y3 kg C 6 H14 / kg g Overall: 4 unknowns ( m1 , m3 , m6 , y3 ) Extractor: 3 unknowns ( m2 , x2 , y2 ) – 3 balances – 3 balances 1 DF 0 DF Mixing Pt: 2 unknowns ( m1 , m5 ) Evaporator: 4 unknowns ( m4 , m5 , m6 , y4 ) – 1 balance – 2 balances 1 DF 2 DF Filter: 7 unknowns ( m2 , m3 , m4 , x2 , y2 , y3 , y4 ) – 3 balances – 1 oil/hexane ratio 3 DF Start with extractor (0 degrees of freedom) Extractor mass balance: 300 + 87.0 + 13.0 kg = m2 4- 26